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Abstract: The multi-order linear and nonlinear partial differential equations of fractional order have been solved numerically. A

computational strategy based on fractional spectral operational matrices (OM) and generalized fractional Lageurre (GFL), generalized

fractional shifted Legendre (GFSL), generalized fractional modified Bernstein (GFMB) are provided. Our fractional spectral methods

have been used to solve nonlinear fractional partial differential equations and fractional Korteweg-de Vries-Burgers (KdVB) equation.

Making use of a variety of test and application examples, the effectiveness of the numerical solution have been satisfied.
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1 Introduction

Fractional differential equations described a variety of natural phenomena, engineering theories, economic and business
models, etc. it have been crucial in helping to solve many physical issues during the past century [1], [2], [3] and [4].
Some of these occurrences are complicated and extremely challenging to comprehend and address. However, if they are
modelled by common fractional differential equations, they are simple to analyse and solve. The majority of fractional
differential equations have been treated numerically over the past twenty years, as there is no precise solution to such
problems.

Fractional order integrals and derivatives operators are involved in the problem, it is difficult or sometimes
impossible to identify the analytical solution to the majority of fractional partial differential equations. As a result, there
is considerable impetus for the development of reliable and effective numerical approaches to tackle fractional problems
that are challenging to answer analytically numerically.

operational matrices technique paired with polynomials is one of the effective and reliable computing approaches
utilised to discover the approximative solutions to fractional ordinary and partial differential equations see [5], [6] and [7].
Therefore, we developed a polynomials into fractional functions with operational matrices to solve fractional problems
using MATLAB.

In this study, we will use techniques GFLOM, GFSLOM and GFMBOM to deal with various linear test examples of
fractional partial differential equations. On the other hand, we illustrate the development of Korteweg–de Vries–Burgers
equation that occurs in many physical environments.

The breakdown of the paper’s structure is as follows: We present the fractional derivative and a few approximation
functions based on specific polynomials’ fractional versions in section 2. In section 3, we present the problem statment.
In section 4, we describe how the operational matrices method based on fractional functions was developed to solve
multi-order linear and nonlinear fractional partial differential equations. We present how to state th solution of problem in
section 5. We demonstrate numerical findings for a few test issues and applications that claim to be efficient and effective
in section 6. In section 7, a conclusion is reached.
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2 Basic Concepts

In this section, we present important definitions utilised in this paper to find the solution of fractional partial differential
equations.

2.1 Fractional Caputo

Definition 1. Fractional derivatives Caputo CDµ of order µ > 0, is obtained by [8]:

CDµ u(t) =











1
Γ (⌈µ⌉−µ)

∫ t
0(t − τ)⌈µ⌉−µ−1 f (⌈µ⌉)(τ)dτ, ⌈µ⌉− 1 < µ < ⌈µ⌉, t ≥ 0

d(⌈µ⌉)u(t)

dt⌈µ⌉ , µ = ⌈µ⌉,

(1)

where ⌈µ⌉ denotes the lowest integer bigger than or equal to µ . If the function u(t) = tn then the Caputo fractional
derivative is:

CDµtn =

{

Γ (n+1)
Γ (n+1−µ) t

n−µ , n > µ ,

n tn−1 µ = n.
(2)

For constants λk, k = 1,2, ...,n, we have [9]:

CDµ
n

∑
k=1

λkuk(t) =
n

∑
k=1

λk
CDµuk(t),

then
CDµ

[

λ1u1(t)+λ2u2(t)+ ...+λnun(t)
]

=
[

λ1
CDµu1(t)+λ2

CDµu2(t)+
...+λn

CDµun(t)
]

.

Differentiation operator of Caputo will be identical of ordinary differential operator when µ is integer number.

2.2 Generalized Fractional Laguerre

Now, we presente fractional Laguerre functions L
γ,β
α (x) as [10]:

L
β ,γ
α (x) =

⌈α⌉+1

∑
k=0

(−γ)k Γ (α +β + 1)

Γ (k+ 1)Γ (α − k+ 1)Γ (β + k+ 1)
xk
. (3)

Lemma 1. If L
β ,γ
α (x) is a generalized fractional Laguerre function, Then fractional-order derivative of it gives as:

CDµL
β ,γ
α (x) =

⌈α⌉+1

∑
k=1

(−γ)k Γ (α +β + 1)

Γ (1− µ + k)Γ (1− k+α)Γ (β + k+ 1)
xk−µ

, x ∈ R, µ > 0, α, β , γ > 0. (4)

2.3 Generalied Fractional Shifted Legendre

The fractional version of shifted Legendre function Pα(x) can be get from [11]:

Pα(x) =
1+⌈α⌉

∑
k=0

k

∑
m=0

(−1)m+k
(

Γ (α + 1)
)2

xm+α−k

Γ (m+ 1)Γ (k−m+ 1)Γ (k+ 1)
(

Γ (α − k+ 1)
)2

. (5)

Lemma 2. If Pα(x) be a generalized fractional shifted Legendre function, consequently the fractional-order derivative is

obtained by:

CDµPα(x) =
1+⌈α⌉

∑
k=0

k

∑
m=0

(−1)k+m
(

Γ (1+α)
)2

Γ (m+α − k+ 1)

Γ (m+ 1)Γ (k−m+ 1)Γ (k+ 1)
(

Γ (1+α − k)
)2

Γ (m+α − k− µ + 1)
xm+α−k−µ

. (6)
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2.4 Generalied Fractional Modified Bernstein

Fractional modified Berntein function in order αth on the interval [0,1] can be introduced in [11] by:

Bα(x) =
⌈α⌉+1

∑
k=0

k

∑
m=0

(−1)⌈α⌉+m+k
(

Γ (1+α)
)3

Γ (m− k+α + 1)

Γ (m+ 1)Γ (k−m+ 1)Γ (k+ 1)
(

Γ (α − k+ 1)
)2

Γ (m+ 2α − k+ 1)

xm+α−k
. (7)

Lemma 3. If Bα(x) be a fractional modified Bernstein function, Then the fractional derivative of it is defined by:

CDµ Bα(x) =
⌈α⌉+1

∑
k=0

k

∑
m=0

(−1)m+k+⌈α⌉
(

Γ (α + 1)
)3

Γ (m+ 1)Γ (k−m+ 1)Γ (k+ 1)
(

Γ (α − k+ 1)
)2

∗

(

Γ (m+α − k+ 1)
)2

Γ (m+ 2α − k+ 1)Γ (m+α − k− µ + 1)
xm+α−k−µ

. (8)

3 Problem Statement

We consider the generic nonlinear fractional-order partial differential equations:

H
(

t,x,U(x, t),U
(µi)

x j (x, t),U
(µi)

tk (x, t),U
(µi)

x jtk (x, t)
)

= 0, i = 1,2, ...,m, j,k = 0,1,2, ...,m, (9)

U(x, t) =
[

u1(x, t) u2(x, t) ... un(x, t)
]T

, ηi > 0, x, t ∈ [0,w], w, m ∈N,

subject to the initial conditions:

I(l)
(

U(xl ,0)
)

= σl , l = 0,1, ...,⌈µ⌉, (10)

and boundary condition

B(l)
(

U(xl , tl+1)
)

= ρl,l+1, l = 0,1, ...,⌈µ⌉, (11)

the right hand side function H, is nonlinear in general and the constants {σl ,ρl,m−1}
⌈µ⌉
l,m=0 are given. Operational matrices

are fundamental building component in the development of approximation methods. The objective of operational matrices
is to substitute the matrix notation of a specified derivative term. We use a different strategy in this study. We apply the
GFL,FSL and FMB functions discussed in section 2 to linear and nonlinear partial differential equaions of fractional
differential equations.

4 Operational Matrices of Fractional Differential

Let ϕ(t) ∈
{

L
β ,γ
α (t), Pα(t), Bα(t)

}

and the function un(t) can be approximated as:

un(t)≃
n

∑
l=0

blϕl(t), (12)

where bl denotes the coefficient:

bl =
n

∑
l=0

ulθml (13)

for some numbers {θml}
n
m,l=0 depends on any functions that used in this paper. Equations (12),(13) can be written in

matrix form as:
U = BT Φn(t), (14)

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


200 S. Z. Rida et al. : Fractional spectral approaches for FPDEs

B =UTΘ (15)

where Φn(t)≡
[

[ϕl ]
n
l=0

]T

and the unknown coefficients BT = [bl ]
n
l=0. Combining Eq.(15) and Eq.(14), we conclude that:

U =UΘ T Φn(t),

I =Θ T Φn(t),

Θ T = Φ−1
n (t). (16)

Once Θ is defined by Eq.(16), then the coefficients representation Eq.(15) is also defined. For an approximation un(t), the
fractional order derivative is defined by [16]:

CDµun(t) =UMµ(t), (17)

where

Mµ(t) =Θ T [CDµΦn(t)] (18)

This approximation of fractional derivative operational matrices of order µ is depended on the error analysis and results
of the approximate function.

5 Solution of Problem

Let the solution of problem (9) is:

un(x, t) = ψn(x)ωn(t)⇒U =Ψϖ , (19)

where ψ(x) and ϖ(t) are defined by:

ωn(t)≃
n

∑
l=0

blϕl(t), ψn(x)≃
n

∑
k=0

akϕk(x), (20)

and its derivatives are:
CDµωn(t) = ϖMµ(t), CDµψn(x) =ΨMµ(x) (21)

that it is solved by Eq.(16). Substituting in Eq.(9), we get:

H
(

t,x,ΨT ϕk(x)ϖ
T ϕl(t),Ψ

T M
(µi)

x j (x)ϖT ϕl(t),Ψ
T ϕk(x)ϖ

T M
(µi)

tk (t),

ΨT M
(µi)

x j (x)ϖT M
(µi)

tk (t)
)

= 0, (22)

with initial conditions:

I(k,l)
(

ΨT ϕk(x)ϖ
T ϕl(0)

)

= σk,l , k, l = 0,1, ...,⌈µ⌉, (23)

and boundary condition

B(k,l)
(

Ψ T ϕk(x)ϖ
T ϕl+1(t)

)

= ρk,l+1, k, l = 0,1, ...,⌈µ⌉, (24)

So, to obtain the unknown vector U , we constract the unconstrained optimization problem with the objective function:

S(Uk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

H
(

t,x,Ψ T ϕk(x)ϖ
T ϕl(t),Ψ

T M
(µi)

x j (x)ϖT ϕl(t),Ψ
T ϕk(x)ϖ

T M
(µi)

tk (t),Ψ T M
(µi)

x j (x)ϖT M
(µi)

tk (t)
)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I(k,l)
(

AT Φl(x)B
T Φl(0)

)

−σk,l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B(k,l)
(

AT Φl(x)B
T Φl+1(t)

)

−ρk,l+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (25)

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 2, 197-208 (2024) / www.naturalspublishing.com/Journals.asp 201

6 Results and Discussion

6.1 Testing Examples

Example 1. Consider the following linear FPDE [18]:

D
µ
t u(x, t)−

1

2
x2Dη

x u(x, t) = g(x, t), 0 ≤ x, t ≤ 1,

where 0 < µ ≤ 1 < η ≤ 2 and the exact solution is u(x, t) = tex. Initial and boundary conditions are u(x,0) = 0, u(0, t) =
t, u(1, t) = te1, and g(x, t) is depended on the exact solution u(x, t).

In figure 1, we comparison between exact and approximate solution by using GFMBOM on D
µ
t u(x, t), GFLOM on

D
η
x u(x, t) at µ = 0.5,η = 2.0. Through table 1, we present maximum absolute error at t = 1,µ = 0.5,η = 2.0 and

comparison it by results in [18] and also show the norm of each case of matrix used. Comparison of absolute errors for
our method at different value of µ ,α = 2.5 in figure 2.

0

1

0.5

1

1.5

1

u
(x

,t
)

2

Approximate

t

2.5

0.5

x

3

0.5

0 0

0

1

0.5

1

1.5

1

u
(x

,t
)

2

Exact

t

2.5

0.5

x

3

0.5

0 0

Fig. 1: Approximate and exact solution by GFLOM and GFMBOM of example (1).

Table 1: Maximum absolute error and norm error by GFLOM and GFMBOM of example 1.

n×n [18] Error L2

3×3 – 5.36E −06 2.87E −06

4×4 1.02E −02 2.06E −04 1.62E −05

5×5 – 6.63E −07 2.68E −08

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


202 S. Z. Rida et al. : Fractional spectral approaches for FPDEs

0
1

2

0.8

4

0.6

|u
ex

ac
t-u

ap
p
ro

x
im

at
e|

10-5

0

x

0.20.4

6

Absolute Error

0.4

t

0.2 0.6

8

0.8
0 1

=0.5
=0.6

=0.7
=0.8

=0.9
=1.0

Fig. 2: Absolute error of example 1 at η = 2.0 by GFLOM and GFMBOM.

Example 2. Consider the following nonhomogeneous FPDE [18]:

D
µ
t u(x, t)+D

η
t u(x, t)−Dξ

x u(x, t) = g(x, t); 0 ≤ x, t ≤ 1,

where µ ,η ∈ [0,1],ξ ∈ [0,2] initial condition u(x,0) = x− x2, boundary conditions u(0, t) = u(1, t) = 0, exact solution
u(x, t) = (x− x2)(1+ t2) and g(x, t) is depended on the exact solution.

In table 2, we illustrate the numerical results at fixed values of the variable x = 1, maximum absolute errors at t = 1
and matrix 4× 4 of [18] equal 3.0126e− 3 while using our method equal 2.12e− 4. Comparison between exact and

approximate solution by using GFMBOM on D
ξ
x u(x, t), GFSLOM on D

µ
t u(x, t),Dη

t u(x, t) at µ = 0.5,η = 2.0 in figure 3.
Figure 4, contaite absolute error at µ = 0.9,η = 0.6,ξ = 2.0 by our methods.

Table 2: Absolute error of example 2 with ξ = 2.0,x = 1 by using GFSLOM and GFMBOM.

t µ = 0.6,η = 0.3 µ = 0.8,η = 0.5 µ = 1.0,η = 0.7

0 1.97E −04 1.40E −04 6.32E −05

0.2 2.15E −04 1.44E −04 6.06E −05

0.4 2.33E −04 1.59E −04 6.65E −05

0.6 2.66E −04 1.82E −04 7.75E −05

0.8 3.20E −04 2.20E −04 9.42E −05

1.0 3.90E −04 2.70E −04 1.16E −04

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 2, 197-208 (2024) / www.naturalspublishing.com/Journals.asp 203

0
1

0.1

0.8

0.2

1

u
(x

,t
) 0.3

0.6 0.8

t

0.4

0.6

x

0.4

0.5

0.4
0.2 0.2

0 0

     Approximat

      Exact

Fig. 3: Approximate and exact solution by GFSLOM and GFMBOM µ = 0.5,η = 0.2,ξ = 2.0 of example 2.
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Fig. 4: Error by GFSLOM and GFMBOM of example 2.
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6.2 Application Example

Example 3. Consider the general nonlinear time fractional partial differential equation [17], [18], [19]:

D
µ
t u(x, t)+λ1uDη

x u(x, t)−λ2Dδ
x u(x, t)+λ3Dξ

x u(x, t) = g(x, t),

where 0 ≤ x, t ≤ 1,µ ,η ∈ (0,1], δ ∈ (1,2], ξ ∈ (2,3],conditions u(0, t) = f1,u(x,0) = f2,u(1, t) = f3,u(x,1) = f4, and
g(x, t), fi, i = 1,2,3,4 are depended on the exact solution.

Case 1: If we take λ1 = 1,η = 1,λ2 = 0,λ3 = 1 and ξ = 3, we get KdV equation which exact solution is u(x, t) =
t2sin(x).
Case 2: When we put λ1 = 1,η = 1,λ2 = 1,λ3 = 0 and δ = 2, we obtained Burgers equation where u(x, t) = tex.

Case 3: To compensate λ1 = 1,λ2 = 0.125,λ3 =
1
2
,ξ = 3, and δ = 2 for obtaining KdV-Burgers equation at exact

solution is u(x, t) = 12
25

λ 2
2

(

1− tanh(θ )− 1
2
sech2(θ )

)

, θ = 1
5
λ2x− 12

125
λ 3

2 t.

Results:

Case 1: table 3 present numerical results via cpu-time by GFSLOM and GFLOM where the properties of laptob that
we use is (processing: intel core i5, RAM: 6 GB). Figure 5 illustrate a comparison between numerical solutions at
different µ with exact solution by GFLOM and GFMBOM. We state the absolute error in figure 6 by GFLOM and
GFMBOM.
Case 2: Comparison between exact solution and approximate solutions in figure 7. Numerical results at different µ by
GFSLOM in figure 8.
Case 3: figure 9 show the equivalence of the approximate solution via the exact solution at µ = 1,η = 1. A numerical
results at α = 2.5 by GFLOM in table 4.

Table 3: Norm error by GFSLOM and GFLOM at µ = .05,η = 1.0 and ξ = 3.0 of example 3 case 1.

n×n CPU −Time L2

3×3 5.92 s 2.69E −05

4×4 14.09 s 1.77E −05

5×5 72.81 s 3.80E −06

Table 4: Norm error via GFLOM at µ = 1.0 of example 3 case 3.

η CPU −Time L2

1.0 7.73 m 4.29E −09

0.9 7.69 m 1.28E −07

0.8 7.74 m 2.39E −07

0.7 7.31 m 3.33E −07

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 2, 197-208 (2024) / www.naturalspublishing.com/Journals.asp 205

0
1

0.01

0.02

0.9 1

0.03

u
(x

,t
)

0.8 0.8

0.04

0.05

0.6

x

0.7

0.06

0.4
0.6 0.2

0.5 0

=0.5

=0.6
=0.7

=0.8
=0.9

=1.0
Exact

Fig. 5: Approximate and exact solution by GFLOM and GFMBOM of example (3) at t = 0.25 of case 1.
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Fig. 6: Absolute error by GFLOM and GFMBOM of example (3) at µ = 1.0 of case 1.
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Fig. 7: Approximate and exact solution of example 3 at µ = 0.6 of case 2.
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Fig. 8: Absolute error of example 3 at different µ by GFSLOM of case 2.
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Fig. 9: Approximate and exact solution by GFLOM of example (3) case 3.

7 Conclusion

We test the accuracy and stability of the suggested numerical technique via different tested examples of partial
differential equation and applied (KdV equation, Burgers equation, KdV-Burgers equation). We also study the
applicability of operational matrices (OM) of fractional derivatives operators based on generalized fractional
Laguerre(GFL), generalized fractional shifted Legendre(GFSL) and generalized fractional modified Bernstein(GFMB)
approximations in the Caputo senses. The method is applied to a wide range of situations, and the results are achieved by
simple manipulation in the MATLAB software. The numerical examples used to illustrate this paper’s numerical findings
demonstrate that the current methods produces accurate results and offers the following benefits:

–Both linear and nonlinear fractional partial differential equation can be solved using the GFLOM, GFSLOM and
GFMBOM.

–We find a large equivalence between the approximate solutions and the exact solutions, even with the different value
of the fractional order, and we can see this in figures (1, 3, 5, 7, 9).

–We also showed the method’s effectiveness of different fractional order by calculating the amount of absolute error see
figures (2, 4, 6, 8), table (2) and observing that as the scale level was increased, the amount of absolute error remained
low table (3).

–The CPU time of the present approach is low (as shown in table 3, 4), and it is beneficial in obtaining results fast,
saving us effort and time.

References

[1] D. Baleanu, M. Jleli, S. Kumar and B. Samet, A fractional derivative with two singular kernels and application to a heat conduction

problem, Adv. Differ. Equ. 2020, 1-19 (2020).

[2] N. A. Shah, E. R. El-Zahar, M. D. Aljoufi and J. D. Chung, An efficient approach for solution of fractional-order Helmholtz

equations, Adv. Differ. Equ. 2021(1), 1-15 (2021).

[3] R. Hilfer, Applications of fractional calculus in physics, World Scientific Singapore, 2000.

[4] H. M. Ali, S. Z. Rida, Y. G. Gouda and M. M. Farag, Evaluation of generalized Mittag–Leffler function method on endemic disease

model, J. Abstr. Comput. Math. 3(3), 1-7 (2018).

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


208 S. Z. Rida et al. : Fractional spectral approaches for FPDEs

[5] S. Kazem, S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations,

Appl. Math. Model. 37(7), 5498-5510 (2013).

[6] A. Bhrawy and M. Zaky, A fractional-order Jacobi Tau method for a class of time fractional PDEs with variable coefficients, Math.

Meth. Appl. Sci. 39(7), 1765-1779 (2016).

[7] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math.

AppL. 59(3), 1326-1336 (2010).

[8] M. S. Al-Sharif, A. I. Ahmed and M. S. Salim, An integral operational matrix of fractional-order Chelyshkov functions and its

applications, Symmetry 12(11), 1755 (2020).

[9] S. Kazem , S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations,

Appl. Math. Mod. 37(7), 5498-5510 (2013).

[10] S. Z. Rida, H. S. Hussien, A. H. Noreldeen and M. M. Farag, Effective fractional technical for some fractional initial value

problems, Int. J. Appl. Comput. Math. 8(3), 149 (2022).

[11] M. M. Farag, Analytical and computational treatments of some applications of fractional order differential equations: The case of

the Seychelles [PhD thesis, Edith Aswan University], 126 (2023).

[12] A. H. Bhrawy, M. M. Alghamdi and T. M. Taha, A new modified generalized Laguerre operational matrix of fractional integration

for solving fractional differential equations on the half line, Adv. Differ. Equ. 2012(1), 1-12 (2012).

[13] I. Series and T. J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM J. Appl. Math.

18(3), 658-674 (1970).

[14] I. N. Sneddon and E. R. Cohen, Special functions of mathematical physics and chemistry, Physics Today, 1956.

[15] S. Bhattacharya and B. N. Mandal, Numerical solution of a singular integro-differential equation, Appl. Math. Comput. 195(1),

346-350 (2008).

[16] H. S. Hussien, Efficient collocation operational matrix method for delay differential equations of fractional order, Iranian J. Sci.

Tech. Transac. A: Sci. 43, 1841-1850 (2019).

[17] S. Z. Rida and H. S. Hussien, Efficient computational approach for generalized fractional KdV–Burgers equation, Int. J. Appl.

Comput. Math. 6, 1-14 (2020).

[18] L. Zada and I. Aziz, Numerical solution of fractional partial differential equations via Haar wavelet, Numer. Meth. Part. Differ.

Equ. 38(2), 222-242 (2022).

[19] M. M. Khader and K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations,

Eur. Phys. J. Plus 133, 1-13 (2018).

c© 2024 NSP

Natural Sciences Publishing Cor.


	 Introduction
	 Basic Concepts
	 Problem Statement
	 Operational Matrices of Fractional Differential
	 Solution of Problem
	 Results and Discussion
	 Conclusion

