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Abstract: This paper focuses on the development of approximate Bayes estimators for the shape parameters of the generalized inverted

Kumaraswamy (GIKum) distribution. The estimators are based on a progressive first-failure censored plan. The study considers both

maximum likelihood and Bayesian estimations using a gamma-informative prior distribution for the parameters, as well as the reliability

function, hazard rate, and reversed hazard rate functions. To obtain the estimators, the paper employs Lindley’s approximation and

utilizes Markov Chain Monte Carlo (MCMC) methods. The Bayes estimators are derived with respect to both symmetric (squared

error) and asymmetric (linex and general entropy) loss functions. In order to assess the performance of the proposed estimators, the

paper presents numerical results obtained through a simulation study involving different sample sizes.
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1 Introduction

Lifetime testing experiments are often time-consuming and expensive. Therefore, we used different types of censorship
protocols to terminate the experiment. The censoring scheme in an experiment can also occur naturally, without the
experimenter’s control. For instance, in medical studies, a patient may withdraw from the study before its completion.
Initially, conventional type I and type II censoring schemes were commonly used. However, in certain life tests, there
may be an urgent need to utilize some test items for other purposes before the test concludes. This point was considered
by Cohen [6], who introduced the progressive type II censoring scheme, which allows for the removal of items from
the experiment before its final termination point. The work on progressive censoring up until 1999 was compiled by
Balakrishnan and Aggarwala [2]. Progressive censoring has also been explored by other researchers such as Pradhan and
Kundu [16], as well as Krishna and Kumar [10]. Real-life situations often arise where the lifetimes of items are extremely
long, while test facilities remain limited. In cases where the test material is relatively inexpensive, it is possible to increase
the number of items under test from n to k× n. This approach involves conducting the experiment with n sets or groups,
each consisting of k items. Only the first failure is observed within each set, and a progressive censoring strategy is
employed across the n groups. The grouping of units and observation of only the first failure was studied by Johnson
[9]. Other studies exploring this grouping approach were conducted by Balasooriya [4], Wu et al. [19], and Wu and Yu
[21]. The combination of first-failure observation and progressive censoring is referred to as the progressive first-failure
censoring scheme, as introduced by Wu and Kus [20]. They developed estimation methods for the Weibull distribution
under this novel censoring plan. More recent references on this topic can be found in Lio and Tsai [14], Kumar et al. [11],
and Dube et al. [7]. Now, let’s delve into the details of the progressive first-failure censoring scheme. Assuming k × n

items are placed on test, distributed among n independent groups, with k items in each group, we adopt a progressive
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censoring scheme denoted as R = (R1,R2, ...,Rm). When the first failure occurs in a unit, the group in which the first
failure happened is removed, along with R1 additional groups randomly selected from the remaining (n−1) groups. Upon
the occurrence of the second failure, the group with the second failure and R2 additional groups are randomly removed
from the remaining (n−R1 − 2) groups, and so on. This procedure continues until the mth failure occurs, at which point
the remaining Rm groups, along with the group in which the last failure took place, are removed.

It is evident that
m

∑
i=1

Ri+m = n. Furthermore, if R1 = R2 = ...= Rm = 0, the progressive first-failure censoring scheme

reduces to the first-failure censoring scheme. Similarly, if R1 = R2 = ... = Rm−1 = 0 and Rm = n−m, it reduces to the
first-failure type II censoring scheme, specifically the progressive type II censored scheme with k = 1. It is worth noting
that the progressive first-failure censoring scheme with a cumulative distribution function (cdf) F(y) can be interpreted
as a progressive type II censored sample from a population with a cdf of 1− (1−F(y))k. Consequently, results obtained
for the progressive type II censored scheme can be readily extended to the progressive first-failure censoring scheme.
Therefore, progressive first-failure censoring serves as a generalization of progressive censoring. Despite employing a
larger number of items in the progressive first-failure censoring plan compared to other schemes, it offers the advantage
of reducing test time.

Let y1:m:n:k, y2:m:n:k, ..., ym:m:n:k denote a progressive first-failure censored sample obtained from a population with a
probability density function (pdf) f (.) and cdf F(.), using the progressive censoring scheme R. For simplicity, we can
represent (y1:m:n:k, y2:m:n:k, ..., ym:m:n:k) as y = (y1, y2, ..., ym). Based on a progressive first-failure censored sample y, the
likelihood function is given by [refer to Balakrishnan and Aggarwala [2] and Wu and Kus [20]].

L(y) = τkm
m

∏
i=1

f (yi)[1−F(yi)]
(k(Ri+1)−1), (1)

where τ = n(n− 1−R1)...(n−R1 − ...−Rm−1−m+ 1).
In recent years, there has been a growing interest in the utilization of inverted distributions for data analysis in various

fields such as medical, economic, and engineering sciences, lifetime analysis, finance, and insurance.
The Kumaraswamy (Kum) distribution, introduced by Kumaraswamy [12], is defined on the interval (0,1). While it

shares similarities with the Beta distribution, the Kum distribution is much simpler to use, particularly in simulation
studies, due to its closed-form expressions for the probability density function (pdf) and cumulative distribution function
(cdf). For further details on this family of distributions, refer to Barakat et al. [5]. Abd Al-Fattah et al. [1] derived the
inverted Kumaraswamy (IKum) distribution through certain transformations applied to the original distribution.
Additionally, Iqbal et al. [?] derived the GIKum distribution by incorporating a power transformation. The pdf and cdf of
the GIKum distribution are given by:

f (y; λ , η , κ) = λ η κ yκ−1 (1+ yκ)−(λ+1) [1− (1+ yκ)−λ ]η−1 , y > 0, λ , η , κ > 0 (2)

and
F(y; λ , η , κ) = [1− (1+ yκ)−η ]λ , y > 0, λ , η , κ > 0. (3)

The main objective of this paper is to estimate the parameters of the GIKum distribution using Bayes estimators. Both
the maximum likelihood estimation (MLE) and Bayesian methods are obtained based on progressive first-failure
censoring schemes. The paper is organized as follows: Section 2 covers the MLE of the unknown parameters, along with
discussions on reliability functions, hazard rates, and reversed hazard rates. In Section 3, Bayes estimates are calculated
using Lindley’s approximation, as described in Lindley [13]. Section 4 presents a Monte Carlo simulation to compare the
various estimates proposed in this paper. Finally, Section 5 provides concluding remarks.

2 Estimators Based on Maximum Likelihood

In this section, we will derive the Maximum Likelihood Estimators (MLEs) of the unknown parameters, as well as the
reliability, hazard rate, and reversed hazard rate functions, based on progressive first-failure censored samples. We assume
that the failure time distribution follows the GIKum distribution, with the probability density function (pdf) and cumulative
distribution function (cdf) defined in equations (2) and (3) respectively. By combining equations (1), (2), and (3), the
likelihood function can be expressed as follows:

L(y; λ , η , κ) = τ(kλ ηκ)m
m

∏
i=1

(yκ−1
i (1+ yκ

i )
−(λ+1)[1− (1+ yκ

i )
−λ ]η−1)×

m

∏
i=1

(1− [1− (1+ yκ
i )

−η ]λ )(k(Ri+1)−1). (4)
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Taking the logarithm of the likelihood function yields the following expression:

logL = ℓ= logτ +m log[kλ ηκ ]+ (κ − 1)
m

∑
i=1

logyi − (λ + 1)
m

∑
i=1

log[1+ yκ
i ]+ (η − 1)

m

∑
i=1

log[1− (1+ yκ
i )

−λ ]

+
m

∑
i=1

((k(Ri + 1)− 1) log[1− (1− (1+ yκ
i )

−η)λ ]). (5)

By calculating the first partial derivatives of (5) with respect to λ , η , and κ and setting them equal to zero, we can
obtain the likelihood equations:

m

λ
−

m

∑
i=1

log [1+ yκ
i ]+ (η − 1)

m

∑
i=1

(1+ yκ
i )

−λ
log [1+ yκ

i ]

1− (1+ yκ
i )

−λ

=
m

∑
i=1

(k (1+Ri)− 1)
(

1− (1+ yκ
i )

−η)λ
log

[

1− (1+ yκ
i )

−η]

1−
(

1− (1+ yκ
i )

−η)λ
,

m

η
+

m

∑
i=1

log
[

1− (1+ yκ
i )

−λ
]

=
m

∑
i=1

λ (k (1+Ri)− 1) (1+ yκ
i )

−η(
1− (1+ yκ

i )
−η)λ−1

log [1+ yκ
i ]

1−
(

1− (1+ yκ
i )

−η)λ
,

m

κ
+

m

∑
i=1

logyi − (1+λ)
m

∑
i=1

yκ
i logyi

1+ yκ
i

+(η − 1)
m

∑
i=1

λ yκ
i (1+ yκ

i )
−(λ+1)

logyi

1− (1+ yκ
i )

−λ

=
m

∑
i=1

ηλ (k (1+Ri)− 1)yκ
i (1+ yκ

i )
−(η+1)(

1− (1+ yκ
i )

−η)λ−1
logyi

1−
(

1− (1+ yκ
i )

−η)λ
.































































































































(6)

The solutions to the non-linear equations (6) correspond to the Maximum Likelihood Estimators (MLEs) of the

parameters, denoted as λ̂ , η̂ , and κ̂ . Additionally, the MLEs of the reliability, hazard rate, and reversed hazard rate
functions can be expressed as follows:

R̂(t) = 1−

[

1−
(

1+ t κ̂
)−λ̂

]η̂

, t > 0,

Ĥ (t) =

λ̂ η̂ κ̂ t κ̂−1

[

1−
(

1+ t κ̂
)−λ̂

]η̂−1

(

1+ t κ̂
)λ̂+1

(1− (1−
(

1+ t κ̂
)−λ̂

)
η̂

)

, t > 0,

and

Ĥ∗ (t) =
λ̂ η̂κ̂t κ̂−1

(

1+ t κ̂
)λ̂+1

[

1− (1+ t κ̂)−λ̂
]
, t > 0.

3 Estimation Using Bayesian Methods

In this section, we will derive the Bayesian estimators for the unknown parameters λ , η , and κ of the GIKum distribution.
Additionally, we will study the reliability, hazard rate, and reversed hazard rate functions based on progressive first-failure
censoring samples. We will consider both symmetric (squared error) and asymmetric (linex and general entropy) loss
functions.

Furthermore, we will utilize Lindley’s approximation and Markov Chain Monte Carlo (MCMC) methods to obtain the
Bayesian estimators.
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We assume that λ , η , and κ are independent random variables with informative prior distributions, specifically gamma
distributions, which can be defined as follows:

π1(λ ; ζ1, ν1) =
e−ζ1ηζ1

ν1

Γ (ν1)
λ ν1−1; λ > 0, (ζ1, ν1 > 0),

π2(η ; ζ2, ν2) =
e−ζ2ηζ2

ν2

Γ (ν2)
ην2−1; η > 0, (ζ2, ν2 > 0),

and

π3(κ ; ζ3, ν3) =
e−ζ3κ ζ3

ν3

Γ (ν3)
κν3−1; κ > 0, (ζ3, ν3 > 0).

Then the joint prior distribution for λ , η , and κ is defined by

π(λ , η , κ) =
e−(ζ1λ+ζ2η+ζ3κ) ζ1

ν1 ζ2
ν2 ζ3

ν3

Γ (ν1) Γ (ν2) Γ (ν3)
λ ν1−1 ην2−1 κν3−1; (7)

λ > 0, η > 0, κ > 0, (ζ1, ν1, ζ2, ν2, ζ3, ν3 > 0).

By utilizing equations (4) and (7), we can derive the posterior distribution of λ , η and κ as follows:

π
(

λ , η , κ | y
)

=
α β

∞
∫

0

∞
∫

0

∞
∫

0

α β dλ dη dκ

, (8)

where

α = e−(ζ1λ+ζ2η+ζ3κ) λ ν1+m−1 ην2+m−1 κν3+m−1
m

∏
i=1

yκ−1
i (1+ yi

κ)−(λ+1)
,

and

β =
m

∏
i=1

[

1− (1+ yi
κ)

−λ
]η−1

(

1−
[

1− (1+ yi
κ)

−η
]λ

)(k(Ri+1)−1)

.

Since the integration in equation (8) cannot be obtained in closed form, we need to solve it numerically. In the
subsequent subsections, we will derive Bayesian estimators for the parameters λ , η , κ , as well as the reliability, hazard
rate, and reversed hazard rate functions under various loss functions.

3.1 Bayesian estimator under the squared error loss function

1.The Bayesian estimator for the parameter λ is given by

λ̂sq = E(λ ) =

∞
∫

0

∞
∫

0

∞
∫

0

(

λ π
(

λ , η , κ | y
))

dλ dη dκ ,

provided that E(λ ) exists. Since this integral cannot be solved analytically,we use Lindley’s Bayesian approximation
for any function ψ of parameter ω , ω = (θ1, θ2, θ3) and Q(θ1, θ2, θ3) = logπ(θ1, θ2, θ3), which is defined by

E
(

ψ(ω) | y
)

≈

(

ψ(θ1, θ2, θ3)+
1

2

[

∑
r

∑
s

(ψrs + 2ψrQs)σrs +∑
r

∑
s

∑
z

∑
w

Lrszψwσrsσzw

])

(θ1, θ2, θ3)ML

, (9)

∀ r, s, z, w = 1, 2, 3,

where Qi = ∂Q(θ1, θ2, θ3)
∂θi

, ψi = ∂ψ(θ1, θ2, θ3)
∂θi

, ψi j = ∂ 2ψ(θ1, θ2, θ3)
∂θi ∂θ j

, Li j = ∂ 2ℓ
∂θi ∂θ j

, Li jk = ∂ 3ℓ
∂θi ∂θ j ∂θk

,

∀ i, j, k = 1, 2, 3, and σi j = (i, j)th element in the matrix





−L11

−L21

−L12

−L22

−L13

−L23

−L31 −L32 −L33





−1

,∀ i, j = 1, 2, 3.
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Substitute in the equation (9), ψ = λ , the Bayesian estimator of the shape parameter λ is given as

λ̂sq ≈ λ +Q1σ11 +Q2σ12 +Q3σ13 +
1

2
(Aσ11 +Bσ21+Cσ31) ,

where
A = σ11L111 +σ22L221 +σ33L331 + 2(σ12L121 +σ13L131 +σ23L231) ,

B = σ11L112 +σ22L222 +σ33L332 + 2(σ12L122 +σ13L132 +σ23L232) ,

C = σ11L113 +σ22L223 +σ33L333 + 2(σ12L123 +σ13L133 +σ23L233) .

2.Substitute into equation (9), ψ = η , the Bayesian estimator of the parameter η is given as

η̂sq ≈

(

η +Q1σ21 +Q2σ22 +Q3σ23 +
1

2
(Aσ12 +Bσ22 +Cσ32)

)

.

3.Substitute in the equation (9), ψ = κ , the Bayesian estimator of the parameter κ is given as

κ̂sq ≈

(

κ +Q1σ31 +Q2σ32 +Q3σ33 +
1

2
(Aσ13 +Bσ23 +Cσ33)

)

.

4.Substitute into equation (9), ψ = R(t) , the Bayesian estimator of the reliability function R(t) is given as

R̂sq (t)≈ R(t)+ (ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)+
1

2
[A(ψ1σ11 +ψ2σ12 +ψ3σ13)

+B(ψ1σ21 +ψ2σ22 +ψ3σ23)+C (ψ1σ31 +ψ2σ32 +ψ3σ33)],

where
ai = Q1σi1 +Q2σi2 +Q3σi3; i = 1,2,3,

a4 = ψ12σ12 +ψ13σ13 +ψ23σ23,

a5 =
1

2
(ψ11σ11 +ψ22σ22 +ψ33σ33) .

5.Substitute in the equation (9), ψ = H (t) , the Bayesian estimator of the hazard rate function H(t) is given by

Ĥsq (t)≈ H (t)+ (ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)+
1

2
[A(ψ1σ11 +ψ2σ12 +ψ3σ13)]

+B(ψ1σ21 +ψ2σ22 +ψ3σ23)+C (ψ1σ31 +ψ2σ32 +ψ3σ33) .

6.Substitute into equation (9), ψ = H⋆ (t) , the Bayesian estimator of the reversed hazard rate function H⋆(t) is given by

Ĥ⋆
sq (t)≈ H⋆ (t)+ (ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)+

1

2
[A(ψ1σ11 +ψ2σ12 +ψ3σ13)

+B(ψ1σ21 +ψ2σ22 +ψ3σ23)+C (ψ1σ31 +ψ2σ32 +ψ3σ33)].

3.2 Bayesian Estimators Under Linear-Exponential Loss Function (LINEX)

1.Substitute into equation (9), ψ = e−ρλ , the Bayesian estimator of the shape parameter λ is given as

λ̂LINEX ≈

− 1
ρ log

[

e−ρλ − ρ

eλρ (Q1σ11 +Q2σ12 +Q3σ13)+
ρ2

2eλρ σ11 −
ρ

2eλρ (Aσ11 +Bσ21 +Cσ31)
]

.

2.The Bayesian estimator for the parameter η is given by

η̂LINEX =−
1

ρ
log

[

E
(

e−ρη
)]

,

provided that E (e−ρη) exists. Substitute into equation (9), ψ = e−ρη , the Bayesian estimator of the parameter η is
given by

η̂LINEX ≈

− 1
ρ log

[

e−ρη − ρ
eηρ (Q1σ21 +Q2σ22 +Q3σ23)+

ρ2

2eηρ σ22 −
ρ

2eηρ (Aσ12 +Bσ22 +Cσ32)
]

.
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3.Substitute into equation (9), ψ = e−ρκ , the Bayesian estimator of the shape parameter κ is given by

κ̂LINEX ≈

− 1
ρ log

[

e−ρκ − ρ
eκρ (Q1σ31 +Q2σ32 +Q3σ33)+

ρ2

2eκρ σ33 −
ρ

2eκρ (Aσ13 +Bσ23 +Cσ33)
]

.

4.Substitute into equation (9), ψ = e−ρR(t), the Bayesian estimator of the reliability function R(t) is given by

R̂LINEX (t)≈−
1

ρ
log

[

e−ρR(t)+(ψ1a1 +ψ2a2 +ψ3a3 + a4+ a5)

+
1

2
[A(ψ1σ11+ψ2σ12 +ψ3σ13)+B(ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]

.

5.Substitute into equation (9), ψ = e−ρH(t), the Bayesian estimator of the hazard rate function H(t) is given as

ĤLINEX (t)≈−
1

ρ
log

[

e−ρH(t)+(ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)

+
1

2
[A(ψ1σ11+ψ2σ12+ψ3σ13)+B(ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]

.

6.Substitute into equation (9), ψ = e−ρH⋆(t), the Bayesian estimator of the reversed hazard rate function H⋆(t) is given
as

Ĥ⋆
LINEX (t)≈−

1

ρ
log

[

e−ρH⋆(t)+(ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)

+
1

2
[A(ψ1σ11+ψ2σ12+ψ3σ13)+B(ψ1σ21+ψ2σ22+ψ3σ23)+C (ψ1σ31+ψ2σ32+ψ3σ33)]

]

.

3.3 Bayesian estimator under general entropy loss function

1.The Bayesian estimator for the shape parameter λ is given by

λ̂Gentropy =
[

E
(

λ−q
)]−1

q ,

provided that E (λ−q) exists. Substitute into equation (9), ψ = λ−q, the Bayesian estimator of the parameter λ is given
by

λ̂Gentropy ≈











λ−q − qλ−(q+1) (Q1σ11 +Q2σ12 +Q3σ13)+

(

(q+ 1)qλ−(q+2)
)

2
σ11

−
qλ−(q+1)

2
(Aσ11 +Bσ21 +Cσ31)











−1
q

.

2.Substitute into equation (9), ψ = η−q, the Bayesian estimator of the shape parameter η is given by

η̂Gentropy ≈











η−q − qη−(q+1) (Q1σ21 +Q2σ22 +Q3σ23)+

(

(q+ 1)qη−(q+2)
)

2
σ22

−
qη−(q+1)

2
(Aσ12 +Bσ22 +Cσ32)











−1
q

.

3.Substitute into equation (9), ψ = κ−q, the Bayesian estimator of the shape parameter κ is given by

κ̂Gentropy ≈











κ−q − qκ−(q+1) (Q1σ31 +Q2σ32 +Q3σ33)+

(

(q+ 1)qκ−(q+2)
)

2
σ33

−
qκ−(q+1)

2
(Aσ13 +Bσ23 +Cσ33)











−1
q

.
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4.Substitute into equation (9), ψ = R(t)−q, the Bayesian estimator of the reliability function R(t) is given by

R̂Gentropy (t)≈


(R(t))−q +(ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)+
1
2





A(ψ1σ11 +ψ2σ12 +ψ3σ13)
+B(ψ1σ21 +ψ2σ22 +ψ3σ23)
+C (ψ1σ31 +ψ2σ32 +ψ3σ33)









−1
q

.

5.Substitute into equation (9), ψ = H(t)−q, the Bayesian estimator of the hazard rate function H(t) is given as

ĤGentropy (t)≈


(H (t))−q +(ψ1a1 +ψ2a2 +ψ3a3 + a4 + a5)+
1
2





A(ψ1σ11 +ψ2σ12 +ψ3σ13)
+B(ψ1σ21 +ψ2σ22 +ψ3σ23)
+C (ψ1σ31 +ψ2σ32 +ψ3σ33)









−1
q

.

6.Substitute in the equation (9), ψ = H⋆(t)−q, the Bayesian estimator of the reversed hazard rate function H⋆(t) is given
as

Ĥ⋆
Gentropy (t)≈



(H⋆ (t))−q +(ψ1a1 +ψ2a2 +ψ3a3 + a4+ a5)+
1
2





A(ψ1σ11 +ψ2σ12 +ψ3σ13)
+B(ψ1σ21 +ψ2σ22 +ψ3σ23)
+C (ψ1σ31 +ψ2σ32 +ψ3σ33)









−1
q

.

4 Simulation studies

In this section, we conduct a Monte Carlo simulation study to compare the performance of the various estimates
developed in the previous sections. A large number of (10000) progressively first-time failure censored samples are
generated from model (4). These generated samples have different combinations of k = 3; 6; number of groups in the
sample n = 50; 80, effective sample size m = 25; 40 out of n, and progressive censoring scheme R.

This study will include the following steps:

1.To obtain a progressive first-failure censored sample based on the model (4) and the specified values of (k,n,m,R),
we can employ the algorithm proposed by Balakrishnan and Sandhu [3].

2.Section 2 provides the necessary guidelines for calculating the maximum likelihood estimates of λ ,η ,κ , R(t), H(t),
and H⋆(t). Apply these guidelines to obtain the respective maximum likelihood estimates.

3.Referencing Section 3, compute the Bayes estimates of λ ,η ,κ , R(t), H(t), and H⋆(t).
4.Repeat steps (1)-(3) a total of 10,000 times, using varying values of (k,n,m,R).

In this section, we examine two key performance measures: the estimation average and the mean square error. The

estimation average =

10000

∑
i=1

θ̂i

10000
, the mean square error =

10000

∑
i=1

(θ̂i−θ)
2

10000
, where θ is the true parameter and θ̂ is its estimator.

Due to the non-analytical solvability of the nonlinear equations (6), extensive computations are carried out using
Mathematica 11. Numerical methods, such as the Newton-Raphson method, are employed with initial values close to the
actual parameter values.
Throughout this section, we will use the following abbreviations for brevity and clarity:

1.MSEs: Mean square errors.
2.ML: Maximum likelihood estimate.
3.BSq: Bayes estimate under squared error loss function.
4.BLx,c=3: Bayes estimate under linex loss function with c = 3.
5.BLx,c=6: Bayes estimate under linex loss function with c = 6.
6.BGe,q=4: Bayes estimate under general entropy loss function with q = 4.
7.BGe,q=8: Bayes estimate under general entropy loss function with q = 8.
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Table 1. The average values of the estimates for the parameters λ , η, κ , along with their corresponding mean square errors (MSEs) in

parentheses. These estimates are computed under the conditions λ = 1.2,η = 0.7,κ = 0.9,ζ1 = 2,ν1 = 3,ζ2 = 2,ν2 = 3, and

ζ3 = 2, ν3 = 3.

BLx,c=3 BLx,c=6 BGe,q=4 BGe,q=8 BSq ML Scheme (k,n,m)

T he average estimates o f λ (provided with the MSEs)

1.35944

(0.02184)

1.30942

(0.02142)

1.40032

(0.03651)

1.68121

(0.18051)

1.4555

(0.17671)

1.27784

(0.021420)

1.27857

(0.00449)

1.2572

(0.02441)

1.25572

(0.00191)

1.19887

(0.00026)

1.2244

(0.00261)

1.23663

(0.00062)

1.31237

(0.00002)

1.2731

(0.00003)

1.26893

(0.00004)

1.25973

(0.05445)

1.2469

(0.04371)

1.22817

(0.04016)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

1.32197

(0.01206)

1.29565

(0.00694)

1.3478

(0.02521)

1.37235

(0.03731)

1.37632

(0.02735)

1.39252

(0.04373)

1.25391

(0.00172)

1.25821

(0.00211)

1.29421

(0.00578)

1.2262

(0.00021)

1.22872

(0.00272)

1.22993

(0.00488)

1.26054

(0.00006)

1.27255

(0.00007)

1.2842

(0.00894)

1.23437

(0.02232)

1.24205

(0.02094)

1.25731

(0.03191)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

T he average estimates o f η (provided with the MSEs)

0.76092

(0.00292)

0.75342

(0.00186)

0.76736

(0.000362)

0.75497

(0.002282)

0.74311

(0.002271)

0.76834

(0.00374)

0.73011

(0.00052)

0.72110

(0.00412)

0.73023

(0.00053)

0.71703

(0.00011)

0.71320

(0.00012)

0.72221

(0.00022)

0.77173

(0.00418)

0.75183

(0.00324)

0.75141

(0.00196)

0.73354

(0.01620)

0.72161

(0.01420)

0.72486

(0.02153)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.74137

(0.00116)

0.75276

(0.00206)

0.75482

(0.00316)

0.73562

(0.00081)

0.72147

(0.00020)

0.73024

(0.00021)

0.72330

(0.00026)

0.73750

(0.00093)

0.73121

(0.00081)

0.70886

(0.00043)

0.69854

(0.00007)

0.70817

(0.00067)

0.73372

(0.00071)

0.75754

(0.00252)

0.75043

(0.00194)

0.71712

(0.00978)

0.73563

(0.00988)

0.72993

(0.00873)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

T he average estimates o f κ (provided with the MSEs)

1.00306

(0.00877)

0.96401

(0.00672)

0.99701

(0.00771)

0.92721

(0.00031)

0.92512

(0.00032)

0.92188

(0.00015)

0.97194

(0.00391)

0.95410

(0.00291)

0.95800

(0.00237)

0.89376

(0.00078)

0.90124

(0.00054)

0.88004

(0.00083)

1.04754

(0.01912)

0.99841

(0.00943)

1.00548

(0.00925)

0.98601

(0.03760)

0.94261

(0.02541)

0.95994

(0.03973)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.96373

(0.00296)

0.95894

(0.00246)

0.96941

(0.00345)

0.93342

(0.00058)

0.91474

(0.00003)

0.93681

(0.00043)

0.94442

(0.00123)

0.94266

(0.00113)

0.95321

(0.00293)

0.90891

(0.00001)

0.89345

(0.00024)

0.91861

(0.00942)

0.96632

(0.00324)

0.97461

(0.00426)

0.97643

(0.00541)

0.94035

(0.01567)

0.94318

(0.01732)

0.95321

(0.02413)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)
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Table 2. The average values of the estimates for the reliability, hazard rate, and reversed hazard rate functions, accompanied by their

respective mean square errors (MSEs) in parentheses. These estimates are computed under the conditions

λ = 1.2,η = 0.7,κ = 0.9,ζ1 = 2,ν1 = 3,ζ2 = 2,ν2 = 3, and ζ3 = 2, ν3 = 3.

BLx,c=3 BLx,c=6 BGe,q=4 BGe,q=8 BSq ML Scheme (k,n,m)

T he average estimates o f relaibility f unction R(t=2)=0.166423 (with the MSEs)

0.17911

(0.00213)

0.16544

(0.00146)

0.16844

(0.01541)

0.16931

(0.00212)

0.16697

(0.00742)

0.16978

(0.00856)

0.16722

(0.00202)

0.16843

(0.00426)

0.16852

(0.07023)

0.16687

(0.00043)

0.16649

(0.00863)

0.16792

(0.00134)

0.17942

(0.00432)

0.16941

(0.00123)

0.17242

(0.00751)

0.16747

(0.00362)

0.16720

(0.02611)

0.16252

(0.04214)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.16744

(0.00323)

0.16842

(0.00125)

0.16793

(0.09472)

0.16671

(0.00332)

0.16644

(0.00011)

0.16711

(0.08120)

0.16653

(0.00422)

0.16642

(0.00032)

0.16832

(0.00574)

0.16633

(0.00363)

0.166384

(0.00054)

0.16856

(0.00445)

0.16943

(0.00445)

0.166872

(0.00156)

0.16997

(0.00842)

0.16694

(0.00653)

0.16743

(0.00871)

0.16774

(0.00493)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

T he average estimates o f hazard rate f unction H(t=2)=0.427115 (with the MSEs)

0.49872

(0.00761)

0.46423

(0.00695)

0.54212

(0.00623)

0.49432

(0.00833)

0.45872

(0.02724)

0.48682

(0.00512)

0.54467

(0.00092)

0.45992

(0.00026)

0.46831

(0.00132)

0.49935

(0.00433)

0.48232

(0.00294)

0.47331

(0.00297)

0.50242

(0.00231)

0.49702

(0.00122)

0.49942

(0.02565)

0.46943

(0.01343)

0.45871

(0.00297)

0.47813

(0.00246)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.46833

(0.03802)

0.45255

(0.00003)

0.47892

(0.00268)

0.48782

(0.00077)

0.46864

(0.00004)

0.48975

(0.00093)

0.46283

(0.00322)

0.42643

(0.00002)

0.47793

(0.00242)

0.47682

(0.00876)

0.42947

(0.00002)

0.46986

(0.00393)

0.49202

(0.02462)

0.45792

(0.00045)

0.49922

(0.03761)

0.44681

(0.01324)

0.43244

(0.03221)

0.45688

(0.00474)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

T he average estimates o f reversed hazard rate f unction H*(t=2)=0.0852734 (with the MSEs)

0.1287

(0.02967)

0.0383

(0.000842)

0.13873

(0.02312)

0.10941

(0.09822)

0.04892

(0.00711)

0.11873

(0.02462)

0.19986

(0.09947)

0.05978

(0.00324)

0.09986

(0.01242)

0.09873

(0.06287)

0.06872

(0.07863)

0.05482

(0.00943)

0.0242

(0.06818)

0.06682

(0.03422)

0.03393

(0.01264)

0.10994

(0.04872)

0.05482

(0.00523)

0.10023

(0.09462)

(10,18*0,10)

(20,19*0)

(19*0,20)

(3,40,20)

0.09947

(0.00244)

0.08924

(0.00004)

0.08874

(0.00253)

0.08946

(0.07076)

0.09322

(0.00872)

0.09862

(0.01541)

0.07688

(0.05946)

0.085242

(0.00001)

0.09784

(0.00527)

0.07682

(0.00396)

0.085122

(0.00001)

0.08933

(0.00543)

0.06813

(0.00868)

0.08686

(0.00021)

0.07813

(0.00343)

0.09842

(0.00621)

0.08872

(0.00363)

0.08932

(0.00183)

(20,38*0,20)

(40,39*0)

(39*0,40)

(6,80,40)

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1260 M. Yusuf, H. M. Barakat: Estimating the Parameters of the Generalized Inverted Kumaraswamy

By examining Tables 1 and 2, we can observe that both the maximum likelihood estimate (MLE) and Bayes estimates
for the parameters λ ,η ,κ , as well as the reliability, hazard rate, and reversed hazard rate functions, demonstrate excellent
performance in terms of mean squared errors (MSEs). As the number of groups (n) and the effective sample size (m)
increase, we can expect a decrease in the MSEs for all estimates, which aligns with our expectations. Furthermore, when
the group size (k) increases, the MSEs show a similar decreasing trend.

In general, the Bayesian estimators exhibit lower MSEs compared to the MLE . This can be attributed to the
incorporation of prior information in the Bayesian framework, which enhances the accuracy of the estimates.
Specifically, Bayes estimates utilizing a gamma informative prior display superior performance in terms of MSEs when
compared to the MLE , primarily due to the inclusion of relevant prior knowledge.

5 Concluding remarks

In this research paper, we focus on the estimation of unknown parameters λ ,η ,κ , as well as the reliability, hazard rate,
and reversed hazard rate functions, assuming a reliable lifetime model. Our approach involves utilizing progressive first-
failure censored samples. This censoring scheme offers advantages in terms of reducing test time, where a larger number
of items are employed, but only m out of (k× n) items experience failure.

We have derived both maximum likelihood estimators (MLE) and Bayesian estimators for the parameters λ ,η ,κ ,
as well as the reliability, hazard rate, and reversed hazard rate functions. These estimators employ gamma informative
priors and cater to both symmetric (squared error) and asymmetric (linex and general entropy) loss functions. While these
estimators cannot be obtained in closed form, they can be computed numerically.

Our findings demonstrate that the proposed Bayesian estimators exhibit excellent performance across various values
of n and m. Specifically, the Bayes estimators, leveraging gamma informative priors, outperform the MLE in terms of
mean squared errors (MSEs).

Furthermore, our simulations underscore the significance of using asymmetric loss functions such as linex and general
entropy. These loss functions prove valuable in the specific case studied, emphasizing their importance in the estimation
process.
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