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Abstract: Nonparametric kernel estimates used in this work aim to compare different treatment options by examining the 
recorded medical data. The following use of the suggested strategy depends on a kernel function and a parameter called 
bandwidth. The Nadaraya-Watson kernel (NWK) estimation is a necessary nonparametric kernel estimator used in 
regression models. A new Nadaraya-Watson regression estimate depends on the hyperbolic secant kernel (HSK) with fixed 
bandwidth (FNW) and Variable Bandwidth (VNW) is proposed.. We calculated some properties of the unknown regression 
function estimator, including bias, variance, optimal bandwidth, and a global measure of error criterion mean square error. 
Finally, simulation and three real data sets are used to evaluate its performance. Results from simulation and real data 
showed that the VNW using HSK is more effective than the FNW based on Average Mean Square Error Criterion. Also, 
Nadaraya-Watson using HSK function is more effective than Nadaraya-Watson using the Gaussian kernel density function. 

Keywords: Nonparametric estimation, Regression, Nadaraya and watson, Kernel functions, Hyperbolic Secant, 
Bandwidth, COVID-19.
 

1 Introduction 

In statistics, there are three approaches to estimation in regression analysis: parametric and nonparametric, as well as semi-
parametric. A parametric model presumes that the shape of the regression curve, such as linear, quadratic, or cubic, and the 
form of the function are both known. 

Whereas, nonparametric regression is used when the patterns of the relationship are unknown, it is very good in this case 
because it has high flexibility, then the mixture between parametric and nonparametric regression is semiparametric 
regression, for more details see [2] and [5]. In different statistical situations, nonparametric regression models (NRM) focus 
on accurately determining the relationship between dependent variables and independent variables. The selection of the 
kernel function is important, also the performance and behaviour of the kernel estimators are greatly affected by the 
bandwidth 𝑏, as the choice of bandwidth is of great importance in nonparametric regression. For more details in this regard, 
see [7, 11, 15, 10] and [17], and references therein. 

Let {(𝑋! , 𝑌!)}!"#$ ∈ R be a bivariate random sample with size 𝑛 (𝑋! independent and 𝑌! dependent variable). The regression 
equation is given below:  

𝑌! = 𝛽(𝑋!) + 𝜀!; 				𝑖 = 1,2, … , 𝑛,        (1) 

where 𝛽(𝑋!) is the unknown regression function and 𝜀! are observation errors, its mean and variance(residual variance) 
equal to zero and 𝜎%& respectively. 𝐶𝑜𝑣(𝜀! , 𝜀') = 0 for all 𝑖 ≠ 𝑗. There are many methods for estimating NRM; the most 
popular of them is Nadaraya-Watson (NW) kernel regression, it is a non-parametric statistical technique for estimating the 
conditional expectation of a random variable. The NW estimator, which is a nonlinear approximation of a regression model 
based on experimental data, was developed by researchers Watson and Nadaraya in 1964 [16], [25] and [21]. 

It is based on the smoothing parameter 𝑏, also known as bandwidth. A large value of 𝑏 results in a smooth density estimate; 
for further information, see [24] It is possible to select the bandwidth to become fixed or variable. The bandwidth can be 
calculated using several approaches, such as cross-validation and Silverman’s law of thumb [23], or by supposing a variety 
of initial values. 
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1.1 Nonparametric kernel function estimator 

The kernel density estimator (KDE) is the simplest non-parametric estimator. It is used to estimate the probability density 
function (pdf) using a random sample and some kernels 𝐾. It is introduced by [20]. Assume that {(𝑋!)}!"#$  be a random 
variables from a distribution. The kernel estimation of 𝑓(𝑥) is given by:  

 𝑓@$(𝑥) =
#
$(
∑$!"# 𝐾 B

)*+!
(
C ,				𝑥 ∈ ℝ,        (2) 

where 𝐾(. ) is a kernel function and 𝑏 is called a bandwidth. The kernel function that will be used in the research is given 
by:  

𝐾(𝑡) =
1
𝜋 𝑠𝑒𝑐ℎ(𝑡),				𝑡 ∈ ℝ, 

where 𝑠𝑒𝑐ℎ(𝑢) = 2/(𝑒, + 𝑒*,). Therefore, the hyperbolic secant kernel density estimator (HSKDE) is obtained by:  

𝑓@(𝑥) =
1
𝑛𝑏N

$

!"#

1
𝜋 𝑠𝑒𝑐ℎ O

𝑥 − 𝑋!
𝑏 Q ,				𝑥 ∈ ℝ. 

 

1.2  Fixed Nadaraya-Watson kernel estimator 

The fixed bandwidth 𝑏 is appropriate when the unknown regression model behaves identically during the estimation 
interval. The rule-of-thumb method is the most simple method to determine the fixed bandwidth, the NWK estimator of the 
regression function in the formula (1) is shown as the following  

𝛽@-./(𝑥) =
∑"!#$1!2%()*+!)
∑"!#$2%()*+!)

.                                                   (3) 

In an expanded form, the considered estimator of the regression function by using HSK is thus given by: 

𝛽@(𝑥) =
∑"!#$

$
&56789

'()!
% :1!

∑"!#$
$
&56789

'()!
% :

.                                                     (4) 

1.3  Variable Nadaraya-Watson kernel estimator 

FNW is not always the best choice, when we estimate the density of long-tailed and multi-modal distributions, we use 
adaptive kernel estimators with varying bandwidths 𝑏(𝑋!), see [14]. The VNW estimator of the regression function in the 
formula (1) is obtained as 

  𝛽@;./(𝑥) =
∑"!#$

*!
%+)!,

2<
'()!
%+)!,

=

∑"!#$
$

%+)!,
2<

'()!
%+)!,

=
.        (5) 

In 1982, [1] suggested formula to compute a variable bandwidth (𝑋!) : 

  𝑏(𝑋!) =
(

>?(+!)
          (6) 

where 𝑓(𝑋!) is the pdf of the variable (𝑋!) that can be calculated using the kernel function estimator. 

1.4  Preliminaries 

In this subsection, we state the necessary mathematical properties used in this study. Also, we mention the bias and 
variance of the HSKDE, for more details see [8].  

    • ∫@*@𝐾(𝜔)𝑑𝜔 = 1,				 ∫@*@𝜔𝐾(𝜔)𝑑𝜔 = 0 and 				∫@*@𝜔
&𝐾(𝜔)𝑑𝜔 = A-

B
. 

    • ∫@*@𝐾(𝜔)
&𝑑𝜔 = &

A-
,				∫@*@𝜔𝐾(𝜔)

&𝑑𝜔 = 0 and 				∫@*@𝜔
&𝐾(𝜔)&𝑑𝜔 = #

C
. 

    • Suppose that 𝑛 → +∞, 𝑏 → 0 and 𝑛𝑏 → +∞, then 

 𝐵𝑖𝑎𝑠Y𝑓@(𝑥)Z ≃ (-A-

D
𝑓′′(𝑥).   and    𝑉𝑎𝑟_𝑓@(𝑥)` ≃ &

$(A-
𝑓(𝑥). 

In this paper, we will discuss a new, mathematically and practical regression model using HSK. The paper’s reminder is 
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described in the sections as follows: In Section 2, we investigate the bias, then the variance, and then each of the average 
mean squared error and optimal bandwidth of the regression function estimator using HSK. In Section 3, evaluation global 
criteria. In Section 4, the performance of the proposed estimator is verified through a simulation study using two nonlinear 
regression functions. The three medical real data sets results are presented in Section 5 to verify the performance of the 
estimator. The conclusion of this paper in Section 6. 

2. The Properties of the Proposed Estimator 

Here, we presents and discusses the bias, variance, mean squared error, and optimal bandwidth of the regression function 
estimator 𝛽@(𝑥). 

2.1  Bias and variance of 𝛽@(𝑥)  

Proposition 2.1  It is supposed that 𝑛 → +∞, 𝑏 → 0 and 𝑛𝑏 → +∞.   

    • The bias of 𝛽@(𝑥) satisfies  

𝐵𝑖𝑎𝑠Y𝛽@(𝑥)Z ≃
𝑏&𝜋&

8 𝛽′′(𝑥). 

     • The variance of 𝛽@(𝑥) satisfies  

𝑉𝑎𝑟_𝛽@(𝑥)` ≃
2𝜎%&

𝑛𝑏𝜋&𝑓(𝑥). 

 Proof.    

    • Start with  

𝐸_𝛽@(𝑥)` = 𝐸 c
∫ 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦

𝑓@(𝑥)
e, 

 where 𝐸_𝑓@(𝑥)` is given from the following equation and for more details see [8]  

𝐸_𝑓@(𝑥)` = 𝑓(𝑥) + A-

D
𝑏&𝑓′′(𝑥) + 𝑜(𝑏&).                       (7) 

Hence, we need to find 𝐸Y∫ 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦Z,  

𝐸 fg 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦h =
1
𝑛N

$

!"#

𝐾('(𝑥 − 𝑋!)𝑦! =
1
𝑛𝑏)

N
$

!"#

𝐾(' O
𝑥 − 𝑋!
𝑏)

Q𝑦! 

					= i
1
𝑏 𝑣𝐾 B

𝑥 − 𝑢
𝑏 C𝑓(𝑢, 𝑣)𝑑𝑢𝑑𝑣. 

By using the change of variable 𝜔 = (𝑥 − 𝑢)/𝑏, so 𝑑𝑢 = −𝑏𝑑𝜔, then  

𝐸 fg 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦h =i 𝑣𝐾(𝜔)𝑓(𝑥 − 𝑏𝜔, 𝑣)𝑑𝜔𝑑𝑣 

=i 𝑣𝐾(𝜔)𝑓(𝑣|𝑥 − 𝑏𝜔)𝑓(𝑥 − 𝑏𝜔)𝑑𝜔𝑑𝑣 

=i 𝑣𝐾(𝜔)𝑓(𝑣|𝑥 − 𝑏𝜔)𝑓(𝑥 − 𝑏𝜔)𝑑𝜔𝑑𝑣 

						= g 𝐾(𝜔)𝑓(𝑥 − 𝑏𝜔)g 𝑣𝑓(𝑣|𝑥 − 𝑏𝜔)𝑑𝑣
klllllmllllln

E()*(F)

𝑑𝜔. 

𝐸_∫ 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦` = ∫ 𝐾(𝜔)𝑓(𝑥 − 𝑏𝜔)𝛽(𝑥 − 𝑏𝜔)𝑑𝜔.     (8) 

 This integration can be approximated using Taylor’s expansion, then deduce that 

 𝑓(𝑥 − 𝑏𝜔) = 𝑓(𝑥) − 𝑏𝜔𝑓′(𝑥) + #
&
𝑏&𝜔&𝑓′′(𝑥) + 𝑜(𝑏&).     (9) 
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 𝛽(𝑥 − 𝑏𝜔) = 𝛽(𝑥) − 𝑏𝜔𝛽′(𝑥) + #
&
𝑏&𝜔&𝛽′′(𝑥) + 𝑜(𝑏&).                 (10) 

In addition to, standard techniques also lead to the following integrated outcomes:  
 ∫@*@𝐾(𝜔)𝑑𝜔 = 1	and				 ∫@*@𝜔

$𝐾(𝜔)𝑑𝜔 = 0; n	odd	number.    (11) 
 From Equations (8), (9), (10) and (11), we get 
 𝐸_∫ 𝑓@(𝑥, 𝑦)𝑦𝑑𝑦` = 𝑓(𝑥)𝛽(𝑥) + 𝑏)&𝜎G& x𝑓H(𝑥)𝛽H(𝑥) +

?..())E())
&

+ ?())EHH())
&

y + 𝑜(𝑏&). (12) 
Divide the equation (12) by the equation (7), we get: 

𝐸_𝛽@(𝑥)` ≃ 𝛽(𝑥) +
𝑏)&𝜋&

8 𝛽HH(𝑥). 
 Recall that,  

𝐵𝑖𝑎𝑠Y𝛽@(𝑥)Z = 𝐸_𝛽@(𝑥)` − 𝛽(𝑥) 
 Hence, 

𝐵𝑖𝑎𝑠Y𝛽@(𝑥)Z ≃
𝑏)&𝜋&

8 𝛽′′(𝑥). 

The bias of 𝛽@(𝑥) formula is obtained. 
    • Let’s now concentrate on the variance of 𝛽@(𝑥). 
 𝑉𝑎𝑟_𝛽@(𝑥)` = 𝑉𝑎𝑟 x∫?

J(),1)1L1
?J())

y = 𝑉𝑎𝑟 f∑
"
!#$2%()*+!)1!
∑"!#$2%()*+!)

h = 𝑉𝑎𝑟 xM
N
y. 

The 𝑉𝑎𝑟_𝛽@(𝑥)` can be determined by applying the below formula, It is an approximation of the proportion of variance 
between two random variables, as shown in [18].    

 𝑉 BM
N
C ≈ BOM

ON
C
&
x ;(M)
(OM)-

+ ;(N)
(ON)-

− &PQR(M,N)
(OM)(ON)

y.                       (13) 
In view of the equations (7) and (12), we get 𝐸(𝐵) and 𝐸(𝐴) respectively, also from paper [8] we get 𝑉(𝐵), now we want 
to calculate 𝑉(𝐴) and 𝐶𝑜𝑣(𝐴, 𝐵):  
Firstly, find 𝑽(𝑨)  
 𝑉[𝐴] = 𝑉 x#

$
∑$!"#		 𝐾((𝑥 − 𝑋!)𝑦!y =

#
$(
𝐸[∑$!"#		 𝐾(&(𝑥 − 𝑋!)𝑦!&] = ∬ #

(
𝑣𝐾 B)*,

(
C 𝑓(𝑢, 𝑣)𝑑𝑢𝑑𝑣. 

By using the change of variable 𝜔 = (𝑥 − 𝑢)/𝑏, so 𝑑𝑢 = −𝑏𝑑𝜔, then 
 𝑉[𝐴] = #

$(∬ 𝑣&𝐾&(𝜔)𝑓(𝑥 − 𝑏𝜔, 𝑣)𝑑𝜔𝑑𝑣 

 										= #
$(∬ 𝑣&𝐾&(𝜔)𝑓(𝑣|𝑥 − 𝑏𝜔)𝑓(𝑥 − 𝑏𝜔)𝑑𝜔𝑑𝑣 

 																								= #
$( ∫ 𝐾

&(𝜔)𝑓(𝑥 − 𝑏𝜔)∫ 𝑣&𝑓(𝑣|𝑥 − 𝑏𝜔)𝑑𝑣klllllmllllln
T/-()*(F)E()*(F)

𝑑𝜔. 

 𝑉[𝐴] = #
$( ∫ 𝐾

&(𝜔)𝑓(𝑥 − 𝑏𝜔)𝑑𝜔[𝜎%&(𝑥) + 𝛽(𝑥)&]. 
 From the Taylor expansion in equation (9), we get 

𝑉[𝐴] = #
$(
�𝑓(𝑥)∫@*@𝐾

&(ω	)𝑑𝜔klllmllln
U(2)" -

&-

− 𝑏𝑓H(𝑥) ∫@*@𝜔𝐾
&(𝜔)𝑑𝜔kllllmlllln
V

+ #
&
𝑏&𝑓H(𝑥) ∫@*@𝜔

&𝐾&(𝜔)𝑑𝜔kllllmlllln
$
0

� (𝜎%&(𝑥) + 𝛽. (𝑥)&). (14) 

Therefore, we get  

𝑉[𝐴] ≃
2𝑓(𝑥)𝜎%&(𝑥)

𝑛𝑏𝜋& . 
Secondly, find 𝑪𝒐𝒗(𝑨,𝑩)  

𝐶𝑜𝑣(𝐴, 𝐵) = 𝐶𝑜𝑣 �
1
𝑛N

$

!"#

𝐾((𝑥 − 𝑋!)𝑦! ,
1
𝑛N

$

!"#

𝐾((𝑥 − 𝑋!)� 

= 𝐸 �
1
𝑛N

$

!"#

𝐾((𝑥 − 𝑋!)&𝑦!� ≈
𝑅(𝐾)𝑓(𝑥)𝛽(𝑥)

𝑛𝑏 ≈
2𝑓(𝑥)𝛽(𝑥)
𝜋&𝑛𝑏  

By calculating each term, we observe that 

 BO(M)
O(N)

C
&
= c ?())E())

?())W&
-
1 (

-?HH())
e
&

= ?())-E())-

?())-
≃ 𝛽(𝑥)&.      (15) 

 ;(M)
(OM)-

= &?())T/-

A-$(				?())-E())-
≃ &T/-

$(A-?())E())-
.       (16) 

 ;(N)
(O(N))-

= &?())
$(A-?())-

≃ &
$(A-?())

.        (17) 
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 &PQR(M,N)
(OM)(ON)

= B?())E())
A-$(?())E())?())

≃ B
A-$(?())

.       (18) 
In view of equations (15, 16, 17 and 18). The approximation formula becomes: 
 𝑉𝑎𝑟[𝛽@(𝑥)] = 𝛽(𝑥)& x &T/-

$(A-?())E())-
+ &

$(A-?())
− B

$(A-?())
y ≃ &T/-

$(A-?())
.   □ 

2.2  Optimal bandwidth 

The less distance between two points is called optimal bandwidth (𝑏QXY). It has been extensively studied in the literature, 
see [12], [19] and [26]. 𝑏QXY is obtained by minimizing the Average Mean Squared Error (AMSE). Due to Proposition 2.1, 
(AMSE) = 𝑀( is given by  

 𝑀(Y𝛽@(𝑥)Z = _𝐵𝑖𝑎𝑠Y𝛽@(𝑥)Z`& + 𝑉𝑎𝑟_𝛽@(𝑥)` ≃ (2A2

CB
x𝛽HH(𝑥) + 2𝛽H(𝑥) ?

.())
?())

y
&
+ &T/-

$(A-?())
 

                   ≃ (2A2

CB
[𝛽HH(𝑥)]& + &T/-

$(A-?())
. 

Now, we can determine the optimal bandwidth when we minimize 𝑀( with respect to 𝑏, we need to solve the equation 
𝑑𝑀(/𝑑𝑏 = 0 where 

𝑑𝑀(

𝑑𝑏 =
4𝑏Z𝜋B

64 f𝛽HH(𝑥) + 2𝛽H(𝑥)
𝑓H(𝑥)
𝑓(𝑥) h

&

−
2𝜎%&

𝑛𝑏&𝜋&𝑓(𝑥). 

After some elementary developments, we obtain  

 𝑏[\] = f$A
0^E..())?())W&E.())?.())_

-

Z&T/-
h
*#/a

.       (19) 

which relies on the following: sample size n, unknown regression function, unknown pdf, and error variance 𝜎%&. 

3. Evaluation Global Criteria 
In statistics, the mean squared difference between actual and estimated values is known as the mean squared error, or MSE. 
It is a measure of the amount of error in statistical models. Accordingly, it is used to know the estimated quality and we 
will use it to compare the methods (FNW and VNW), see [4], [9], [22] and [13]. When a model does not contain errors, the 
MSE equals zero, but when the error of the model increases, its value increases. A lower value of MSE indicates the best 
estimator. 𝑀𝑆𝐸 is determined by  

 𝑀𝑆𝐸 = #
$
∑$'"# (𝑦' − 𝑦�')&.         (20) 

where the number of observations is represented by the symbol 𝑛, 𝑦' is the actual values and 𝑦�' is the estimated values. 

In the case of repetition several times (r), the average MSE [3] is determined as:  

 𝐴𝑀𝑆𝐸 = #
b
∑b'"# 𝑀𝑆𝐸' .         (21) 

4.  Simulation Results 
In this section, we can evaluate the performances of the FNW and VNW estimators using hyperbolic secant kernel function 
by Mathematica program. For the simulation, we utilised two non-linear regression functions as follows:  

 𝑦! = 𝑥! + 2𝑒(*#C)!
-) + 𝜀! ,				𝑖 = 1,2,3, . . . , 𝑛.       (22) 

 𝑦! =
c!$(&.aA)!)
#WZ)!-

+ 𝜀! ,				𝑖 = 1,2,3, . . . , 𝑛.       (23) 

where 𝑥! was chosen randomly from 𝑈[0,1] and 𝜀! ∼ 𝑁(0,1). Simulation experiments were conducted using four sample 
sizes (n = 25, 100, 250, 500) and with a repetition of 2000 for each experiment. The fixed bandwidth 𝑏 was computed using 
improve Silverman’s thumb rule [8] which is given by: 

𝑏Xbe7Y =
0.9
𝑛#/a 𝐴,				𝐴 = minO𝑆,

𝐼𝑄𝑅
1.34 + 𝑘Q. 

where, 𝑛 is the number of observations. 

𝑆 is the sample standard deviation. 
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𝐼𝑄𝑅 is the value of Interquartile Range in the data sample. 

𝑘 is smoothing coefficient, 𝑘 = 0,1,2,3, …. 

From Tables 1 and 2, it is clear that fixed and variable Nadaraya-Watson kernel estimators are non-parametric approaches 
that can be used to estimate a nonlinear regression model. They are a more flexible approach than other non-parametric 
approaches and provide accurate prediction results. The proposed estimator based on HSK has been compared in two cases: 
FNW and VNW based on AMSE criteria. We note that the proposed method using the variable bandwidth is more 
efficiency than the fixed bandwidth. VNW is more efficient than FNW for all cases of 𝑘, where the 𝐴𝑀𝑆𝐸 value in VNW 
is less than FNW. We notice that all estimators are improved by increasing the sample size. 

The 𝐴𝑀𝑆𝐸 criteria of FNW and VNW kernel estimators are given in Tables 1 and 2. 

Table 1: The 𝐴𝑀𝑆𝐸 criteria for the FNW and VNW kernel estimators using 𝐻𝑆𝐾 for the first model. 

  k n FNW VNW 

0 

25 1.25061 1.22934 
100 1.21651 1.21244 
250 1.20673 1.20587 
500 1.20521 1.20511 

1 

25 1.26335 1.23734 
100 1.22667 1.21683 
250 1.21219 1.20721 
500 1.20381 1.20121 

2 

25 1.31735 1.28506 
100 1.24893 1.2332 
250 1.222 1.21263 
500 1.21088 1.20552 

3 

25 1.34069 1.31207 
100 1.26469 1.245 
250 1.22606 1.21465 
500 1.22039 1.21231 

4 

25 1.39808 1.36323 
100 1.28209 1.25624 
250 1.23988 1.22588 
500 1.22411 1.21468 

Table 2: The 𝐴𝑀𝑆𝐸 criteria for the FNW and VNW kernel estimators using 𝐻𝑆𝐾 for the second model. 
  k n FNW VNW 

0 

25 1.23237 1.21433 
100 1.20942 1.20529 
250 1.20765 1.20348 
500 1.20083 1.19622 

1 

25 1.27225 1.24691 
100 1.22833 1.21628 
250 1.21888 1.20872 
500 1.20996 1.20149 

2 

25 1.32242 1.28462 
100 1.24872 1.22975 
250 1.23176 1.21808 
500 1.22172 1.21264 

3 

25 1.36708 1.33373 
100 1.26635 1.24371 
250 1.24156 1.22725 
500 1.23034 1.22005 
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4 

25 1.37692 1.34446 
100 1.29554 1.26913 
250 1.25216 1.23548 
500 1.23653 1.22691 

 
5.  Real Data Examples in Medicine with Analysis 
In this section, three real-life datasets in medicine are used to evaluate the performance of our proposed methods. 

The first data set represents a COVID-19 mortality rates data belongs to Italy of 59 days, which is recorded from 27 
February to 27 April 2020, see [6]. 

The second data set represents a COVID-19 mortality rate data belongs to Mexico of 108 days, which is recorded from 4 
March to 20 July 2020. This data formed of rough mortality rate, see [6]. 

The third data set is Leukemia cancer data which collected from January 2015 to December 2020 at Nanakali Hospital for 
Blood in Erbil City of Iraq, as shown in [9]. Moreover, the CD45 outcome as an explanatory variable and Platelet (PLT) as 
a response variable in AML type of Leukemia cancer from 30 patients. 

5.1  Analysis 

The formula suggested by Silverman’s rule of thumb [23] for calculating kernel bandwidth is given by 

𝑏Xbe7Y =
0.9
𝑛#/a 𝐴,				𝐴 = minO𝑆,

𝐼𝑄𝑅
1.34Q, 

From the real data results, note that Tables 3, 5 and 7 compares between the FNW and VNW by using the Hyperbolic 
secant and Gaussian kernels. The VNW of Hyperbolic Secant kernel has the smallest MSE, so Hyperbolic Secant Kernel 
regression is more efficiency than Gaussian Kernel regression. In addition, Tables 2, 4 and 6 represent the results between 
the FNW and VNW methods at b=(0.5, 0.7, 1, 5, 10, and 15) for the first and second real data, respectively. The results 
show that the VNW of HSK has the smallest MSE than the FNW in various bandwidths, this means that VNW is more 
efficient than FNW. Figures 1, 2 and 3 represent the results between FNW and VNW at b=(0.5, 1, 5, 10, 15 and 20) for real 
data. 

Table  3: 𝑀𝑆𝐸 criteria of FNW and VNW methods for data set 1 (n=59).   
kernel function Fixed NW Variable NW 

HSK 42.3522 20.2063 
GK 47.2447 20.214 

 

Table  4: 𝑀𝑆𝐸 criteria of the FNW and VNW kernel estimators using 𝐻𝑆𝐾 for data set 1.   
b Fixed NW Variable NW 

0.5 54.2981 48.8984 
0.7 54.6247 45.2613 
1 54.4197 39.1235 
5 46.4854 20.3626 
10 35.4457 20.1571 
15 27.9533 20.1464   

Table  5: 𝑀𝑆𝐸 criteria of FNW and VNW methods for data set 2 (n=108). 
kernel function Fixed NW Variable NW 

HSK 19.0117 10.5107 
GK 20.8948 10.513 

 

Table  6: 𝑀𝑆𝐸 criteria of the FNW and VNW kernel estimators using 𝐻𝑆𝐾 for data set 2. 
b Fixed NW Variable NW 

0.5 21.9841 22.0085 
0.7 22.3359 20.8481 
1 22.5734 18.9517 
5 22.0933 10.8311 
10 19.5473 10.5197 
15 17.1738 10.4973 

http://www.naturalspublishing.com/Journals.asp


1248                                                                              O. A. Elsamadony, S. E. Abu-Youssef: Medical Data for the Nadaraya … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

 

Table  7: 𝑀𝑆𝐸 criteria of FNW and VNW methods for data set 3 (n=30). 
kernel function Fixed NW Variable NW 

HSK 2650.96 2429.16 
GK 2873.05 2429.17 

 
Table  8: 𝑀𝑆𝐸 criteria of the FNW and VNW kernel estimators using 𝐻𝑆𝐾 for data set 3. 

b Fixed NW Variable NW 
0.5 4013.17649 3432.87376 
0.7 4053.94697 2975.44439 
1 4098.43535 2663.6992 
5 2996.85262 2429.95172 
10 2549.91906 2429.065606 
15 2463.80458 2429.01636 

 

              
Fig.1: The FNW and VNW for COVID-19 mortality rates versus days for data set 1 at b = 0.5, 1, 5, 10, 15 and 20, 

respectively. 

 
Fig.2: The FNW and VNW for COVID-19 mortality rates versus days for data set 2 at b= 0.5, 1, 5, 10, 15 and 20, 

respectively 
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Fig.3: The FNW and VNW for CD45 versus PLT for data set 3 at b = 0.5, 1, 5, 10, 15 and 20, respectively. 

6 .  Conclusion  

The new proposed regression estimator in this paper is depend on the hyperbolic secant kernel. We investigated some of 
statistical properties such as bias, variance, and average mean squared error. These properties are used to determine the 
optimal bandwidth. A new proposed regression estimator for VNW is more efficient than FNW in both simulation and 
three medical practical data sets because the MSE in VNW gives a lower value than MSE in FNW. All estimators are 
improved by increasing the sample size. Finally, applications are noticed that hyperbolic secant kernel regression is more 
efficiency than Gaussian kernel regression. We hope that the findings of this study may find wider application in a variety 
of disciplines.  
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