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Abstract: In this study, using the Holling type II response function and prey refuge, we bring fractional order into an
eco-epidemiological paradigm with diseased prey in which the predator consumes a vast amount of healthy prey in an excessively
disproportionately large amount. We show that there are solutions to the fractional order eco-epidemiological paradigm and that these
solutions are distinct, non-negativity, and limited. Additionally, we generated a number of equilibrium points and investigated the local
and global stability of the interior equilibrium point. We explore the roles that fractional order and the prey shelter play in maintaining
the stability of the proposed system’s equilibrium point. Numerous examples are used to illustrate the results, and numerical
simulations are used to support our theoretical conclusions.
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1 Introduction

The creation of a model that explores the interactions between species and uses that model’s analysis to forecast the
species’ future dynamics is one of the main topics of mathematical biology. Prey-predator interactions are often seen
in the majority of organisms. The use of ordinary differential equations to represent the changing aspects of predator-
prey systems has a rich and intriguing history. Kot [1], Murray [2], and the sources given therein provide some of those
fascinating works. On the other hand, infectious illnesses that affect a species cannot be disregarded. Almost everyone who
is alive may experience various infectious illnesses at some point in their lifetime, and these diseases have a huge impact
on population size. The main causes of decreased reproductive rates, species mortality, refuge, etc., may be infectious
illnesses. Consequently, a biological system that has been stable for a while could become unstable, lose its stability,
and ultimately go extinct. Eco-epidemiology, the study of ecology and epidemiology combined, is therefore extremely
realistic and difficult from a practical standpoint. The eco-epidemic field has expanded greatly and quickly during the last
few decades. Hadeler et al. [3] developed the initial model for disease transmission among the interacting populations.
Various predator-prey models in the context of illness were the subject of numerous studies [4–10]. The eco-epidemiology
of such systems was applied for the first time by Chattopadhyay et al. [4].

In numerous biological models, non-integer order differential equations are being effectively applied to analyse the
inherent changing characteristics of the ecosystems [11]. The non-integer order derivative may be better suited for
simulating systems depending on prior experiences since it is a non-local operator in the sense that it considers some
processes’ histories of earlier states as having an impact on the system’s current state [12]. Greater degrees of freedom
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are possible with fractional-order systems, which are also physically explicable as a memory index [13] Du et al. The
concept of generic non-integer derivatives, as put forth by Zhao et al. [14], is frequently used to explain the nature of
memory phenomena. By selecting a suitable non-integer order derivative which best fits the data and, as a result, more
accurately predicts disease progression, it may also be possible to adapt the non-integer order system to actual data, as
demonstrated by Almeida et al. [15]. Therefore, noninteger-order differential equations might help to simulate biological
occurrences more accurately. Some works on the modelling of differential equations with fractional orders are presented
in [16–31]. Our study uses fractional-order differential equations to represent the prey refuge dilemma, which includes
contaminated prey. This provides the piece an additional novelty and dimension.

The present paper is organised in the following manner: The presumptions as well as evolution of a model with
different parameters and their corresponding descriptions are covered in Section 2 of the study. Details on the existence
and uniqueness of the model, as well as the positivity and boundaries of the solutions, are given in Section 3. In Section 4,
the equilibrium points are discussed in addition to their presence and the stability characterization of the paradigm at the
coexistence equilibrium point. In Section 5, we employ the MATLAB programme to quantitatively validate every one of
our important theoretical findings Section 6 includes a brief general overview and addresses the biological implications
of our mathematical and theoretical findings.

2 Mathematical model formulations

2.1 Model Assumptions

Recall that and indicate the respective total population amounts of prey and predators. Following are the underlying
assumptions of the present fractional eco-epidemiological paradigm.

a) The amount of prey increases logistically given carrying capacity with inherent birth pace while there is no infection.
b) Assuming the presence of disease, the prey population is split as a pair of categories: vulnerable prey (represented by

) and infected prey (represented by ). The population at time is therefore
c) The only ability of the vulnerable prey is reproduction, and the sick prey is eliminated at a natural rate
d) The disease cannot be transferred vertically and only spreads through contact among the prey population. Prey species

that have been affected do not recover or develop immunity. We suppose that the disease spreads at the same rate
according to the basic rule of mass action .

e) The prey refuge constant , and the vulnerable prey accessible for predation are expected to take refuge by the susceptible
prey species .

f) Both vulnerable along with infected prey are predated by predators at predation coefficients of and , correspondingly,
assuming a Holling type-II functional response. With efficiency , the prey is devoured and transformed to a predator.

g) A steady rate of natural mortality losses affect the predator.

In Figure 1, the structure of the model is displayed. Yang et al.’s work [32] presents a set of ordinary differential
equations that are produced from the flow chart.

du
dt

=ru
(

1− u
k

)
−buv−a1uw, (1)

dv
dt

=buv−a2vw− c1v, (2)

dw
dt

=ea1uw+ ea2vw− c2w. (3)

It is presumed that the parameters are continuous and positive. The following is a biological explanation of each
parameter utilised in system (1)-(3). In the current work, we extend the integer order paradigm (1)-(3) to take into account
a fractional order eco-epidemiological paradigm that includes prey refuge with type II functional response.

CDξ u(t) =ru
(

1− u
k

)
−buv− a1(1−θ)wu

1+ γ(1−θ)u
, (4)

CDξ v(t) =buv−a2vw− c1v, (5)

CDξ w(t) =
ea1(1−θ)uw
1+ γ(1−θ)u

+ ea2vw− c2w (6)

with initial conditions u(0) = u0 ≥ 0,v(0) = v0 ≥ 0,w(0) = w0 ≥ 0, where 0 < ξ < 1, and CDξ denotes the Caputo
fractional derivative. Table 1 provides descriptions of each of the parameters.
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Fig. 1: Eco-epidemiological paradigm flow diagram

Parameters Description in a biological sense
r Intrinsic growth amount of prey
k Vulnerable prey carrying capacity
b Measure of illness spread among prey
c1 Measure of mortality of disease-induced
e Rate of predator conversion

a1 Predation frequency of susceptible prey
a2 Rate of predation on contaminated prey
c2 Mortality rate of predator

Table 1: Definitions of model parameters

2.2 Preliminaries:

The most widely used fractional derivatives of mathematical modelling and engineering applications are
Riemann-Liouville and Caputo derivatives, while there are many more types as well [11]. We use Caputo fractional
derivatives in this work to create our model. The primary benefit of non-integer order differential equations is that their
starting values adopt a similar type as those of integer order differential equations.

1.The fractional integral of order ξ > 0 of a function f : R+ → R is defined as follows:

Iξ f (t) =
1

Γ (ξ )

∫ t

0
(t − τ)ξ−1 f (τ)dτ (7)

where Γ is the Euler gamma function.
2.The following definition applies to the Caputo fractional order derivative:

dξ f (t)
dtξ

= In−ξ dn

dtn f (t) =
1

Γ (n−ξ )

∫ t

0
(t − τ)n−ξ−1 f (n)(τ)dτ (8)

where Γ is the Euler gamma function, f (t) is a time dependent function and ξ is the order of the derivative (n−1 <
ξ ≤ n).

No one has, as far as we know, taken into account a fractional-order eco-epidemiological paradigm (4)-(6) that includes
prey refuge with type II functional response. The fractional-order eco-epidemiological paradigm that this study discusses

© 2024 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


326 G. R. Kumar et al.: Eco-epidemiological Model with Infected Prey ...

has illness in the prey population and a predator that feeds on both susceptible and diseased prey. This study’s objectives
are to explore the characteristics of the non-integer order eco-epidemiological paradigm that has been proposed (see (4)-
(6)) and to provide support for a global stability analysis of such biologically viable equilibria. The above work examines
the prosed fractional order eco-epidemiological paradigm (4)-(6), in which disease-infected prey are the prey, to see
whether any solutions exist and if they are unique, non-negativity, and limited. At the provincial and universal levels, the
asymptotic consistency of the resulting equilibrium points is examined. The resulting theoretical solutions are congruent
with the dynamical behaviour of paradigm (4)-(6) as indicated by the numerical simulations.

3 Mathematical analysis

In this part the fractional order eco-epidemiological paradigm (4)-(6) is mathematically explored.

3.1 Existence and uniqueness

It is possible to investigate the presence and uniqueness of the non-integer order paradigm (4)-(6) solutions in the region
Ω × (0,T ],
where Ω =

{
(u,v,w) ∈ R3 : max(|u|, |v|, |w|)≤ ψ

}
.

Theorem 1.For each V0 = (u0,v0,w0) ∈ Ω , can only have one solution V (t) ∈ Ω for paradigm (4)-(6) having initial
condition V0, which is specified by every t ≥ 0.

Proof.The procedure developed by Hong Li et al. [33]. Introduce a function H(V ) = (H1(V ),H2(V ),H3(V )), in which

H1(V ) =ru
(

1− u
k

)
−buv− a1(1−θ)wu

1+ γ(1−θ)u
, (9)

H2(V ) =buv−a2vw− c1v, (10)

H3(V ) =
ea1(1−θ)uw
1+ γ(1−θ)u

+ ea2vw− c2w. (11)

For any V,V̄ ∈ Ω it follows from equations (9)-(11) that

∥H(V )−H(V̄ )∥= |H1(V )−H1(V̄ )|+ |H2(V )−H2(V̄ )|+ |H3(V )−H3(V̄ )|

=

∣∣∣∣ru
(

1− u
k

)
−buv− a1(1−θ)wu

1+ γ(1−θ)u
− rū

(
1− ū

k

)
+būv̄+

a1(1−θ)wu
1+ γ(1−θ)ū

∣∣∣∣
+ |buv−a2vw− c1v−buv+a2v̄w̄+ c1v̄|

+

∣∣∣∣ea1(1−θ)uw
1+ γ(1−θ)u

+ ea2vw− c2w− ea1(1−θ)uw
1+ γ(1−θ)ū

− ea2vw+ c2w̄
∣∣∣∣

≤
∣∣∣r+ r

k
(u+ ū)

∣∣∣ |u− ū|+b|uv−uv|+ a1(1−θ)

(1+ γ(1−θ)u)(1+ γ(1−θ)ū)
|(uw−uw)+ γ(1−θ)uū(w− w̄)|

+b|uv−uv|+a2|vw− vw|+ c1|v− v̄|+ ea2|vw− vw|+ c2|w− w̄|

+
ea1(1−θ)

(1+ γ(1−θ)u)(1+ γ(1−θ)ū)
|(uw−uw)+ γ(1−θ)uū(w− w̄)|

≤
(

r+
2rψ

k

)
|u− ū|+2b|uv−uv|+ a1(1−θ)

(1+ γ(1−θ)u)(1+ γ(1−θ)ū)
|(uw−uw)+ γ(1−θ)uū(w− w̄)|

+a2|vw− vw|+ c1|v− v̄|+ ea2|vw− vw|+ c2|w− w̄|

+
ea1(1−θ)

(1+ γ(1−θ)u)(1+ γ(1−θ)ū)
|(uw−uw)+ γ(1−θ)uū(w− w̄)|

≤
(

r+
2rψ

k
+2bψ +

a1(1+ e)(1−θ)ψ

(1+ γ(1−θ)ψ)2

)
|u− ū|+(2bψ + c1 +(1+ e)a2ψ) |v− v̄|

+

(
(1+ e)a2ψ + c2 +

(1+ e)a1γ(1−θ)2ψ2

(1+ γ(1−θ)ψ)2 +
a1(1+ e)(1−θ)ψ

(1+ γ(1−θ)ψ)2

)
|w− w̄|

≤ L∥(u,v,w)− (ū, v̄, w̄)∥
≤ L∥V −V̄∥
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where

L = max
{(

r+
2rψ

k
+2bψ +

a1(1+ e)(1−θ)ψ

(1+ γ(1−θ)ψ)2

)
,(2bψ + c1 +(1+ e)a2ψ) ,(

(1+ e)a2ψ + c2 +
(1+ e)a1γ(1−θ)2ψ2

(1+ γ(1−θ)ψ)2 +
a1(1+ e)(1−θ)ψ

(1+ γ(1−θ)ψ)2

)}
. (12)

Therefore, meets Lipschitz criterion with respect to. As a result, the fractional order paradigm (4)-(6) has an only solution
with the initial condition V0 = (v0,u0,w0).

3.2 Non-negativity and boundedness

We are solely concerned in the non-negative answer due to its biological importance. The data below demonstrate the
answers to the fractional order paradigm are not negative (4)-(6). Paradigm (4)-(6) provides us with

CDξ u(t)
∣∣∣
u=0

=0,

CDξ v(t)
∣∣∣
v=0

=0,

CDξ w(t)
∣∣∣
u=0

=0.

Therefore, according to Boukhouima et al.’s [34] lemma 5 and 6, the solutions of the non-integer order paradigm (4)-(6) are
non-negative. The boundedness of the solutions to the non-integer order paradigm (4)-(6) is examined in the subsequent
theorem.

Theorem 2.The fractional order paradigm (4)-(6) solutions that begin in are all uniformly bounded.

Proof.The method developed by Hong-Li et al. [33] is used. In light of the subsequent function, we may demonstrate that
all results to paradigm (4)-(6) that begin in are uniformly limited by using the theorem.
We construct a function χ(t) = u(t)+ v(t)+ 1

e w(t).
If we take the derivative of its fractional time, we obtain

CDξ
χ(t) =CDξ u(t)+CDξ v(t)+

1
e

CDξ w(t)

=ru
(

1− u
k

)
−buv− a1(1−θ)wu

1+ γ(1−θ)u
+buv−a2vw− c1v+

1
e

(
ea1(1−θ)uw
1+ γ(1−θ)u

+ ea2vw− c2w
)

=ru
(

1− u
k

)
− c1v− c2

e
w.

Now, for each we have

CDξ
χ(t)+ εχ(t) = ru

(
1− u

k

)
− c1v− c2

e
w+ ε

(
u(t)+ v(t)+

1
e

w(t)
)

(13)

Taking ε < min{c1,c2}, we have
≤− r

k
u2 +(r+ ε)u

≤ k(r+ ε)2

4r
Choi et al. [35]’s Lemma 9 leads to the conclusion that

0 ≤ χ(t)≤ χ(0)Eξ

(
−εtξ

)
+

k(r+ ε)2

4r
tξ Eξ ,ξ+1

(
−εtξ

)
,

In above expression, represents the Mittag-Leffler function. It follows from Lemma 5 and Corollary 6 in Choi et al. [35],

0 ≤ χ(t)≤ k(r+ ε)2

4rε
, as t → ∞.

As a result, all the results of paradigm (4)-(6) commencing in R3
+ are uniformly bounded in the region Z, where Z ={

(u,v,w) ∈ R3
+ : χ(t)≤ k(r+ε)2

4rε
+ϑ ,ϑ > 0

}
.
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4 Dynamical behaviour

Now we study the stability analysis of each equilibrium point of the proposed paradigm (4)-(6). The inner, or a state of
harmonious coexistence, is what interests us. Positive(interior) equilibrium only exists for a certain constrained area of
parameters because the refuge parameter is a system parameter. One can find the all-conceivable equilibrium by thinking
about CDξ u(t)

∣∣∣
u=0

= 0, CDξ v(t)
∣∣∣
v=0

= 0 and CDξ w(t)
∣∣∣
u=0

= 0. Following is a list of all equilibrium points.

1.The trivial equilibrium point E0(0,0,0), which always exists.
2.The axial equilibrium point E1(k,0,0), which always exists.
3.The predator extinction equilibrium E2(u1,v1,0),

where u1 =
c1
b and v1 =

r(bk−c1)
b2k ,

4.The disease-free equilibrium point E3(u2,0,w2),
where u2 =

c2
(ea1−c2γ)(1−θ) and w2 =

re
(ea1−c2γ)(1−θ)

[
1− c2

(ea1−c2γ)(1−θ)

]
5.The coexisting equilibrium point E4 (u∗,v∗,w∗) where

From equation (5) bu∗−a2w∗− c1 = 0 ⇒ w∗ = 1
a2
(bu∗− c1)

From equation (6) v∗ = 1
ea2

[
c2 − ea1(1−θ)u∗

1+γ(1−θ)u∗

]
By inserting the findings from (5) and (6) into (4), we get the quadratic equation shown below. A1u2 +A2u+A3 = 0
where A1 =

rγ

k (1−θ); A2 =
r
k +

bc2γ

ea2
(1−θ)− rγ(1−θ); A3 =

bc2
ea2

− r− a1
a2

c1(1−θ)

Then u∗ = −A2+
√

A2
2−4A1A3

2A1
The fractional order paradigm (4)-(6)’s Jacobian matrix is shown in the table below.

J =

 r
(
1− 2u

k

)
−bv− a1(1−θ)w

(1+γ(1−θ)u)2 −bu −a1(1−θ)u
1+γ(1−θ)u

bv bu−a2w− c1 −a2v
ea1(1−θ)w

(1+γ(1−θ)u)2 ea2w ea1(1−θ)u
1+γ(1−θ)u + ea2v− c2

 (14)

4.1 Stability analysis

This section examines the proposed model’s local stability analysis in light of several potential equilibrium locations
(excluding exterior equilibrium point). The type of the latent values in the appropriate Jacobian matrix near the point
(u,v,w) determines the stability of the equilibrium state.

Theorem 3.The interior equilibrium point E4 (u∗,v∗,w∗) is locally asymptotic stable if ζ1 < 1and ζ1 +ζ2 < 1 otherwise
not stable.

Proof.The corresponding variational matrix can be obtained by

J =

− ru
k + a1γ(1−θ)2uw

(1+γ(1−θ)u)2 −bu −a1(1−θ)u
1+γ(1−θ)u

bv 0 −a2v
ea1(1−θ)w

(1+γ(1−θ)u)2 ea2w 0

 (15)

The following latent equation can be obtained from (15),

λ
3 +L1λ

2 +L2λ +L3 = 0

where

L1 =
ru
k
− a1γ(1−θ)2uw

(1+ γ(1−θ)u)2 ,

L2 =a2
2evw+

a2
1(1−θ)2euw

(1+ γ(1−θ)u)3 +b2uv

L3 =ea2
2vw

(
ru
k
− a1γ(1−θ)2uw

(1+ γ(1−θ)u)2

)
+

bγ(1−θ)2ea1a2u2vw
(1+ γ(1−θ)u)2

Clearly, L1 > 0,L2 > 0,L3 > 0 and L1L2 −L3 = .
(

ru
k − a1γ(1−θ)2uw

(1+γ(1−θ)u)2

)
+
[
b2uv+ a2

1(1−θ)2euw
(1+γ(1−θ)u)3

]
− bγ(1−θ)2ea1a2u2vw

(1+γ(1−θ)u)2
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If ζ1 < 1 and ζ1 +ζ2 < 1 where

ζ1 =
ka1γw(1−θ)2

r(1+ γ(1−θ)u)2 , ζ2 =
ka1(1−θ)2γw(1+ γ(1−θ)u)

b2ruv(1+ γ(1−θ)u)3 +a2
1(1−θ)2eruw

The coexistence equilibrium point of paradigm (4)-(6) is locally asymptotically stable according to the Routh-Hurwitz
criterion.

4.2 Global stability

The global stability of the paradigm (4)-(6) near the interior equilibrium point is being investigated in this section using a
suitable Lyapunov function.

Theorem 4.Around the coexistence equilibrium point, the suggested system is expected to be globally asymptotically
stable if

{
r
k > a1(1−θ)2γ

(1+γ(1−θ)u4)(1+γ(1−θ)u)

}
holds.

Proof.The global asymptotic stability of the coexistence point is explored using the subsequent positive definite Lyapunov
function

Q(u,v,w) = u−u4 −u4 ln
(

u
u4

)
+ v− v4 − v4 ln

(
v
v4

)
+

1
e

(
w−w4 −w4 ln

(
w
w4

))
(16)

Lemma 1.From Vargas-De-Leon [36] and the time derivative of along the scheme (4)-(6) solution is used.

CDξ Q(u,v,w)≤
(

u−u4

u

)C

Dξ u(t)+
(

v− v4

v

)C

Dξ v(t)+
1
e

(
w−w4

w

)C

Dξ w(t)

≤ (u−u4)

(
r
(

1− u
k

)
−bv− a1(1−θ)w

1+ γ(1−θ)u

)
+(v− v4)(bu−a2w− c1)+(w−w4)

(
a1(1−θ)u

1+ γ(1−θ)u
+a2v− c2

e

)
≤ (u−u4)

{
− r

k (u−u4)−b(v− v4)+
a1(1−θ)w

(1+γ(1−θ)u4)(1+γ(1−θ)u)
(−(w−w4)+ γ(1−θ) [w4 (u−u4)−u4 (w−w4)])

}
+(v− v4){b(u−u4)−a2 (w−w4)}

+(w−w4)

{
ea2 (v− v4)+

ea1(1−θ)(u−u4)(w−w4)

(1+ γ(1−θ)u4)(1+ γ(1−θ)u)

}
≤−

{
r
k
− a1(1−θ)2γ

(1+ γ(1−θ)u4)(1+ γ(1−θ)u)

}
(u−u4)

2

Hence at the coexistence equilibrium point the system is globally asymptotically stable if

r
k
>

a1(1−θ)2γ

(1+ γ(1−θ)u4)(1+ γ(1−θ)u)

holds.

5 Numerical simulations

To demonstrate the theoretical conclusion about the non integral order and global stability areas for the equilibrium points
of the system, numerical simulations of the fractional order eco-epidemiological paradigm (4)-(6) are carried out under
this part. For the numerical simulations of the scheme (4)-(6) based on the following fractional differential equation, the
Adams-Bashforth-Moulton scheme is utilised (Diethelm et al. [37, 38], Li et al. [39], Garrappa, [40]).

These simulations are extremely helpful from an eco-epidemiological point of view since they also demonstrate the
impact of non-integral order and prey refuge with type II functional response on the stability of the equilibrium points.
The parameter settings shown in the figure captions have been used in all numerical runs to approximation the answer.
Using varied choices of the model parameters and beginning circumstances indicated in the respective captions, Figure 2
displays the numerical simulations of models (4)-(6).
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Fig. 2: The figures represent the trajectories of the system. (4)-(6) for r = 20,k = 50,b = 0.0623,a1 =
0.6,a2 = 0.02,θ = 0.08,γ = 0.8,c1 = 0.00847,c2 = 0.02,e = 0.0123 and ξ = 0.8 with different initial conditions
(0.363,0.139,0.329),(5.95,8.6,6.9),(5,10,15).

6 Discussions and Conclusion

In this study, a non-integer order eco-epidemiological scheme with disease prey and prey refuge with type II functional
responses was investigated. Analysis has been done on the behaviour of the suggested non integer order
eco-epidemiological scheme (4)-(6). The explorations of the interior equipoise point of the non-integer order scheme
(4)-(6) have demonstrated both provincial and universal stability. The features of the scheme’s equilibrium points with
regard to fractional order (ξ ) and global stability are as have been demonstrated by numerical simulations (4)-(6).

By imposing multiple necessary conditions on the system parameters, we employed stability analysis of non-integer
order scheme to demonstrate the local stability of the coexistence equilibrium. On the other hand, the inner equilibrium
is consistently and globally asymptotically stable for any ξ . Although the qualitative characteristics of the solutions are
identical from those of integer order systems, our numerical findings indicate that solutions of non-integer order systems
approach to the corresponding equilibrium in a slower manner as the order of the differential equation decreases. It will
be very interesting to see how harvesting is included into the system in the future and what effects that has on real-world
scenarios.
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Fig. 3: The figures represent the trajectories of the system. (4)-(6) for r = 20,k = 50,b = 0.0623,a1 = 0.6,a2 = 0.02,θ =
0.08,γ = 0.8,c1 = 0.00847,c2 = 0.02,e = 0.0123 and for different values of ξ = with initial conditions (5,10,15).

Figure 3 presents time series solutions for the system for various fractional orders to show how the system behaves.
Higher order fractional time assessments indicate that solutions reach equilibrium more quickly.

The impacts of fractional order ξ and prey refuge on population densities are also shown in figures 4 and 5 using the
simulation outcomes. This demonstrates how the fractional order and prey refuge have a significant impact on the system’s
dynamic behaviour. Our figures primarily show that fractional order has a greater impact on the system than does prey
refuge.
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Fig. 4: The figures represent the trajectories of the system (4)-(6) for a)θ = 0.2,ξ = 1, b)θ = 0.2,ξ = 0.6 and remaining
parameter values are same as figure 1.
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Fig. 5: The figures represent the trajectories of the system (4)-(6) for a)θ = 0.6,ξ = 1, b)θ = 0.6,ξ = 0.6 and remaining
parameter values are same as figure 1.
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