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Abstract: This article aims to offer stochastic solutions for the nonlinear long-short wave interaction system (NLSWIS) via Itô sense.
Using He’s semi-inverse approach, some innovative travelling wave solutions are produced. These solutions are obtained using the
Ritz technique. We produce the potential model that corresponds to the NLSWIS model’s energy equation. We also explain how
multiplicative noise affects the solutions. A few graphs are also displayed using the Matlab packet software. The developed solutions
can be applied in space plasma, ocean waves, regenerating infectious for people crowds, and economic viability as a consequence of
infectious these issues being controlled. In fact, the He’s semi-inverse approach exhibits promise for resolving a range of nonlinear
systems that arise in the applied sciences.
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1 Introduction

In the applied sciences, nonlinear partial differential
equations (NPDEs) are utilised to describe a variety of
complex processes, such as materials science, optical
fiber communications, superfluid, quantum mechanics,
plasma physics, chemical engineering, kinematics and
many other [1–4]. The fundamental approach one may
take to forecast, manage, and quantify the underlying
characteristics of a system under investigation is to model
the system in terms of some mathematical equations,
which are typically nonlinear, and then use a suitable
technique to find exact analytical solutions of such
equations.

In the present period of science and technology,
several investigators have been engaged to develop
various analytical methods for obtaining precise solutions
for non-partial differential equations NPDEs [5–9]. The
phenomena mimicked by these NPDEs can be better

understood when exact solutions are provided.

A stochastic process explains the temporal
development of a random phenomenon. Mathematical
foundations for the science of stochastic processes were
laid around 1950. Since that time, stochastic processes
have spread among mathematicians, physicists, and
engineers as a standard tool. Stock price modeling,
rational option pricing theory and NPDEs all make use of
this theory [10]. A common stochastic process that
combines characteristics of a Markov process with a
martingale is the Brownian motion process [10].
Brownian motion process is a widely used stochastic
process in dispersive environments [11, 12]. Moreover,
the this process enters in various real life problems, such
as molecules of water, crystalline interface, crystalline
structures, semiconductors, solid state physics and so
forth. Recent improvements in stochastic calculus have
been made possible by stochastic partial differential
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equations (SPDEs) are expected to create the framework
for thoroughly modelling real-world models [11]. More
than anyone else, mathematicians are most comfortable
using SPDEs and stochastic processes to natural models.

In the ongoing study, we consider the nonlinear
long-short wave interaction system (NLSWIS). This
system was initially developed by Benney (1977) for
considering a generic framework for interactions between
short and long waves [13]. Sakkaravarthi et al. [14]
examined the nonlinear resonance interaction of
numerous short waves with a long wave in two spatial
dimensions using Hirota’s bilinearization
approach.Uncovering basic physical interactions leads to
further inquiry and analysis of various nonlinear
interactions underlying the overall solution structure, such
as analytical, dark, and approximate solutions, is very
stimulating [15]. In addition to being rich, sophisticated
models for strong nonlinearities, NLSWISs serve as the
foundational models for a variety of fascinating
interaction phenomena that arise from applications in
nonlinear optics, plasma and biophysics, gravity and
water waves, and other fields [16]. The long-short-wave
interaction system is written as

ψt +ψx + (| φ |2)xx = 0 ,
iφt +φxx − ψ φ = 0, (1)

ψ(x, t) denotes a real function describing characterizes
the longitudinal wave and φ(x, t) is a complex function
describing the slowly varying envelope of the short
transverse wave. Most authors investigate this model in
deterministic case, using various analytical
methods [16–19] and references therein. Wang et al. [17]
introduced periodic wave solutions for the NLSWISs,
using F-expansion approach. Khater et al. [18] applied the
extended F-expansion method to constructs some new
solutions for this. By using the simplest equation
technique, Triki et al. [19] were able to study the system
(1) and get soliton solutions as well as additional
solutions like plane waves and singular periodic solutions.
For the first time based on our knowledge, we examine
the NLSWISs in the Itô sense that are compelled by
multiplicative noise as follows

ψt +ψx + (| φ |2)xx = 0 ,
iφt +φxx − ψ φ − iσ φ Ξt = 0, (2)

σ represents the noise strength, whereas noise Ξt
represents the time derivative of the Brownian motion
Ξ(t) [10].

The primary goal of this work is to examine the
solutions for the NLSWISs induced by multiplicative
noise in Itô sense. Namely, we introduce the exact
solution for this system. We present the corresponding
energy equation with potential for the NLSWIS. Indeed,
we provide a very vital hyperbolic travelling wave

solution for this system in the presence of Itô sense, using
He’s variations technique [20–22]. We also study the
influence of this of a noise parameter on the propagation
of the solution.

This paper’s layout is organised as follows. Sec. 2
shows a quick discussion of the Brownian motion
process. Sec. 3 introduce the mathematical analysis for
the NLSWIS. Sec. 4 introduces a very vital hyperbolic
travelling wave solution for this system in the presence of
Itô sense. The explantation for the acquired stochastic
solutions is given in Sec. 5. Conclusions are provided in
Sec. 6.

2 Brownian motion process

The Brownian motion process is a very widely-used
random process. It has been used to the physical sciences,
engineering, and finance. It is a stochastic process
{Ξ(t)}t≥0 satisfies:

(i)Ξ(t), t ≥ 0 are continuous functions of time t, Ξ(t) ∼
N(0, t).

(ii)For s < t < u < c, Ξ(s) − Ξ(t), Ξ(c) − Ξ(u) are
independent.

(iii)Ξ(t)−Ξ(s) follows a normal distribution with zero
mean and variance t − s, i.e.
Ξ(t)− Ξ(s) ∼

√
t − sN(0,1), N(0,1) represents a

standard normal distribution.

3 Mathematical investigation

Using wave transformation

φ(x, t) =U(η)eiθ+σΞ(t)−σ2t ;ψ(x, t) = χ(η) (3)

η = ω x+ρ t, θ = Kx+λ t,

ρ,k, λ , ω denote constants, whereas σ is the noise
strength, produces

−K2U(η)+ω
2U ′′(η)−λU(η)−χ(η)U(η) = 0 (4)

2ωU(η)U ′(η)+(ρ +ω)χ ′(η)e2σ(σt−β (t)) = 0 (5)

Taking expectation for Eq. (5), yields

2ωU(η)U ′(η)+(ρ +ω)χ ′(η)e2σ2t E(e−2σΞ(t)) = 0,
(6)

since E(e−2σΞ(t)) = e−2σ2t , Eq. (6) becomes

2ωU(η)U ′(η)+(ρ +ω)χ ′(η) = 0.

Solving the last equation gives

χ(η) =−(
ω

ρ +ω
)U2(η). (7)
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Eq. (4) becomes

U ′′(η)+
1

ω(ρ +ω)
U3(η)−

(
λ +K2

)
ω2 U(η) = 0. (8)

On the other hand we have

2kωU ′(η)+ρU ′(η)−σ
2U(η) = 0, (9)

with constraint equation

e
2ησ2

2kω+ρ

(
σ4

(2kω +ρ)2 − λ +K2

ω2

)
+

1
ρω +ω2 = 0. (10)

Eq. (12) illustrates an energy equation with potential

V =−K2U(η)2

2ω2 − λU(η)2

2ω2 +
U(η)4

4ω(ρ +ω)
. (11)

4 He’s semi-inverse technique

From equation (8) and the constraint condition (10), we
have

ω
2U ′′(η)+

1
(1−2k)

U3(η)−
(
λ +K2)U(η) = 0. (12)

In line with He’s semi-inverse method mentioned in [20–
22], the variational formulation from Eq. (12) is as follows:

J(U)=
∫

∞

0
{ω2

2
(U ′)2− 1

4(1−2k)
U4+

1
2
(
λ +K2)U2}dη .

(13)
We employ the Ritz method to search for a solitary wave
solution in the form

U(η) = Asech(Bη), (14)

A,B are an unknown constant. Substituting Eq. (14) into
Eq. (13), yields

J =
∫

∞

0

[
ω2

2
A2B2 sech2(η) tanh2(η)

− 1
4(1−2k)

A4 sech4(ζ )+
1
2
(
λ +K2) A2 sech2(η)

]
dη

=
ω2A2B

6
− A4

6B(1−2k)
+

1
2B

(
λ +K2) A2.

Differentiating J with respect to A,B and setting ∂J
∂A = 0

and ∂J
∂B = 0 produces

∂J
∂A

=
ω2AB

3
− 2A3

3B(1−2k)
+

1
B

(
λ +K2) A.

∂J
∂B

=
ω2A2

6
+

A4

6B2(1−2k)
− 1

2B2

(
λ +K2) A2.

Solving these equations yields:

A =±
√

2(1−2K)(λ +K2), B =± 1
ω

√
(λ +K2).

(15)
Using (3) and (7), we get

U(x, t) =±
√

2(1−2K)(λ +K2)×

sech(± 1
ω

√
(λ +K2)(ω x−2kω t)),

(16)

χ(x, t) = 2(λ +K2)sech2(± 1
ω

√
(λ +K2)(ω x−2kω t)).

(17)
Thus the stochastic solution of (2) is

φ(x, t) =±
√

2(1−2K)(λ +K2)ei(Kx+λ t)+σΞ(t)−σ2t ×

sech(± 1
ω

√
(λ +K2)(ω x−2kω t)).

(18)

5 Results and Discussions

It has been claimed that the explicit stochastic solutions to
the NLSWIS via Brownian motion process, specifically
hyperbolic function solutions, were obtained. Brownian
motion is a fundamental building element of stochastic
calculus and the key for describing stochastic models.
This process is a highly effective approach for coping
with a wide range of random events in real life. The Ξ(t)
function is used to convert the stochastic NLSWIS model
to nonlinear ordinary differential equations. We
investigate the NLSWIS model specifically using the
Brownian motion technique.

The majority of standard publications investigated the
suggested NLSWIS model in deterministic scenarios. In
contrast to other methods, we analyse this model in a
stochastic scenario, that is, when it is created by
multiplicative noise via the Brownian motion process. As
a successful technique for generating NLSWIS solution
sets, we constructed closed-form wave formations using
the energy equation with potential V . Equation (11)
provides the potential for the energy equation and the
matching precise solution of Eq. (2). To achieve critical
hyperbolic secant stochastic solutions, we have been
using He’s semi-inverse technique to the NLSWIS model
with multiplicative noise in the Itô sense. This type of
solution secant solution occurs in the profile of a laminar
jet [23]. The He’s semi-inverse method was utilised to
provide innovative and succinct random solutions for the
NLSWIS model with multiplicative random parameters.
The key advantages of this technique over others are that
it can solve a broader range of physical models and
removes costly and time-consuming computations.

Because of its crucial uses, the impact of a noise
parameter on the propagation of soliton solutions has
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Fig. 1: 3D envelope wave of solution (18) for σ = 0.

Fig. 2: 3D envelope wave of solution (18) for σ = 0.3.

received increased attention in recent decades. The
significance of the stochastic solutions is in their ability to
shed light on the propagation of NLSWIS waves in
various physical viewpoint areas when they arise. We
have created some related profile images to demonstrate
the dynamical nature of these solutions. Figs. 1-4
illustrate the envelope waves for the presented solution. It
was observed that the waves with varied frequencies had
less amplitude as σ is raised. As seen in Figs. 2-4,
increasing σ values cause the wave’s crest to gradually
shift until it vanishes.

Fig. 3: 3D envelope wave of solution (18) for σ = 0.6.

Fig. 4: 3D envelope wave of solution (18) for σ = 0.9.

6 Conclusions

Using He’s semi-inverse technique, we explored the
NLSWIS caused by multiplicative noise through Itô
sense. We use this method to produce some innovative
travelling wave solutions. This method’s primary benefits
over others are that it can handle a wider range of
scientific issues and eliminates time-consuming and
expensive computations. The energy equation’s potential
model was put out. We show how multiplicative noise
affects the behaviour of the reported solutions. The
solutions obtained have implications for the expanding
field of mathematical medical genomics, the control of
infectious diseases that lead to economic viability, auroral
plasma, deep ocean interacting waves, microbial
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pathogens in human bodies, and shaped genetic variation
in modern populations.
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