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Abstract: A second order linearly independent solution of the fractional Bessel equation is defined by utilizing the Wronskian matrix

and the fractional Bessel function of the first kind of complex order. Additionally, as an application, a precise solution to a reformulated

fractional type heat equation in one and two dimensions in a circular plate is produced.
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1 Introduction, Motivation and Preliminaries

Bessel functions and related integrals are constantly required in applied mathematics and physics. They arise in spherical
symmetry problems. Moreover, they are considered to be the basic solutions of Bessel’s differential equation

t2y′′+ ty′+
(

t2 − p2
)

= 0, p ∈R.

Bessel functions are named after the great mathematician W. Bessel (1784− 1846), while D. Bernoulli (1732) is known
to be the first one who introduced Bessel functions. These function can be obtained by solving the wave equations

∂ 2u

∂ t2
= c2

▽
2u

in spherical coordinates [1]. Therefore, Bessel functions form an essential pillar in Fourier analysis.
Bessel equations has two fundamental solutions Jn(x)and Yn(x). Jn(x) and Yn(x) are called the Bessel function of first

and second order, respectively. For more details about Bessel functions, one can see the books by Luke [2] and Watson
[3].

Fractional calculus became a very attractive to mathematician and many different forms of fractional differential
operator were introduced; see [1,3,4,5]. Most of them used an integral form. All definitions appeared couldn’t satisfy the
usual properties of standard derivative except linearity property. In 2014, Khalil and et al. [6] give a new definition of
fractional derivative called ”conformable fractional derivative”.

Definition 1.[6] Let f : [0,∞)→R be a function. The αth order “conformable fractional derivative” of f is defined by

Dα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)

ε

for all t > 0,α ∈ (0,1). If f is α−differentiable in some (0,a),a > 0 , and lim
t→0+

Dα( f )(t) exists, then define Dα( f )(0) =

lim
t→0+

Dα( f )(t).
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The conformable fractional derivative satisfies the multiplication rule, the quotient rule, however does not satisfy the
chain rule. In addition, the new definition has results that are a natural generalization of the corresponding Roll’s Theorem
and Mean Value Theorem [6,7]. Note that the function may be α−differentiable but not differentiable.

With the use of conformable fractional derivative, the fractional Bessel second order differential equation was
reformulated as follows

x2α Dα Dα y+αxαDαy+(x2α −α2 p2 )y = 0.

Further, the fractional Bessel function of the first kind of order α p was obtained as

Jα p(x) =
∞

∑
k=0

(−1)k

(2α)2k+pk!Γ (k+ p+ 1)
x2αk+α p,

where α p ∈ R and α ∈ (0,1), [8].
In this paper for v ∈C, with the use of the fractional Bessel function of the first kind, we define a second order linearly

independent solution of the fractional Bessel equation and verify some of its orthogonality features, using complex order
αv and the Wronskian matrix. Additionally, a reformulated fractional type heat equation in one and two dimensions has
been solved for a circular plate.

2 Fractional Bessel Functions of the Second Kind

For v ∈ C, the complex order fractional Bessel function of the first kind αv is defined as

Jαv(x) =
∞

∑
k=0

(−1)k

(2α)2k+vk! Γ (k+ v+ 1)
x2αk+αv.

To determine the second linearly independent solution, let us first discuss the behavior of Jαv(x) as x → 0.

Theorem 1.Let Jαv(x) be the fractional Bessel function of the first kind of complex order, then

lim
x→0

Jαv(x) =







0, Re(v)> 0
1, v = 0

±∞, Re(v)< 0, v /∈ Z

Proof.If Re(v)> 0, then

lim
x→0

Jαv(x) =lim
x→0

∞

∑
k=0

(−1)k

(2α)2k+vk!Γ (k+ v+ 1)
x2αk+αv

=
∞

∑
k=0

(−1)k

(2α)2k+vk!Γ (k+ v+ 1)
lim
x→0

x2αk+αv

=
∞

∑
k=0

(−1)k

(2α)2k+vk!Γ (k+ v+ 1)
lim
x→0

(xα)2k(xα)v

=
1

(2α)vΓ (v+ 1)
lim
x→0

(xα)v = 0,

since Re(v)> 0.
Now if v = 0, then

lim
x→0

∞

∑
k=0

(−1)k

(2α)2kk!Γ (k+ 1)
x2αk = 1.

Finally, if Re(v)< 0, we have

lim
x→0

Jαv(x) =lim
x→0

∞

∑
k=0

(−1)k

(2α)2k+vk!Γ (k+ v+ 1)
x2αk+αv

=
1

(2α)vΓ (v+ 1)
lim
x→0

(xα )v

=±∞,

since Re(v)< 0.
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As a conclusion of Theorem 1, it is easy to see that the two solution Jαv(x) and J−αv(x) are linearly independent and
any linear combination is also a solution if v /∈ Z, else they are linearly dependent. Thus we define

Yαv(x) =
cos(vπ)Jαv(x)− J−αv(x)

sin(vπ)
,

the fractional Bessel function of the second kind of order αv.

For p ∈ Z, we define

Yα p(x) = lim
v→p

Yαv(x).

Definition 2.[9] For two functions y1 and y2 satisfying the conformable fractional linear differential equation

Dα Dα y+P(x)Dαy+Q(x)y = 0,

where 0 < α ≤ 1. The fractional Wronskian of the solutions is defined by

Wα(y1,y2) =

∣

∣

∣

∣

y1 y2

Dα(y1) Dα(y2)

∣

∣

∣

∣

=e
−
∫ P(x)

x1−α dx
.

Theorem 2.Jαv(x) and Yαv(x) are two linearly independent solutions of the fractional Bessel equation for all v ∈ C.

Proof.This can be shown by computing the Wronskian determinant for conformable fractional differential equations [10].

First, rewrite the fractional Bessel second order differential equation in the form

Dα Dα y+
α

xα
Dα y+(1−

α2v2

x2α
)y = 0,

then the Wronskian determinant of Jαv(x) and Yαv(x) turns out to be

W (Jαv(x),Yαv(x)) =

∣

∣

∣

∣

Jαv(x) Yαv(x)
Dα(Jαv(x)) Dα(Yαv(x))

∣

∣

∣

∣

=e
−

∫ α
xα x1−α

dx

=e−
∫ α

x dx

=e− ln(x)α
=

1

(x)α
.

Since W (Jαv(x),Yαv(x)) 6= 0; then the result holds.

3 Orthogonality and Normalization of Fractional Bessel Function

Given a fixed nonnegative integer p, the function Jα p(x) has an infinite number of positive zeros; zk,α p. Figure 1.1
describes the graph of Jα p(x) with α = 0.75 and p = 2, where it is clear that it has infinitely number of positive zeros.
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Figure 1.1: Jα p(x) with α = 0.75 and p = 2.

To determine the coefficients Ak in a given series of the form

f (x) =
∞

∑
k=1

AkJα p(zk,α px),

we need to determine the orthogonality relation as in the following theorem.

Theorem 3.For a fixed integer p ≥ 0 and a,b are distinct positive zeros of Jα p(x), we have

∫ 1

0
xα Jα p(ax)Jα p(bx)dα x = 0

and
1

∫

0

xα J2
α p(ax)dα x =

1

2α
(Jα p+α(a))

2.

Proof.If we write the fractional Bessel equation

x2α Dα Dα y+αxαDα y+(x2α −α2 p2)y = 0

in the form
xα Dα(xα Dαy)+ (x2α −α2 p2)y = 0

and replace x by ax, we get

xα Dα(xα Dα y)+ ((ax)2α −α2 p2)y = 0. (3.1)

Thus, the equation has a solution
y = Jα p(ax).

Similarly, replace x by bx, we get

xα Dα(xα Dα y)+ ((bx)2α −α2 p2)y = 0. (3.2)

Then
y = Jα p(bx)

is also a solution. Multiply the differential equation 3.1 by Jα p(bx) and the differential equation 3.2 by Jα p(ax), subtract
the resulting equations and divide by xα then add and subtract the term xα Dα(Jα p(ax))Dα(Jα p(bx)) to get

Dα [xα Jα p(bx) ·Dα(Jα p(ax))− xαJα p(ax) ·Dα(Jα p(bx))]+ (a2α − b2α)xα Jα p(ax)Jα p(bx) = 0.
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Integrate the resulting equation from 0 to 1 to obtain

[xα Jα p(bx) ·Dα(Jα p(ax))
−xα Jα p(ax) ·Dα(Jα p(bx))]

∣

∣

∣

∣

1

0

+

∫ 1

0
(a2α − b2α)xα Jα p(ax)Jα p(bx)dα x = 0.

If a and b are distinct positive zeros of Jα p(x), then

(a2α − b2α)

∫ 1

0
xα Jα p(ax)Jα p(bx)dα x = 0.

Thus
∫ 1

0
xα Jα p(ax)Jα p(bx)dα x = 0.

Back to the fractional Bessel equation, replace x by ax to get

x2α DαDα y+αxαDα y+((ax)2α −α2 p2)y = 0.

Then
y = Jα p(ax)

is a solution. Multiply the differential equation by 2Dα y, we have

2x2α Dα yDαDα y+ 2αxαDα yDαy+ 2((ax)2α −α2 p2)yDα y = 0,

which is equivalent to

Dα [x2α(Dα y)2]+Dα [a2αx2α y2]− 2αa2αxα y2 −Dα [α2 p2y2] = 0.

Therefore
Dα [x2α(Dα Jα p(ax))2]+Dα [a2αx2α J2

α p(ax)]− 2αa2αxα J2
α p(ax)−Dα [α2 p2J2

α p(ax)] = 0.

Integrate from 0 to 1 for both side to obtain

2αa2α

1
∫

0

xα J2
α p(ax)dα x = [x2α(Dα Jα p(ax))2 +(a2αx2α −α2 p2)J2

α p(ax)]10.

At x = 0, Jα p(0) = 0. At x = 1,

Dα Jα p(ax) = aαDα Jα p(a) = aαDα [Jα p(ax)]x=1.

So we have
1

∫

0

xα J2
α p(ax)dα x =

1

2αa2α
[(aα Dα Jα p(a))

2 +(a2α −α2 p2)J2
α p(a)].

Since a is a positive zeros of Jα p(x) then Jα p(a) = 0 and

1
∫

0

xα J2
α p(ax)dαx =

1

2α
(Dα Jα p(a))

2 =
1

2α
(Jα p+α(a))

2.

Corollary 1.Let f be a function defined on the interval 0 ≤ x ≤ 1, and that it has a Fourier-fractional Bessel series

expansion given by

f (x) =
∞

∑
k=1

AkJα p(zk,α px).

where zk,α p are the zero’s of Jα p. Then the coefficients Ak are

Ak =
2α

(Jα p+α(zk,α p))2

1
∫

0

f (x)Jα p(zk,α px)xα dα x.
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Proof.Multiply both side of the series by xα Jα p(zk,α px) and integrate from 0 to 1 to get

1
∫

0

f (x)Jα p(zk,α px)xα dα x =
∞

∑
k=1

Ak

1
∫

0

xα J2
α p(zk,α px)dα x

=
1

2α

∞

∑
k=1

Ak(Jα p+α(zk,α p))
2.

=
1

2α
Ar(Jα p+α(zr,α p))

2.

Therefore

Ar =
2α

(Jα p+α(zr,α p))2

1
∫

0

f (x)Jα p(zr,α px)xα dα x.

4 Fractional Heat Equation in One Circular Plate

Using conformable fractional derivative, many authors tried to reformulate the general form of heat equation to fractional
form, see [10,11,12]. One of these forms is the homogeneous conformable heat equation defined on a radial symmetric
plate [12],

∂ α

∂ tα
u(r, t) = β [

∂ 2u

∂ r2
+

1

r

∂u

∂ r
] (4.1)

u(r,0) = T0

u(0, t) = 0

|u(1, t)|< ∞ as r → 0+

for 0 < r < 1, t > 0 and α ∈ (0,1). Using separation of variable method, the general solution is

u(r, t) = 2T0

∞

∑
k=1

1

λkJ1(λk)
e−λ 2

k β tJ0(λkr), (4.2)

where λk is the k′th positive zero of J0.
With the use of the fractional Bessel functions, we obtain an exact solution for the fractional heat conduction equation

in circular disk of radius 1 as follows:

Theorem 4. For 0 < r < 1, t > 0 and α ∈ (0,1), the exact solution of the fractional heat conduction equation

∂

∂ t
u(r, t) = c2(

∂ α

∂ rα
(

∂ α

∂ rα
u(r, t))+

α

rα

∂ α

∂ rα
u(r, t)) (4.3)

u(1, t) = 0

|u(r, t)|< ∞ as r → 0

u(r,0) = f (r) = T0

is given by

u(r, t) = 2αT0

∞

∑
k=1

1

λkJα(λk)
e−λ 2α

k
c2tJ0(λkr).
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Proof.By separation of variable method, let

u(r, t) = R(r)T (t).

Then

R(r)
∂

∂ t
T (t) = c2T (t)(

∂ α

∂ rα
(

∂ α

∂ rα
R(r))+

α

rα

∂ α

∂ rα
R(r)).

So
1

c2

T´(t)

T (t)
=

1

R(r)
(Dα Dα R(r)+

α

rα
Dα R(r)) = k =−λ 2.

Thus, we obtain two ordinary differential equations

T ′(t)+λ 2c2T (t) = 0 (4.4)

and

Dα Dα R(r)+
α

rα
Dα R(r)+λ 2R(r) = 0. (4.5)

Note that we choose the separation constant k to be negative since else the factor T (t) doesn’t go to zero as t → ∞.
The solution of the ordinary differential equation (4.4) is

T (t) = e−λ 2c2t .

Multiply the differential equation (4.5) by r2α , we have

r2α Dα Dα R(r)+αrα Dα R(r)+λ 2r2α R(r) = 0,

which is a fractional Bessel differential equation of order 0. Therefore, the solution is

R(r) = c1J0(λ
1
α r)+ c2Y0(λ

1
α r).

Since Y0 is not bounded as r → 0, then we must have c2 = 0. So the solution is

R(r) = c1J0(λ
1
α r).

Applying the boundary condition R(1) = 0, gives us

c1J0(λ
1
α ) = 0.

In order to get a nontrivial solution, we must have

J0(λ
1
α ) = 0

and λ
1
α = λ1,λ2,λ3, ... (λ

1
α = λk, k = 1,2,3, ...) are the k′th positive root of J0. Thus

Rk(r) = J0(λkr)

and the fundamental solution given by

uk(r, t) = e−λ 2α
k

c2tJ0(λkr)

satisfies the differential equation (4.3) and the boundary conditions for each positive integer k. The general solution

uk(r, t) =
∞

∑
k=1

Ak e−λ 2α
k c2tJ0(λkr)

also satisfies the initial condition. To determine the coefficient Ak, we must have

u(r,0) = f (r) =
∞

∑
k=1

Ak J0(λkr),
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where

Ak =
2α

J2
α(λk)

1
∫

0

rα f (r) J0(λkr)dα r

Through integration by substitution, let λkr = x, and if f (r) = T0, we have

Ak =
2α

J2
α(λk)

T0

(λk)α+1

λk
∫

0

xα J0(x)d
α x

=
2α

J2
α(λk)

T0

(λk)α+1
[xα Jα(x)]

λk
0

=
2αT0

λkJα(λk)
.

Thus, the general solution is

u(r, t) = 2αT0

∞

∑
k=1

1

λkJα(λk)
e−λ 2α

k
c2tJ0(λkr).

As an application of the fractional Bessel functions of the first and second order, an exact solution of the fractional
heat equation in two dimensional circular plate is given in the following Theorem.

Theorem 5.For 0 < r < 1, 0 < θ < (2απ)
1
α , t > 0 and α ∈ (0,1), the exact solution of the fractional heat conduction

equation in two dimension circular disk,

∂

∂ t
u(r,θ , t) = c2(

∂ α

∂ rα
(

∂ α

∂ rα
u(r,θ , t))+

α

rα

∂ α

∂ rα
u(r,θ , t)+

1

r2α

∂ α

∂θ α
(

∂ α

∂θ α
u(r,θ , t))),

u(1,θ , t) =0,

|u(r,θ , t)|<∞ as r → 0,

u(r,0, t) =u(r,(2απ)
1
α , t),

∂ α

∂θ α
u(r,0, t) =

∂ α

∂θ α
u(r,(2απ)

1
α , t),

u(r,θ ,0) = f (r,θ ) = T0,

is given by

u(r,θ , t) =
∞

∑
m=0

∞

∑
n=1

Jm(λn,mr)e−λ 2α
n,mc2t [an,m cos(

m

α
θ α)+ bn,m sin(

m

α
θ α)].

Proof.By separation of variable method, let

u(r,θ , t) = R(r) ·Φ(θ ) ·T (t).

Then

R(r)Φ(θ )
∂

∂ t
T (t) = c2T (t)[Φ(θ )[

∂ α

∂ rα
(

∂ α

∂ rα
R(r))+

α

rα

∂ α

∂ rα
R(r)]+

R(r)

r2α

∂ α

∂θ α
(

∂ α

∂θ α
Φ(θ ))]

and
1

c2

T´(t)

T (t)
=

1

R(r)
(Dα Dα R(r)+

α

rα
Dα R(r))+

1

r2α

1

Φ(θ )
Dα Dα Φ(θ ) = k =−λ 2.

Thus, we obtain the ordinary differential equation

T ′(t)+λ 2c2T (t) = 0

and the solution is
T (t) = e−λ 2c2t .
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Also,
r2α Dα Dα R(r)+αrαDα R(r)+λ 2r2α R(r)

R(r)
=−

Dα Dα Φ(θ )

Φ(θ )
= µ .

Thus

r2α Dα Dα R(r)+αrα Dα R(r)+ (λ 2r2α − µ)R(r) = 0 (4.6)

and

Dα Dα Φ(θ )+ µΦ(θ ) = 0.

Case 1: If µ < 0; µ =−n2, then we have

Φ(θ ) =C1e
n
α θ α

+C2e
−n
α θ α

.

But

Φ(0) = Φ((2απ)
1
α )

and

Dα Φ(0) = Dα Φ((2απ)
1
α ).

Therefore C1 = 0 =C2. We conclude that µ cannot be negative.
Case 2: If µ ≥ 0; µ = m2 with m ≥ 0 then we have

Φ(θ ) =C1 cos(
m

α
θ α)+C2 sin(

m

α
θ α).

But what is meant by boundary conditions on θ is that Φ(θ ) and Dα Φ(θ ) is α−periodic with period P = (2απ)
1
α . So if

we apply the condition Φ(0) = Φ((2απ)
1
α ) to the solution, we get C1 =C1 cos(2πm)+C2 sin(2πm). This happens when

m = n ∈ Z, and since we can take it to be nonnegative due to the constants C1 and C2,

Φ(θ ) =C1 cos(mθ )+C2 sin(mθ ), C1,C2 ∈ R, m ∈ N∪{0}

Rewrite the differential equation (4.6) as follows

r2α Dα Dα R(r)+αrαDα R(r)+ (λ 2r2α −α2 m2

α2
)R(r) = 0,

which is fractional Bessel differential equation (p =
m

α
), hence

R(r) = AJm(λ
1
α r)+BYm(λ

1
α r).

Since Ym is not bounded as r → 0, then we must have B = 0. So the solution is

R(r) = AJm(λ
1
α r).

Applying the boundary condition R(1) = 0, gives us

AJm(λ
1
α ) = 0.

In order to get a nontrivial solution, we must have

Jm(λ
1
α ) = 0

and λ
1
α = λn,m are the n′th positive roots of Jm. So that

Rn,m(r) = Jm(λn,mr),

for n ≥ 1 and m ≥ 0. Also,

Tn,m(t) = e−λ 2α
n,mc2t .
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The fundamental solution is
un,m(r,θ , t) = Rn,m(r) ·Φm(θ ) ·Tn,m(t).

The general solution is

u(r,θ , t) =
∞

∑
m=0

∞

∑
n=1

Jm(λn,mr)e−λ 2α
n,mc2t [an,m cos(

m

α
θ α)+ bn,m sin(

m

α
θ α)].

Setting t = 0, we have

f (r,θ ) = u(r,θ ,0) =
∞

∑
m=0

∞

∑
n=1

Jm(λn,mr) [an,m cos(
m

α
θ α)+ bn,m sin(

m

α
θ α)],

which is a Fourier series for f (r,θ ) on the interval [0,P] with P = (2απ)
1
α holding r is fixed [13]. Therefore

∞

∑
n=1

J0(λn,0r) an,0 =
1

2π

∫ P

0
f (r,θ )

dθ

θ 1−α
, f or m = 0.

∞

∑
n=1

Jm(λn,mr) an,m =
1

π

∫ P

0
f (r,θ )cos(

m

α
θ α)

dθ

θ 1−α
, f or m ≥ 1.

∞

∑
n=1

Jm(λn,mr) bn,m =
1

π

∫ P

0
f (r,θ )sin(

m

α
θ α)

dθ

θ 1−α
, f or m ≥ 1.

These Fourier series coefficients are actually Fourier-fractional Bessel series expansion, so that

an,0 =
2α

J2
α(λn,0)

∫ 1

0

[

1

2π

∫ P

0
f (r,θ )dθ

]

J0(λn,0r)rα dα r

=
α

πJ2
α(λn,0)

∫ P

0

∫ 1

0
f (r,θ )J0(λn,0r)rα dα r

dθ

θ 1−α
, f or m = 0, n ≥ 1.

an,m =
2α

πJ2
m+α(λn,m)

∫ P

0

∫ 1

0
f (r,θ )cos(

m

α
θ α)Jm(λn,mr)rα dα r

dθ

θ 1−α
, f or m ≥ 1, n ≥ 1.

bn,m =
2α

πJ2
m+α(λn,m)

∫ P

0

∫ 1

0
f (r,θ )sin(

m

α
θ α)Jm(λn,mr)rα dα r

dθ

θ 1−α
, f or m ≥ 1, n ≥ 1.
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