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Abstract: Measuring the impact of a binary treatment on a binary response variable is of great interest in many medical, social

and economic applications. Estimating such effect is very important when the endogeneity problem occurs. This research proposes a

bivariate logit model to control endogeneity when the structural errors of the two equations are correlated. The copula approach will be

applied to estimate the dependence between the binary treatment and the binary response; and hence, the joint normality assumption

of the structural error is irrelevant. For estimation, the maximum likelihood method will be applied to estimate the model parameters.

The performance of the copula bivariate logit model in estimating the dependence between the binary treatment variable and the binary

response variable is assessed by the Average Treatment Effect (ATE) criterion in both simulation study and real medical data.
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1 Introduction

In many medical, social and economic applications, measuring the dependence between a binary treatment and a binary
response variable is of vital importance. Therefore, the attention has been drawn; recently, to the importance of estimating
such effect especially in the presence of endodgeneity, when the two binary variables depend on unobservable confounding
variable which is hard to determine. The problem of endogeneity arises when a regression model lacks essential covariates,
typically because they are not readily available, causing them to be included in the model’s error term. This problem can’t
be controlled by the univariate probit and/or logit model as they will give biased estimation. Thus, many methods have
been proposed to estimate the dependence between the binary treatment and response variable. One popular way to control
endogeneity; especially in medical and economic studies, is to use the idea of instrumental variable which separates the
effect of the predictors. Then, the estimation methods; such as, the generalized method of moment and the maximum
likelihood (ML) can be applied.

Another useful method to control endogeneity is to apply the bivariate probit model. In this model two binary equations
are used, and the errors of the two equations follow a bivariate Gaussian distribution with correlation parameter θ 6= 0.
Then, the model parameters can be estimated by the ML method. The bivariate probit model is widely applied in
literature; for example, [1] applied this model on a patients with end-stage renal disease who have two choices. The first
choice is dialysis modality and the other one is dialysis unit’s type (private, public), which depend on unobserved factors;
such as, patients’ clinical factors and the characteristic of each unit. [2] used the recursive bivariate probit model to test
the impact of diabetes on Canadian employment. [3] applied the recursive bivariate probit to estimate the relationship
between the women’s decision to participate in workface, and the formal hiring decision of organization. More
applications for economic and health studies can be found in [4],[5], [6], [7], [8], [9] and [10]; among others. [11]
proposed a flexible method to measure the impact of a binary treatment on a binary response when the endogeneity is
present. They developed a two-stage generalized additive model for instrumental variable estimation and accounting for
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possible covariate nonlinear relationship by utilizing regression spline approach. They introduced a semiparametric
recursive bivariate probit model to handle the endogeneity and the possible nonlinear effect of predictors. Their model is
more effective than the classical bivariate probit model as it doesn’t assume a specific relationship between the response
and the continuous predictors, but rather applied the idea of penalized regression spline. [12] applied the semiparametric
probit model to measure the effect of obesity on the employment probability in Italy. They assumed that both obesity and
employment probability depend on unobserved confounding variable and hence the endogeneity problem occurs. [13]
applied the two-stage generalized model to study the effect of Malawi women’s education on fertility. [14] utilized a
semiparametric bivariate probit model to analyse the dependence between the number of in-hospital deaths and the
effectiveness outcome in ST-Elevation myocardial infraction patients. [15] proposed a simultaneous estimation method
for the semiparametric recursive bivariate probit equation to deal with unobserved confounders, nonlinearity of the
predictors and over dispersion.

These methods are effective in many situations; however, they assumed a Gaussian dependence between the errors
of the response and treatment equations, which is violated in, may real world problems. Thus, [16] presented a copula
bivariate probit model to account for the possible non-Gaussian dependence in the error terms. [17] introduced a new
method to measure the impact of a binary treatment on a binary response. Their proposed model has the ability to control
the effect of unobserved confounders, the possible nonlinear effect of the predictors and the possibility of non-Gaussian
dependence between the error terms. [18] introduced a class of bivariate threshold crossing model, which includes the
bivariate probit model as a special case, and used a parametric copula function to model the dependence between the
error terms assuming that the marginal distribution of the errors is arbitrary but is known. [19] proposed an econometric
model for estimating treatment effects in binary choice outcomes, employing a copula to capture the dependence of
unobservable terms. The copula-based approach accommodates different dependence structures. Through a simulation
study, he demonstrated that misspecifying the dependence structures leads to biased estimates of treatment effects. [20]
introduced and implemented commands for estimating three distinct endogenous models of binary choice outcomes. All
model estimations utilized copula-based maximum-likelihood estimation as the underlying statistical methodology. [21]
investigated the link between financial inclusion and women’s economic empowerment in Ethiopia using methods like
endogenous switching regression and instrumental variables. Their results emphasize the positive impact of financial
inclusion on women’s economic empowerment. Although the probit model is widely used in literature, the logit model is
more popular in many real applications because of its ability to interpret the coefficients in terms of odd ratio.

Thus to control for this form of unmeasured heterogeneity in the empirical context of this paper, we will utilize the
bivariate logit model to estimate the effect of a binary endogenous treatment variable Y1 on a binary response Y2. The
proposed model builds on a first equation modeling the endogenous dummy variable, a second equation is an outcome
equation which determines the response variable Y2 that depends on the endogenous binary regressor Y1 and other
covariates. The two equations are then connected via a bivariate logit distribution which makes it possible to model the
correlation between the two equations, hence accounting for unobserved heterogeneity, assuming that the error terms
follow bivariate logistic distribution.

The rest of the paper is organized as follows. In Section 2, we provide details on the model specification employed here.
Subsection 2.1 discusses the ML method applied to estimate the model parameters. A simulation study will be presented
in Section 3. To assess the performance of our model, an application to real medical data will be discussed in Section 4.

2 Bivariate Logit Model

The bivariate logit model offers a convenient method for gauging the impact of an endogenous binary regressor, denoted
as y1, on a binary outcome variable, denoted as y2. The conventional model presupposes a consistent treatment effect, the
existence of an exclusion restriction, and the absence of simultaneity. In a formal sense, the structural model encompasses
the following pair of latent equations:

y∗1i = xxx′1iααα1 + u1i

y∗2i = β y1i + xxx′2iααα2 + u2i, i = 1,2, ...,n, (1)
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where y∗1i and y∗2i are called latent variables for the binary variables y1i and y2i; respectively, such that:

y ji =

{
1 if y∗ji > 0

0 if y∗ji ≤ 0, j = 1,2.

In Equation (1), the instrument variables xxx′1i = (1,x11i,x12i, ...,x1pi) is the ith-row of an (n× p) matrix of regressors
which affect y1i but have no direct effect on the binary outcome variable y2i. Similarly, xxx′2i = (1,x21i,x22i, ...,x2qi) is the
ith-row of an (n×q) matrix of regressors. Also, ααα1 and ααα2 are two (p×1) and (q×1) vectors of coefficients, respectively
and β is the coefficient of the endogenous binary variable y1i. Moreover, the error terms u1i and u2i are assumed to have
the following joint distribution function:

F(u1i,u2i) =Ψ(u1i,u2i;ρ),

where Ψ(.) is the Cumulative Distribution Function (CDF) of the bivariate logit distribution with coefficient of correlation
ρ 6= 0. Therefore, to estimate the model parameters correctly, the dependence between the errors u1i and u2i should be
taken into account. In this paper, a copula bivariate logit model is proposed to estimate the effect that a binary treatment
variable has on a binary outcome variable, in the presence of endogeneity, by assuming different types of copulas and
hence, different models will be generated. Therefore, the error terms u1i and u2i are assumed to have the following joint
CDF:

F(u1i,u2i) = C (F1(u1i),F2(u2i);θ ), (2)

where, C (·) is a copula function with dependence parameter θ 6= 0 and both F1(u1i) and F2(u2i) are the univariate logistic
CDF for u1i and u2i, thus

Fj(u ji) =
eu ji

1+ eu ji
, j = 1,2. (3)

It’s crucial to understand that the suggested recursive bivariate logit model introduces two forms of dependence between
y1i and y2i, linked to the parameters β and θ , respectively. Even though the joint model simplifies to two separate logit
equations when the structural errors are independent θ = 0, this doesn’t imply independence between y1i and y2i. The
second logit equation of the recursive base model determines the probability of y2i conditional on y1i, so complete
independence requires θ = 0 and β = 0. The copula bivariate logit model in this study employs copulas to depict
dependence between the structural errors. It doesn’t directly model the dependence between the two binary outcomes,
but the dependence among the structural errors evidently influences that dependence. In this paper four different types of
copula functions will be applied to estimate the effect of the treatment variable y1i on the outcome variable y2i in Model
(1). The chosen copulas are: the Gaussian, Frank, FGM and Plackett copula. These copula functions are widely applied
as they allow for negative dependence. Moreover, they are symmetric in both tails except for plackett copula. Table 1
defines the chosen copula with the parameter’s domain.

Table 1: The Gaussian, Frank, FGM and Plackett copula function with parameter’s domain

Type of Copula C (u,v;θ ) Domain of θ

Gaussian Φ2(Φ
−1(u),Φ−1(v);θ ) θ ∈ (−1,1)

Frank − 1
θ log(1+

(e−θ u−1)(e−θ v−1)
(e−θ−1)

) θ ∈ R {0}

FGM uv(1+θ (1−u)(1−v)) θ ∈ (−1,1)

Plackett 1
2θ (1+θ (u+v))− [1+θ (u+v)2 −4θ (θ +1)uv]

1
2 θ ∈ [−1,∞)

2.1 Estimation strategy

2.1.1 Maximum likelihood

In the bivariate logit model, The primary focus is on determining the structural treatment parameter β , commonly known
as the average treatment effect:
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Ex [P(u2i >−β − xxx′2iααα2)−P(u2i >−xxx′2iααα2)].
Let x be a vector of x1i and x2i, the joint distribution of y1i and y2i (conditional on x1i and x2i) has four elements:

P(y1i = 0,y2i = 0|x) = P(u1i ≤−xxx′1iααα1,u2i ≤−xxx′2iααα2),

P(y1i = 1,y2i = 0|x) = P(u1i ≤−xxx′1iααα1,u2i ≤−β − xxx′2iααα2),

P(y1i = 0,y2i = 1|x) = P(u1i ≤−xxx′1iααα1,u2i ≤−xxx′2iααα2),

P(y1i = 1,y2i = 1|x) = P(u1i ≤−xxx′1iααα1,u2i ≤−β − xxx′2iααα2). (4)

This distribution is fully determined once the joint distribution of u1i and u2i is known. Thus from (2) and (3), the joint
probability density function of y1i and y2i can be written compactly as:

f (y1i,y2i|x) = C (F1(xxx
′
1iααα1),F2(β y1i + xxx′2iααα2);θ ).

Thus, under copula representation with logit marginal, the probability expressions in (4) can be written as:

P(y1i = 0,y2i = 0|x) = C [F1(−xxx′1iααα1),F2(−xxx′2iααα2);θ ],

P(y1i = 1,y2i = 0|x) = C [1,F2(−β y1i − xxx′2iααα2);θ ]−C [F1(−xxx′1iααα1),F2(−β y1i − xxx′2iααα2);θ ],

P(y1i = 0,y2i = 1|x) = C [F1(−xxx′1iααα1),1;θ ]−C [F1(−xxx′1iααα1),F2(−xxx′2iααα2);θ ],

P(y1i = 1,y2i = 1|x) = 1−C [F1(−xxx′1iααα1),1;θ ]−C [1,F2(−β y1i − xxx′2iααα2);θ ],

+ C [F1(−xxx′1iααα1),F2(−β y1i − xxx′2iααα2);θ ].

The copula bivariate logit model’s joint probabilities are influenced by both the chosen copula and four parameters,
ξ = (β ,ααα1,ααα2,θ ), where θ is the copula function’s dependence parameter. If we assume the true copula belongs to a
parametric family, a reliable and asymptotically normally distributed estimator for the parameter ξ can be derived through
ML. The likelihood function can be formulated as:

The likelihood function an be expressed as:

L(ξ ) =
n

∏
i=1

P(y1i = 1,y2i = 1)y1i,y2i ×P(y1i = 1,y2i = 0)y1i,(1−y2i)

× P(y1i = 0,y2i = 1)(1−y1i),y2i ×P(y1i = 0,y2i = 0)(1−y1i),(1−y2i). (5)

Numeric optimization techniques can be applied to maximize the log-likelihood function in (5). A crucial condition
for identification is the presence of at least one exogenous regressor with a non-zero coefficient, denoted by ααα1 6= 0, or
ααα2 6= 0. Assuming the model is accurately specified, the ML estimator exhibits standard asymptotic properties. These
estimators are beneficial as they offer optimal approximations to an undisclosed true model.

2.1.2 The average treatment effect

The effect of a binary treatment y1i on a binary outcome y2i = 1 is of vast interest in many real applications. One of the
most popular measures used in literature is the ATE. This measure compares the expected value of the outcome with and
without the treatment. The Sample Average Treatment Effect (SATE) is calculated by:

SATE(x) =
1

N

N

∑
i=1

P(y2i = 1|y1i = 1,x)−P(y2i = 1|y1i = 0,x),

where,

P(y1i = 1,y2i = 1|x) = 1−C [F1(−xxx′1iααα1),1;θ ]−C [1,F2(−β y1i − xxx′2iααα2);θ ]

+ C [F1(−xxx′1iααα1),F2(−β y1i − xxx′2iααα2);θ ],

P(y1i = 1,y2i = 0|x) = C [1,F2(−β y1i − xxx′2iααα2);θ ]−C [F1(−xxx′1iααα1),F2(−β y1i − xxx′2iααα2);θ ].

3 Simulation Study

In order to assess the performance of the proposed methodology, we generate data from the following model:

y1 = 1(α1x1 + u1 > 0), (6)

y2 = 1(α0 +β y1 +α2x2 + u2 > 0), (7)

where the coefficients are sitting to α1 = 0.4,α0 = 0.9,α2 = −0.5 and β = 0.8 and the instrumental variable x1 and the
regressor x2 are two independent and identically distributed random variables with mean 0 and variance 1. The error terms
u1 and u2 are drawn from different types of copula with dependence parameter θ 6= 0. For Model (7), we will consider the
four copula functions; Gaussian, FGM, Frank and Plackett with different sample sizes.
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The main interest here is to investigate the effect of the treatment y1 on the probability that the response variable y2 = 1.
This effect can be measured by the idea of the Sample Average Treatment Effect (SATE), which is defines by the difference
between the expected value of the response variable with and without the presence of the treatment y1. Therefore:

SATE =
1

n

n

∑
i=1

Ψ(0.9+ 0.8− 0.5x1)−Ψ(0.9− 0.5x2),

where Ψ (.) denotes the conditional distribution function of the logistic distribution. To compare between the four
alternative copulas, we calculate the Mean Absolute Percentage Error (MAPE):

MAPE =
| SATE −TrueATE |

| TrueATE |
× 100,

where the true ATE is approximated by averaging Ψ(0.9+0.8−0.5x1)−Ψ(0.9−0.5x2) for the sample size of 5 million
and equals to 0.1336622. The dependence parameters for the four copulas will be chosen to give the same value of the
Kendall’s Tau as the direct comparison between their dependence parameters can’t be made. Hence, the dependence
parameters for the four copulas are chosen to be 0.23,1.32, 0.675 and 2.08; respectively, which give the value of
τ = 0.15 for the kendall’s Tau.

Tables 2-5 show the simulation results for the four copulas; Gaussian, FGM, Frank and Plackett with the dependence
parameters 0.23, 1.32, 0.675 and 2.08; respectively, with sample sizes N = 1000,5000, 10000 and 20000 and number of
replications = 250.

Table 2: Simulation results for the parameter estimates and corresponding MSEs (in parentheses) for Gaussian copula
DGP with θ = 0.23

N=1000

α̂1 α̂0 β̂ β̂2 AT E MAPE −log likelihood

Gaussian 0.40506 0.88531 0.78088 -0.48303 0.12711 4.90101 -1163.090
(0.00473) (0.10540) (0.57333) (0.00642)

FGM 0.40794 0.83502 0.93470 -0.49124 0.15373 15.02123 -1163.203
(0.00466) (0.08060) (0.36056) (0.00613)

Frank 0.40437 0.89244 0.75434 -0.48081 0.12222 8.55794 -1163.106
(0.00480) (0.11775) (0.65046) (0.00666)

Plackett 0.40397 0.89377 0.74697 -0.48027 0.12043 9.89420 -1163.122
(0.00486) (0.11568) (0.66953) (0.00680)

N=5000

Gaussian 0.39998 0.88770 0.81872 -0.50126 0.13586 1.64522 -5825.337
(0.00101) (0.02648) (0.14181) (0.00132)

FGM 0.40032 0.87860 0.86338 -0.50348 0.14267 6.74599 -5825.509
(0.00100) (0.02328) (0.11765) (0.00131)

Frank 0.39996 0.89543 0.82053 -0.50172 0.13558 1.43931 -58325.474
(0.00101) (0.02737) (0.14484) (0.00134)

Plackett 0.40001 0.89543 0.82119 -0.50170 0.13568 1.51380 -5832.482
(0.00101) (0.02737) (0.14447) (0.00132)

N=10000

Gaussian 0.39712 0.88871 0.82078 -0.49717 0.13673 2.30218 -11662.561
(0.00044) (0.01070) (0.05899) (0.00070)

FGM 0.39717 0.88843 0.84540 -0.49858 0.14004 4.77485 -11662.760
(0.00044) (0.01070) (0.05841) (0.00069)

Frank 0.39709 0.89495 0.82970 -0.49790 0.13742 2.81522 -11662.788
(0.00044) (0.01213) (0.06794) (0.00071)

Plackett 0.39716 0.89262 0.83594 -0.49805 0.13841 3.55469 -11662.832
(0.00044) (0.01193) (0.06698) (0.00071)

Continued on next page
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N=20000

α̂1 α̂0 β̂ β̂2 AT E MAPE −log likelihood

Gaussian 0.39996 0.89765 0.80463 -0.49870 0.13321 0.36693 -23313.94
(0.00024) (0.00539) (0.03132) (0.00039)

FGM 0.40000 0.89724 0.83109 -0.50020 0.13674 3.00555 -23314.417
(0.00024) (0.00542) (0.03203) (0.00038)

Frank 0.39993 0.90553 0.81194 -0.49952 0.13374 0.67830 -23314.397
(0.00024) (0.00624) (0.03571) (0.00039)

Plackett 0.39998 0.90461 0.81472 -0.49955 0.13431 1.00252 -23314.443
(0.00024) (0.00624) (0.03553) (0.00039)

Table 3: Simulation results for the parameter estimates and corresponding MSEs (in parentheses) for Frank copula DGP with θ = 1.32

N=1000

α̂1 α̂0 β̂ α̂2 AT E MAPE −log likelihood

Gaussian 0.40282 0.84515 0.86562 -0.49703 0.14115 5.60820 -1163.942

(0.00436) (0.10868) (0.58245) (0.00802)

FGM 0.40510 0.80480 0.99287 -0.50474 0.16336 22.21908 -1164.000

(0.00431) (0.08706) (0.39446) (0.00758)

Frank 0.40219 0.85949 0.82617 -0.49519 0.13458 0.69257 -1163.898

(0.00437) (0.11881) (0.63173) (0.00793)

Plackett 0.40185 0.86162 0.81816 -0.49459 0.13306 0.44561 -1163.907

(0.00444) (0.11810) (0.64116) (0.00794)

N=5000

Gaussian 0.39977 0.88256 0.80717 -0.49625 0.13483 0.88073 -5837.434

(0.00085) (0.01917) (0.10727) (0.00152)

FGM 0.39973 0.89461 0.80310 -0.49784 0.13374 0.06413 -5837.299

(0.00084) (0.01581) (0.08489) (0.00148)

Frank 0.39933 0.91079 0.76123 -0.49602 0.12672 5.19237 -5837.270

(0.00085) (0.02001) (0.11632) (0.00153)

Plackett 0.39931 0.91027 0.76257 -0.49595 0.12688 5.07298 -5837.285

(0.00085) (0.02051) (0.12041) (0.00154)

N=10000

Gaussian 0.40033 0.86235 0.85686 -0.49766 0.14319 7.13554 -11676.656

(0.00044) (0.01295) (0.06834) (0.00060)

FGM 0.40014 0.87622 0.84823 -0.49882 0.14119 5.63693 -11676.472

(0.00044) (0.01128) (0.05993) (0.00058)

Frank 0.39997 0.88719 0.82143 -0.49781 0.13675 2.31755 -11676.440

(0.00044) (0.01291) (0.07192) (0.00060)

Plackett 0.39998 0.88708 0.82208 -0.49778 0.13684 2.38021 -11676.464

(0.00044) (0.01307) (0.07295) (0.00060)

N=20000

Gaussian 0.40069 0.86172 0.86414 -0.49895 0.14456 8.16022 -23353.113

(0.00021) (0.00610) (0.02911) (0.00033)

FGM 0.40037 0.87903 0.84869 -0.49993 0.14133 5.73883 -23352.65

(0.00021) (0.00513) (0.02695) (0.00033)

Frank 0.40024 0.89042 0.82234 -0.49912 0.13704 2.53158 -23352.565

(0.00021) (0.00542) (0.02912) (0.00033)

Plackett 0.40023 0.89159 0.81996 -0.49902 0.13664 2.23038 -23352.572

(0.00021) (0.00551) (0.02983) (0.00033)

In Table 2, the Data Generating Process (DGP) is setting to Gaussian copula with θ = 0.23. The Gaussian bivariate
logit model and Frank bivariate logit model perform well in estimating the true ATE for all sample sizes. All models
perform well whith N = 20000 with minimim MAPE equals to 0.36% produced by Gaussian copula. When the Frank
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copula is used as a DGP with θ = 1.32, Table 3 shows that Frank bivariate logit model model is the best models in
estimating the true ATE with MAPE equals to 0.06% with N = 5000. However, it is less attractive with N = 10000 and
N = 20000. In general, both Frank and Plackett perform well in estimating the true ATE. In Table 4, the DGP is sitting to

Table 4: Simulation results for the parameter estimates and corresponding MSEs (in parentheses) for FGM copula DGP with θ = 0.657

N=1000

α̂1 α̂0 β̂ α̂2 AT E MAPE −log likelihood

Gaussian 0.39771 0.83130 0.86341 -0.48797 0.14102 5.50500 -1165.412

(0.00451) (0.13304) (0.69206) (0.00703)

FGM 0.40078 0.78844 1.00473 -0.49769 0.16636 24.46379 -1165.517

(0.00454) (0.10021) (0.41550) (0.00640)

Frank 0.39614 0.85221 0.80005 -0.48482 0.13039 2.44606 -1165.359

(0.00464) (0.14634) (0.76467) (0.00716)

Plackett 0.39631 0.85005 0.80477 -0.48486 0.13121 1.83366 -1165.387

(0.00466) (0.14605) (0.76348) (0.00714)

N=5000

Gaussian 0.40132 0.85722 0.86872 -0.50077 0.14447 8.09162 -5832.249

(0.00098) (0.02486) (0.13645) (0.00131)

FGM 0.40131 0.86972 0.86221 -0.50220 0.14303 7.01166 -5832.149

(0.00098) (0.02150) (0.11338) (0.00128)

Frank 0.40090 0.88095 0.83181 -0.50064 0.13786 3.14302 -5832.153

(0.00098) (0.02586) (0.14573) (0.00132)

Plackett 0.40096 0.87736 0.84109 -0.50087 0.13935 4.25835 -5832.190

(0.00098) (0.02573) (0.14456) (0.00133)

N=10000

Gaussian 0.39943 0.87880 0.82343 -0.50010 0.13765 2.98522 -11668.394

(0.00050) (0.01216) (0.06535) (0.00076)

FGM 0.39916 0.89683 0.80577 -0.50105 0.13420 0.40326 -11668.183

(0.00050) (0.01036) (0.05484) (0.00074)

Frank 0.39900 0.90488 0.78603 -0.50018 0.13091 2.05285 -11668.235

(0.00050) (0.01227) (0.06717) (0.00076)

Plackett 0.39907 0.90128 0.79553 -0.50043 0.13244 0.90857 -11668.311

(0.00050) (0.01203) (0.06531) (0.00076)

N=20000

Gaussian 0.39976 0.88125 0.81855 -0.49837 0.13715 2.61410 -23341.696

(0.00020) (0.00569) (0.02979) (0.00033)

FGM 0.39939 0.90091 0.79755 -0.49915 0.13305 0.45751 -23341.237

(0.00020) (0.00530) (0.02884) (0.00034)

Frank 0.39932 0.90717 0.78327 -0.49858 0.13068 2.22759 -23341.351

(0.00020) (0.00618) (0.03434) (0.00034)

Plackett 0.39938 0.90382 0.79200 -0.49879 0.13207 1.18988 -23341.485

(0.00020) (0.00613) (0.03404) (0.00033)

FGM copula with θ = 0.67. All models perform well in estimating the true ATE with the smallest MAPE equals to 0.4%
produced by the FGM bivariate logit model with N = 10000. Moreover, both FGM and Plackett bivariate logit models
outperform other models in estimating the true ATE for N = 10000 and N = 20000.
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Table 5: Simulation results for the parameter estimates and corresponding MSEs (in parentheses) for Plackett copula DGP with θ =
2.08

N=1000

α̂1 α̂0 β̂ α̂2 AT E MAPE −log likelihood

Gaussian 0.39567 0.85609 0.82985 -0.49809 0.13543 1.32475 -1161.855

(0.00452) (0.11731) (0.62155) (0.00674)

FGM 0.39825 0.80528 0.99546 -0.50913 0.16426 22.89743 -1161.971

(0.00442) (0.08957) (0.37069) (0.00659)

Frank 0.39501 0.87727 0.77657 -0.49617 0.12640 5.43269 -1161.794

(0.00457) (0.12259) (0.65992) (0.00668)

Plackett 0.39443 0.88350 0.75349 -0.49465 0.12205 8.68701 -1161.787

(0.00463) (0.12431) (0.70165) (0.00682)

N=5000

Gaussian 0.39888 0.85477 0.86561 -0.49765 0.14441 8.04548 -5824.931

(0.00076) (0.02143) (0.11533) (0.00118)

FGM 0.39898 0.85657 0.88946 -0.50029 0.14772 10.52464 -5824.827

(0.00075) (0.01798) (0.09218) (0.00115)

Frank 0.39836 0.88281 0.82139 -0.49746 0.13643 2.07205 -5824.717

(0.00076) (0.02232) (0.12901) (0.00120)

Plackett 0.39826 0.88673 0.81165 -0.49702 0.13478 0.84252 -5824.702

(0.00076) (0.02309) (0.13556) (0.00121)

N=10000

Gaussian 0.39888 0.85856 0.85417 -0.49943 0.14310 7.06633 -11657.856

(0.00045) (0.01249) (0.06484) (0.00062)

FGM 0.39878 0.86581 0.86572 -0.50155 0.14423 7.90975 -11657.659

(0.00044) (0.00991) (0.05308) (0.00062)

Frank 0.39838 0.89027 0.80515 -0.49936 0.13434 0.51234 -11657.465

(0.00045) (0.01173) (0.06835) (0.00062)

Plackett 0.39831 0.89506 0.79375 -0.49891 0.13248 0.87914 -11657.427

(0.00045) (0.01206) (0.07067) (0.00061)

N=20000

Gaussian 0.40154 0.86804 0.84302 -0.49853 0.14125 5.68007 -11657.856

(0.00022) (0.00655) (0.03466) (0.00044)

FGM 0.40130 0.87772 0.84891 -0.50027 0.14140 5.78934 -11657.659

(0.00022) (0.00522) (0.02995) (0.00042)

Frank 0.40104 0.89761 0.80118 -0.49868 0.13366 0.00359 -11657.465

(0.00022) (0.00587) (0.03493) (0.00044)

Plackett 0.40101 0.90071 0.79421 -0.49841 0.13252 0.84917 -11657.427

(0.00022) (0.00602) (0.03575) (0.00044)

Table 5 summarizes the results with Plackett DGP and dependence parameter θ = 2.08. In this case, both Frank and
Plackett bivariate logit models work better than other models in estimating the true ATE with minimum MAPE equals to
0.003 obtained by the Frank bivariate logit model with N = 20000.

4 Real Data Application

To examine the effectiveness of the proposed methodology, we utilized the meps dataset available on R package GJRM
and also can be obtained from1. These dataset include some information on personal health such as, private health cover,
number of visiting doctors and health status. For the selection of variables in the proposed model, we followed the work

1 http://www.meps.ahrq.gov/
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of [22] and thus the bivariate logit model is written as:

private = bmi + income + age + education + as.factor(health) + as.factor(race)

+ as.factor(limitation) + as.factor(region) + gender + hypertension

+ hyperlipidemia + diabetes

visits hospital = private + bmi + income + age + education + as.factor(health)

+ as.factor(race) + as.factor(limitation) + as.factor(region) + gender

+ hypertension + hyperlipidemia + diabetes

To understand the variables used in the above model, a short descriptions of each variable is provided in Table 6. To

Table 6: Description of the treatment, outcome and other independent variables

Variables Description

private if having a private health cover=1

visits.hopsital if at least one visit to hospital=1

bmi body mass index

income individual income

age individual age

education years of education

health 5 levels: excellent=5, very good=6, good=7, fair=8, poor=9

race 4 levels: white=2, black=3, native American=4, other=5

limitation if health puts binds on physical activity=1

region 4 levels: northeast=2, mid-west=3, south=4, west=5

gender if male=1

hypertension if hypertensive=1

hyperlipidemia if hyperlipidemic=1

diabetes if diabetic=1

measure the effect of the treatment (private) on the outcome (visit.hospital) variables; and hence, accounting for
endogeneity, four types of copulas are proposed to be applied. The chosen copulas are: Gaussian, Frank, FGM and
Plackett as in Section 3. For each copula, a new model is generated and the choice between these models will be made
based on the Akike Information Criterion (AIC). Among all models, the AIC criterion selects the one which best fit the
data. Table 7, summarizes the AIC and ATE for each copula. It is clear that the bivariate logit models, with all types of

Table 7: The AIC and ATE for the four types of compula for both logit and probit models

logit probit

Type of Copula ÂT E(CI)% AIC ÂT E(CI)% AIC

Gaussian 1.59 (-1.90,5.43) 31583.66 1.02 (-5.72,5.65) 31763.88

Frank 3.29 (-2.98,9.02) 31584.71 3.51 (-4.69,11.31) 31764.81

FGM 0.419 (-9.263,8.379) 31584.39 3.66 (-1.91,9.70) 31764.82

Plackett 3.51 (-1.75,8.54) 31584.73 -0.38 (-7.93,7.92) 31764.44

copulas, have smaller AIC than bivariate probit models. Moreover, the Gaussian copula gives the minimum AIC for both
logit and probit models; hence, the bivariate logit model with Gaussian copula is considered the best to fit this data; thus,
estimating the dependence between the response variable (vist.hospital) and the treatment (private) more accuretly than
othe models. The estimated ATE For the bivariate logit model with Gaussian copula, is equal to 1.59% which suggests
that people who visits the hospital frequently are more likely to have a private health insurance by 1.59%. The simulated
average effect is plotted in Figure 1.

The estimates of the model parameters with the Gaussian copula are listed in Table 8 below.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1212 D. Alsulami et al.: Bivariate Logit Model...
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Figure 1: Plot of the histogram of simulated average effect together with the kernel estimate

Table 8: The estimates of the model parameters with the Gaussian copula

Treatment equation Outcome equation

Variable Estimate Std.error Estimate Std.error

bmi -0.001 0.003 0.004 0.003

private — — 0.154 0.233

income 2.2×10−5 5.9×10−7 8.6×10−7 6.6×10−7

age 0.020 0.001 0.022 0.002

education 0.228 0.007 0.064 0.012

health=6 -0.125 0.048 0.256 0.066

health=7 -0.269 0.051 0.326 0.069

health=8 -0.596 0.070 0.572 0.092

health=9 -0.966 0.111 0.945 0.130

race=3 -0.105 0.046 -0.202 0.062

race=4 -0.450 0.175 -0.171 0.240

race=5 0.132 0.071 -0.279 0.091

limitation 0.376 0.071 -0.787 0.074

region=3 0.459 0.062 0.269 0.070

region=4 0.122 0.054 -0.435 0.065

region=5 0.066 0.058 -0.693 0.0.074

gender 0.020 0.036 -0.707 0.047

hypertension 0.109 0.050 0.170 0.057

hyperlipidemia 0.256 0.051 0.450 0.054

diabetes -0.019 0.073 0.189 0.075

5 Conclusions

Modeling the effect of a binary treatment on a binary response variable is of great importance. This research proposed
a bivariate logit model to control endogeneity by estimating the dependence between a binary outcome and treatment
variables by using copula function. A simulation study was conducted to measure the performance of different types of
copula by measuring the ATE and MAPE under different sample sizes and four types of copula functions. The proposed
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model was compared to the bivariate probit model via real applications under different copula functions, which show the
potentiality of the proposed model.
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