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Abstract: This paper delves into the investigation of a novel continuous distribution, aiming to provide a thorough understanding of

its various fundamental properties. The analysis encompasses an exploration of quantiles, skewness, kurtosis, hazard rate function,

moments, incomplete moments, mean deviations, coefficient of variation, mean time to failure, mean time between failure, availability,

and reliability functions within the context of consecutive linear and circular systems. Both maximum likelihood and Bayesian methods

are employed for parameter estimation to ensure a comprehensive approach. The performance of the estimators is rigorously evaluated

through a detailed simulation study, which meticulously considers bias and mean square error metrics. Furthermore, the significance

of the new distribution is substantiated through the analysis of real-world datasets, offering practical insights into its applicability and

potential advantages in various scenarios. This comprehensive approach not only contributes to the understanding of the distribution

itself but also provides valuable guidance for its practical implementation and utilization in statistical modeling and analysis.
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1 Introduction

In recent decades, numerous generalized distributions
have been developed through various modification
methods. These methods involve adding one or more
parameters to a base model to enhance its adaptability in
modeling real lifetime data. With advancements in
computing technology, many of these techniques have
become more accessible, even when analytical solutions
are complex. The term ”distribution” holds different
meanings across various fields, including mathematics,
science, technology, computer science, and economics. In
mathematics, distributions refer to generalized functions
used to formulate solutions for partial differential
equations, while in probability, distributions represent the
likelihood of specific values or value ranges of a variable,
with cumulative distribution functions indicating the
probability of values not exceeding a certain value. In
science, species distribution refers to the spatial
arrangement of a species, while distribution in

pharmacology pertains to the movement of a drug within
the body. In technology and computer science, electric
power distribution denotes the final stage of delivering
electricity, distributed computing involves the coordinated
use of physically dispersed computers for tasks or
storage, software distribution refers to pre-compiled and
configured software bundles, and digital distribution
involves the digital publishing of media. In economics,
income or output distribution concerns the allocation of
resources among individuals or factors of production,
distribution in kind involves the transfer of non-cash
assets from a company to a shareholder, and distribution
resource planning is a method used in business
administration for planning orders within a supply chain.
Many statisticians are interested in developing and
discovering a new distribution that possess certain
properties enabling them to predict and describe the
different types of lifetime data set. For more details,
someone can see Altun et al. [1], Handique et al. [2],
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Shah et al. [3], Morgenthaler [4], Kafadar [5], Reyes et
al. [6], Almetwally et al. [7], Lange et al. [8], Ahmad et
al. [9], Ahmed et al. [10], Khan et al. [11], Kashid and
Kulkarni [12], Eliwa et al. ( [13], [14]), Rogers and
Tukey [15], Alotaibi et al. [16], Ferede et al. [17], Jehhan
et al. [18], Eldeeb et al. [19], Afifyet al. [20], Ahmad et
al. [21], Alizadeh et al. [22], El-Morshedy [23],
Jamshidian [24], Eliwa and Ahmed [25], Haj Ahmad et
al. [26], among others. This paper introduces and
examines a novel and flexible extension of the Weibull
distribution. The proposed model is derived using a recent
distribution generator proposed by Eliwa et al. [27]
known as the exponentiated odd Chen-H family of
distributions. In this class, the cumulative distribution
function (CDF) of the generator can be defined as
follows:

F(x;α,β ,θ ,φ) =




1− e

−α


e

(
H(x;φ )

1−H(x;φ )

)β

−1







θ

; x > 0,

(1)
where H(x;φ) represents the CDF of a baseline model
with parameter vector φ and α,β ,θ > 0 are shape
parameters. The EOChW distribution is introduced based
on the following motivations: Firstly, it aims to define
new model that encompass all types of hazard rate
functions (HRF). By including a wide range of HRFs, the
EOChW distribution offers greater flexibility in modeling
various types of data. Secondly, the EOChW distribution
has different shapes, including symmetric, left-skewed,
and right-skewed distributions. This allows for a more
comprehensive representation of data patterns and
characteristics. Thirdly, the EOChW distribution can
effectively model under- or over-dispersed datasets. This
is particularly useful when dealing with data that deviates
from the assumptions of traditional distribution models,
allowing for more accurate and realistic modeling. Lastly,
the EOChW distribution strives to consistently provide
better fits to data compared to other models based on the
Weibull distribution, making it a valuable tool for
statistical analysis. The rest of the paper is outlined as
follows: Section 2 provides the definition of the EOChW
distribution. Following that, Section 3 presents statistical
and reliability properties associated with this proposed
family. In Section 4, the model parameters are estimated
using both maximum likelihood and Bayesian methods,
and the performance of these estimators is evaluated
through simulations. Furthermore, Section 5 demonstrates
the versatility of the EOChW distribution by analyzing a
real dataset. Finally, Section 6 concludes the paper.

2 The EOChW Distribution: A Mathematical

Framework

Consider the CDF of the Weibull distribution is given by

H(x) = 1− e−(
x
b )

a

;x > 0,a,b > 0, (2)

where a is shape parameter and b is scale parameter.
Then, the CDF of the EOChW distribution is given by
using Equations (2) in Equation (1) as follows

F(x;a,b,θ ,α,β ) =




1− e

−α


e

(
e
( x

b )
a

−1

)β

−1







θ

, (3)

where x > 0 and a,θ ,α,β are shape parameters and b is
scale parameter. The corresponding PDF of Equation (3)
is given as

f (x) =
θαβ a

b
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b
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e(
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a (
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− 1
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×




1− e

−α


e

(
e
( x

b )
a

−1

)β

−1







θ−1

. (5)

The reliability and the hazard rate functions of the
EOChW distribution can be calculated by using the
formulas R(x) = 1 − F(x) and h(x) = f (x)/(1 − F(x)).

Figure 1 shows the PDFs and HRFs of the EOChW for
various values of the parameters.

Based on the observations depicted in Figure 1, it is
evident that the PDF of the EOChW distribution exhibits
diverse shapes corresponding to different parameter
values. It can be utilized for analyzing unimodal datasets
with asymmetry-shaped. Additionally, the hazard rate
function (HRF) displays various patterns, including
decreasing, increasing, bathtub, or J-shaped. These
findings highlight the versatility of the EOChW
distribution in effectively modeling a wide range of data
types.

3 Statistical Properties: Characteristics

3.1 Quantile function, skewness, and

peakedness

For any u ∈ (0,1), the qth quantile function Q(u) of the
EOChW is the solution of F(Q(u)) = u; Q(u) > 0. The
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Figure 1. The plots of the PDFs (left panel) and HRFs (right panel) of the EOChW distribution for various values of the parameters.

simplified form can be written as

Q(u) = b


log


1+

{
log

(
1− log

[
1− u

1
θ

] 1
α

)} 1
β






1
a

,

Setting q = 0.5, we get the median of the EOChW
distribution. The effects of the shape parameters on the
skewness and kurtosis can be studied by using quantile
function. The Bowley skewness (see, Kenney and
Keeping [28]) is one of the earliest skewness measures

defined by S =
Q( 3

4 )+Q( 1
4 )−2Q( 1

2 )

Q( 3
4 )−Q( 1

4 )
. The Moors kurtosis

(see, Moors [29]) is based on octiles, namely

K =
Q( 3

8 )−Q( 1
8 )+Q( 7

8 )−Q( 5
8 )

Q( 6
8 )−Q( 2

8 )
. The skewness and kurtosis of

the EOChW distribution for selected choices of α,β ,a
and b as function of θ (theta) are displayed in Figure 2.
We take β = 1.1,a = 2 and b = 0.5 to plot of Bowley
skewness and Moors kurtosis.

The plots of skewness and kurtosis reveal that the
shapes of the proposed distribution have strong
dependence on the values of α and θ . Moreover, the
EOChW distribution can be employed to model both
positive and negative skewness, in addition to
accommodating symmetric datasets across different
forms of kurtosis.

3.2 Moments and incomplete moments

Moments and incomplete moments are employed in
statistical analysis for characterizing the shape and

variability of probability distributions. The rth moment

(µ
′

r) of the exponentiated odd chen-G family of
distributions are defined by Eliwa et. al. [27] in the
following form

µ
′

r =
∞

∑
i, j=0

j

∑
k=0

∞

∑
m,l=0

Ω
(m,l)
i, j,k E(Zr

β m+l), (6)

where Zr
β m+l

has exponetial-G (Exp − G) family with

power parameter β m+ l that defined as

Hβ m+l(x) =
a

b

( x

b

)a−1

e(
x
b )

a
β m+l .

in addition,

Ω
(m,l)
i, j,k = (−1)i+ j+k (αi) j ( j− k)m

(
j

k

)

×
Γ (β m+ l)Γ (θ + 1)

i! j!m! l! Γ (β m)Γ (θ + 1− i)
.

By setting r = 1,2,3,4 in Equation (6), we obtain the first
four moments of the random variable X . For lifetime
models, it is also of interest to obtain the incomplete
moments. The incomplete moments play an important
role for measuring inequality. The mth incomplete
moment of X can be expressed as follows

M(m)(t) =
∞

∑
i, j=0

j

∑
k=0

∞

∑
m,l=0

Ω
(m,l)
i, j,k M∗

(m)(t), (7)

where M∗
(m)(t) =

∫ t
0 xmgβ m+l(x)dx. Moreover, the primary

utilization of the first incomplete moment is commonly
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associated with the Bonferroni and Lorenz curves. These
curves find applications across various domains,
including but not limited to reliability, economics,
demography, medicine, and insurance.

3.3 Mean deviations and coefficient of variation

In the field of statistics, the mean deviations about the
mean and median are utilized to quantify the dispersion or
scatter within a population. When considering a random
variable X following the EOChW (a,b,θ ,α,β )
distribution, the mean deviations about the mean and
median can be mathematically represented as follows:

ε1 =

∫ ∞

0

∣∣∣x− µ
′

1

∣∣∣ f (x;a,b,θ ,α,β )dx

= 2µ
′

1F(µ
′

1;a,b,θ ,α,β )− 2µ
′

1

+ 2

∫ ∞

µ
′
1

x f (x;a,b,θ ,α,β )dx

= 2µ
′

1F(µ
′

1)− 2M(1)(µ
′

1) (8)

and

ε2 =
∫ ∞

0
|x−Q(0.5)| f (x;a,b,θ ,α,β )dx

=−µ
′

1 + 2

∫ ∞

Q(0.5)
x f (x;a,b,θ ,α,β )dx

= µ
′

1 − 2M(1)(Q(0.5)), (9)

respectively. Additionally, the coefficient of variation
(CV) serves as a metric to assess the variability within a
dataset. Specifically, if X follows the
EOChW(a,b,θ ,α,β ) distribution, the CV can be

expressed as CV =
√

µ
′

2 − µ
′2
1 /
∣∣∣µ ′

1

∣∣∣. A high CV value

indicates a greater degree of variability and lower stability
within the data, while a low CV value suggests lower
variability and higher stability.

3.4 Mean time to failure (MTTF), mean time

between failure (MTBF) and availability (AvB)

MTTF, MTBF and AvB are reliability terms based on
methods and procedures for lifecycle predictions for a
product. Customers often must include reliability data
when determining what product to buy for their
application. MTTF, MTBF and AvB are ways of
providing a numeric value based on a compilation of data
to quantify a failure rate and the resulting time of
expected performance. Also, In order to design and
manufacture a maintainable system, it is necessary to
predict the MTTF, MTBF and AvB. If

X ∼ EOChW (a1,b1,θ1,α1,β1), then the MTBF is given
as

MTBF =
−x

ln(1−F (x;a1,b1,θ1,α1,β1))
; x > 0. (10)

If X ∼ EOChW (a2,b2,θ2,α2,β2), then the MTTF is given
as

MTTF = E(X) = µ
′

1|(a2,b2,θ2,α2,β2), (11)

where µ
′

1 denotes the first moment around zero, which can
be derived from Equation (??) when r = 1. The AvB is
consider the probability that the component is successful
at time x, i.e.

AvB =−µ
′

1|(a2,b2,θ2,α2,β2)
ln(1−F (x;a1,b1,θ1,α1,β1))

x
,

(12)
where AvB = MTTF

MTBF
.

3.5 Reliability function of consecutive

k∗−out −o f −n∗ : fails system

Redundancy is employed in the design process as a means
to enhance the reliability of systems. A system that
follows the consecutive k∗ − out − o f − n∗: fails
(k∗ − out − o f − n∗ : F) with total n∗ components if and
only if at least k∗ consecutive components in the system
have failed (see Chang et al. [30]). These systems are
comprised of n∗ components arranged either linearly (in a
line) or circularly (in a circle), and they fail or function
based on the occurrence of a specific pattern involving
consecutively failed or working components. Such
systems serve as models for various engineering systems,
including microwave stations within a
telecommunications network, oil pipeline systems, and
vacuum systems in electron accelerators.

3.5.1 Reliability function for parallel and series systems

Let’s consider a system comprising n∗ independent
components, where each component follows the EOChW
distribution. When k∗ equals n∗, the reliability of the
parallel system (P) can be determined as follows:

RP(x) = 1−


1− exp


−α


e

(
e(

x
b )

a

−1

)β

− 1








θn∗

.

(13)
When k∗ = 1, the reliability of the series system (S) is
given by

RS(x)=


1−


1− exp


−α


e

(
e(

x
b)

a

−1

)β

− 1








θ



n∗

.

(14)
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3.5.2 Reliability function of linear consecutive
k∗− out− o f − n∗ : F system

Assume T ∼ EOChW (a,b,θ ,α,β ), then the reliability
formula for linear consecutive
k∗ − out − o f − n∗ : F system, say RL(t;k∗,n∗), is given
by

RL(t) =
m∗

∑
j∗=0

j∗

∑
i∗=0

(−1)i∗
NL( j∗;k∗,n∗)

(
j∗

i∗

)
×


1− exp


−α


e

(
e(

x
b )

a

−1

)β

− 1








θ(n∗− j∗+i∗)

,

(15)

with

m∗ =





n∗−
⌊

n∗+1
k∗

⌋
− 1 ; if n∗+ 1 is amultiple of k∗

n∗−
⌊

n∗+1
k∗

⌋
; if n∗+ 1 is not amultiple of k∗

and

NL( j∗;k∗,n∗) =





∑
⌊ j∗/k∗⌋
l∗=0 (−1) j∗

(
n∗− j∗+ 1

l∗

)

×

(
n∗− l∗k∗

n∗− j∗

)
;k∗ ≤ j∗ ≤ n∗

0 ; j∗ > m∗
(

n∗

j∗

)
; 0 ≤ j∗ ≤ k∗− 1,

where NL( j∗;k∗,n∗) denotes the count of possible
arrangements of j∗ failed components in a linear
configuration, ensuring that no more than k∗ − 1 failed
components occur consecutively. Additionally, m∗

represents the maximum allowable number of failed
components in the system without triggering a complete
system failure.

3.5.3 Reliability function of circular consecutive
k∗− out− o f − n∗ : F system

Assume T ∼ EOChW (a,b,θ ,α,β ), then the reliability
formula for circular consecutive
k∗ − out − o f − n∗ : F system, say RC(t;k∗,n∗), is given
by

RC(t) =
d

∑
j∗=0

j∗

∑
i∗=0

(−1)i∗
NC( j∗;k∗,n∗)

(
j∗

i∗

)
×


1− exp


−α


e

(
e(

x
b )

a

−1

)β

− 1








θ(n∗− j∗+i∗)

(16)

with

d =





n∗− n∗

k∗
; if n∗ is amultiple of k∗

n∗−
⌊

n∗

k∗

⌋
− 1 ; if n∗ is not amultiple of k∗,

and

NC( j∗;k∗,n∗) =
n∗

n∗− j∗
NL( j∗;k∗,n∗) for 0 ≤ j∗ ≤ d,

where NC( j∗;k∗,n∗) denotes the count of possible
arrangements of n∗ components, including j∗ failed ones,
in a circular configuration, ensuring that no more than
k∗ − 1 failed components occur consecutively.
Additionally, d represents the maximum allowable
number of failed components in the system without
triggering a complete system failure.

3.5.4 Reliability measures for different systems

Consider four distinct systems, namely P, S, Lc, and Cc.
Each of these systems is comprised of five components,
where each component follows the
EOChW(0.2,0.5,θ ,0.5,1.1) distribution. In the case of
the Lc and Cc systems, let’s assume a 2−out−o f −6 : F

configuration. Tables 1 and 2 present various
computational statistics for these systems at a specific
time point, x = 5.

Based on Tables 1 and 2, with fixed values of α,β ,a
and b and as θ approaches infinity, the following trends
emerge: in P and S systems, reliability, MTTF, MTBF,
and AvB values exhibit an increase, while in Lc and Cc
systems, these values experience a decrease.

4 Estimation Methods: Mathematical

Formulations and Algorithms

4.1 Maximum likelihood estimation (MLE)

Numerous methods are available for parameter
estimation, with the MLE method being the most
prevalent. Hence, we employ the MLE method to
estimate the parameters a,b,θ ,α and β for the EOChW
distribution. Suppose X1,X2, ...,Xn is a random sample of
size n from the EOChW distribution. In this case, the
log-likelihood function L(a,b,θ ,α,β ) can be formulated
as follows:
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Table 1. Evaluation of reliability measures for P and S systems utilizing the EOChW model.

Parameter ↓ System → P S

θ Rp MTTF MTBF AvB RS MTTF MTBF AvB

1.5 0.4135 5.5615 5.6625 0.9821 3.79×10−7 0.2372 0.3382 0.7013

5 0.8311 26.9374 27.0384 0.9962 0.0003 0.5115 0.6125 0.8351

10 0.9714 172.8020 172.9030 0.9994 0.0080 0.9348 1.0358 0.9024

15 0.9951 1036.3971 1036.4981 0.9999 0.0418 1.4738 1.5748 0.9358

Table 2. Evaluation of reliability measures for Lc and Cc systems utilizing the EOChW model.

Parameter ↓ System → Lc Cc

θ RL MTTF MTBF AvB RC MTTF MTBF AvB

1.5 0.8697 35.7297 35.8307 0.9971 0.6958 13.6849 13.7859 0.9926

5 0.6725 12.5029 12.6039 0.9919 0.5380 7.9655 8.0665 0.9874

10 0.3726 4.9642 5.0652 0.9800 0.2981 4.0303 4.1313 0.9755

15 0.1816 2.8306 2.9316 0.9655 0.1453 2.4914 2.5924 0.9610

L(a,b,θ ,α,β ) = n ln(
aαβ θ

b
)+ (a− 1)

n

∑
i=1

ln
[xi

b

]

+
n

∑
i=1

[xi

b

]a

+(β − 1)
n

∑
i=1

ln
[
e(

xi
b )

a

− 1
]

−α
n

∑
i=1

ln


e

(
e
( xi

b )
a

−1

)β

− 1




+(θ − 1)
n

∑
i=1

ln




1− e

−α


e

(
e
( xi

b )
a

−1

)β

−1






.

(17)

To estimate the unknown parameters a,b,θ ,α and β , we
take the partial derivative of L(a,b,θ ,α,β ) with respect
to a,b,θ ,α and β , and equate the result equation to 0.
The solution can be reported by utilizing any numerical
method such as the Newton-Raphson method using some
R packages.

4.1.1 Simulation study using MLE methouds

In this subsection, we assess the efficacy of the MLE
method relative to the sample size through a simulation
study. To execute the simulation study, we follow these
steps:

1.Generate 10000 samples of size n =
20,100,250,350,450 from Schema I:
EOChW(0.5,0.6,0.7,1.4,0.9), Schema II: EOChW
(0.9,0.8,0.7,0.9,0.8) and Schema III:
EOChW(1.5,1.6,1.7,0.6,0.7).

2.Calculate the MLEs for the 10000 samples, say

â j, b̂ j, θ̂ j, α̂ j and β̂ j for j = 1,2, ...,10000.

Calculate the biases and mean-squared errors (MSEs).,
where

|Bias|=

∣∣∣∣∣
1

10000

10000

∑
j=1

(ϕ̂ j −ϕ)

∣∣∣∣∣ ,

and

MSE =
1

10000

10000

∑
j=1

(ϕ̂ j −ϕ)2 .

The results for this study are listed in Table 3.
Bias refers to the difference between the expected

value of an estimator or model and the true value of the
parameter being estimated or predicted. In simpler terms,
it tells us if our estimator consistently overestimates or
underestimates the true value. A biased estimator tends to
consistently deviate from the true value in one direction.
For example, if you have a biased scale that consistently
adds 2 pounds to every measurement, it’s biased upwards.
Mean squared error (MSE), on the other hand, is a
measure of the average squared difference between the
estimated or predicted values and the true values. It takes
into account both bias and variance (the variability of the
estimator’s predictions). A lower MSE indicates that the
estimator or model is closer, on average, to the true value.
However, MSE can be decomposed into bias squared and
variance, which means reducing bias might increase
variance and vice versa. In practical terms, bias and MSE
are crucial in assessing the accuracy and reliability of
statistical models or estimators. A model with low bias
and low MSE is generally preferred because it indicates
that the model is both accurate (low bias) and consistent
(low variance). However, finding this balance can
sometimes be challenging, as reducing bias can increase
variance and vice versa, leading to a trade-off that needs
to be carefully managed in model development and
selection. Finding an estimator that balances consistency
and low variance often involves trade-offs. For example,
increasing the complexity of a model or estimator may
reduce bias (improving consistency) but can also increase
variance. On the other hand, simplifying the model can
reduce variance but may introduce bias. In practice,
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techniques like regularization (which penalizes
complexity in models) can help control variance while
maintaining consistency to some extent. Cross-validation
methods can also be used to assess the stability and
generalization performance of an estimator, helping to
select models that have a good balance between
consistency and variance.

By examining Table 3, one can notice that the
magnitude of the bias tends to zero as n approaches
infinity. In addition, as n goes toward infinity, MSEs
continually decrease to zero, demonstrating the
consistency of the estimators. From these observations,
we can conclude that the MLE method shows strong
performance in accurately estimating model parameters.

4.2 Bayesian estimation (BSE)

This section is concerned with the Bayesian analysis of
EOChW distribution. In particular, The Bayesian analysis
uses the Bayes theorem to combine the prior information
with the observed information. It is to be noted that prior
can be noninformative in the sense that it provides less
accurate information than the informative prior. The
likelihood of the EOChW distribution can be written as

L(a,b,θ ,α,β |x) ∝anαnβ nθ n exp
(
−a

n

∑
i=1

ln(b/xi)
)

× exp

(
n

∑
i=1

[(
−1

+ exp(xi/b)a
)β

+(xi/b)a
])

× exp

(
β

n

∑
i=1

ln
(
−1

+ exp(xi/b)a
)) n

∏
i=1

(
−1

+ exp
(
xi/b

)a

)−1

exp

(
θ

×
n

∑
i=1

ln
[
1− exp

(
α −α exp

(

− 1+ exp(xi/b)a
)β)]

)

×
n

∏
i=1

(
−1+ exp

(
α
(
−1+ exp

(

− 1+ exp
(
xi/b

)a)β ))
)
. (18)

For the sake of simplicity, assuming the independent
gamma prior for a,b,θ ,α and β , i.e., a ∼ G(a1,b1),β ∼
G(a2,b2),θ ∼ G(a3,b3),α ∼ G(a4,b4) and b ∼ G(a5,b5)

the joint posterior can be written as

P(a,b,θ ,α,β |x) ∝an+a1−1 exp

(
−a
(
b1

+
n

∑
i=1

ln(b/xi)
))

β n+a2−1

× exp

(
−β
(
b2 −

n

∑
i=1

ln
(
−1

+ exp(xi/b)a
))

θ n+a3−1 exp

(

−θ

(
b3 −

n

∑
i=1

ln
[
1− exp

(
α

−α exp
(
−1

+ exp(xi/b)a
)β)]

))

αn+a4−1 exp(−b4α)
n

∏
i=1

(
−1

+ exp
(
α
(
−1+ exp

(
−1

+ exp
(
xi/b

)a)β))
)

bn+a5−1 exp(−b5b)
n

∏
i=1

(
−1

+ exp
(
xi/b

)a

)−1

× exp

(
n

∑
i=1

[(

− 1+ exp(xi/b)a
)β

+(xi/b)a
])

.

(19)

The marginal distributions can be obtained as follows:

p(a|b,x) ∼ Gamma

(
m + a1,b1 + ∑n

i=1 ln(b/xi)

)
,

p(β |a,b,x) ∼

Gamma

(
n + a2,b2 − ∑n

i=1 ln
(
−1 + exp(xi/b)a

)
,

p(θ |α,a,b,β ,x) ∼ Gamma

(
n + a3,b3 − ∑n

i=1 ln
[
1 −

exp
(
α − α exp

(
−1 + exp(xi/b)a

)β)]
)

,

p(α|a,b,β ,x) ∼ αn+a4−1 exp(−b4α)∏n
i=1

(
−1 +

exp
(
α
(
−1 + exp

(
−1 + exp

(
xi/b

)a)β))
)

, and

p(b|a,b,β ) ∼ bn+a5−1 exp(−b5b)∏n
i=1

(
−1 +
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Table 3. The bias and MSE for the EOChW parameters.

Schema I Schema II Schema III

n Parameter |Bias| MSE |Bias| MSE |Bias| MSE

a 0.03736622 0.00784582 0.02758462 0.00401946 0.10474862 0.01493446

b 0.05473891 0.00846821 0.02770475 0.00374581 0.08463961 0.00648368

θ 0.09947628 0.00845892 0.01870428 0.00253745 0.11736845 0.00946864

20 α 0.06638912 0.00983614 0.01801047 0.00240364 0.04437525 0.00868652

β 0.05993782 0.00645783 0.01050478 0.00135528 0.06648732 0.00947649

a 0.02884578 0.00184668 0.02115738 0.00294384 0.07749362 0.00204761

b 0.04745681 0.00385691 0.02520482 0.00360364 0.00946846 0.00073458

100 θ 0.03957815 0.00210578 0.01750047 0.00231817 0.04438927 0.00304871

α 0.01873869 0.00473871 0.01104386 0.00145483 0.00985693 0.00054937

β 0.01047934 0.00202487 0.00701364 0.00080463 0.02049855 0.00439471

a 0.01893689 0.00094767 0.01824689 0.00244492 0.01936374 0.00084749

b 0.01185468 0.00088465 0.02390469 0.00331045 0.00113947 0.00089887

250 θ 0.00224867 0.00059782 0.01615394 0.00214283 0.00802371 0.00088463

α 0.00773826 0.00079761 0.00440346 0.00051018 0.00438046 0.00009571

β 0.00849729 0.00088496 0.00704378 0.00082142 0.00847936 0.00019487

a 0.00834662 0.00025376 0.01110478 0.00149794 0.00974973 0.00093783

b 0.00846816 0.00024974 0.02024367 0.00279479 0.00044384 0.00006648

350 θ 0.00084648 0.00004977 0.01610390 0.00213310 0.00195727 0.00022949

α 0.00103876 0.00013391 0.00004186 0.00008368 0.00074946 0.00000759

β 0.00214970 0.00009458 0.00601135 0.00071163 0.00043846 0.00003397

a 0.00063538 0.00004757 0.00947636 0.00008692 0.00204876 0.00018461

b 0.00043558 0.00002947 0.00184681 0.00048671 0.00008476 0.00000849

450 θ 0.00026286 0.00000838 0.00554892 0.00046871 0.00064538 0.00003297

α 0.00066386 0.00004363 0.00000194 0.00000745 0.00009486 0.00000039

β 0.00073937 0.00002836 0.00074037 0.00001937 0.00007489 0.00000643

exp
(
xi/b

)a

)−1

exp

(
∑n

i=1

[(
−1 + exp(xi/b)a

)β
+

(xi/b)a
])

.

Thus, a,β ,θ can easily be generated from the gamma
distributions as mentioned above, however, α,b cannot be
generated directly. To generate these we use the Markove
Chain Monte Carlo (MCMC) method named as the
Metropolis Hastings sampling. To this end, the parameter

γ is initialised with state γi and draw next state γ
′

with

probability density p(γ
′
|γi), which is known as the

transition kernel. Here, gamma distribution is used as the
transition distribution and this choice is done purely for
illustration purpose, and any other suitable distribution
can be taken. Then, compute ψ = min(ψ1ψ2,1), where

ψ1 =
p(γ

′
)

p(γi)
, which is the probability ratio between present

and last sample γi and ψ2 = p(γi|γ
′
)

p(γ
′
|γi)

. A new random

number is rejected if ψ = 1, γi+1 = γ
′
, i.e.,

γi+1 =

{
γ
′

with probability ψ

γi with probability 1-ψ .

Then, the process is repeated until it forgot the initial
state. Thus, to have more precise numbers, some initial
state values can be discarded known as the burn-in period.
After generating the marginal densities, the next step is to

calculate the posterior summaries, E(φφφ |xxx) =
∫

φφφ φφφP(φφφ |xxx).
For this, we propose the following steps.

Step 1:Take some initial guess values of a,b,θ ,α and β ,
say a0,b0,θ0,α0 and β0, respectively.

Step 2:To generate α and b proceed as follows:

1.To generate α and b evaluate the acceptance
probability by

p(α(i),α
′)) = min

(
1, p(α(′)|xxx)p(α(i)|α(′))

p(α(i)|xxx)p(α(′)|α(i))

)
, where

p(α|b,a,β ,xxx) has been defined above.
2.Generate a random numbers u from

Uni f orm(0,1).

3.If p(α(i),α(′)) ≥ u, α(i+1) = α(′), otherwise

α(i+1) = α(i). Similarly, generate b.

Step 3:Now generate a,θ and β from pa|b,xxx, pβ |a,b,xxx and

pθ |α ,a,b,β ,xxx. Suppose at the ith step, α , β , θ , a and b

take the values ai,bi, αi, θi and βi.
Step 4:Repeat the above step N times.
Step 4:Calculate the Bayes estimator of h(a,b,θ ,α,β ) by

1
N−M ∑N

i=M+1 h(ai,bi,θi,αi,βi), where M denote the
number of burn-in sample.

To calculate the posterior summaries, we generated
sample of different sizes like n = 25,150,250,350
assuming (a,b,θ ,α,β ) as mentioned in the previous
section for different distributions. Further, we considered
two different types of priors, i.e., informative prior (IP)
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and noninformative prior (NIP). For the case of IP, we
selected hyperparameters values that yield mean
approximately equal to the nominal value of parameter
with variance 0.5. However, to have the case of NIP, we
considered the hyperparameters values which produce
mean equal to the nominal value but variance 2.0. It is
worth mentioning that in the case of IP and NIP, the
means of the prior distributions are equal to the nominal
value of the parameters but variances have different
values, i.e., variance is larger than the case of IP for the
NIP case. We generated 60000 MCMC samples and
10000 used as the burn-in period to have stable posterior
summaries. The resulting study is tabulated in Tables 4
and 5. From the Tables 4 and 5, it is observed that
although the posterior means are very close to the
nominal parameter values, the standard deviation and
MCMC error are very different for each case. It is also
noticed that the standard deviation and MCMC error
decrease by increasing the sample size and IP has the
least standard deviation as compared to the NIP cases.
Also, credible intervals for the IP are narrower than the
NIP cases.

5 Analysis of Glass Fiber Data

In this section, we illustrate the empirical importance of
the EOChW distribution using one complete real dataset.
The fitted distributions are compared using some criteria
namely, the negative maximized log-likelihood (−L),
Cramér-von Mises (CvM), Anderson-Darling (AD)
statistics, and Kolmogorov-Smirnov (KS) statistic and its
p-value. The CvM and AD statistics, along with the KS
statistic, serve as goodness-of-fit tests in statistical
analysis, yet they differ in their approaches and sensitivity
to specific types of deviations between observed and
theoretical distributions. CvM and AD statistics focus on
assessing discrepancies in the CDF of the data, with CvM
being more sensitive to differences in the tails of the
distribution, while AD provides increased sensitivity to
deviations in the tails as well as in the center of the
distribution. In contrast, the KS statistic measures the
maximum vertical distance between the empirical
distribution function of the sample and the theoretical
distribution, making it sensitive to differences across the
entire range of the distribution but less so in the tails
compared to CvM and AD. Thus, while all three statistics
serve similar purposes, their varying sensitivities make
them suitable for different scenarios, with researchers
often selecting the most appropriate test based on the
specific characteristics of their data and the type of
deviations they aim to detect. This data is reported in
Smith and Naylor [31], which consists of 63 observations
of the strengths of 1.5 cm glass fiber. Unfortunately, the
units of measurement are not given in the paper. Various
nonparametric visualizations, including QQ plots, box
plots, histogram plots, TTT plots, violin plots, and kernel
plots, were utilized to examine the inherent distribution of

the raw fiber glass data. Based on these nonparametric
plots, it was observed that the fiber glass data exhibited
asymmetry and contained certain extreme values (refer to
Figure 3). For this data set, we shall compare the fits of
the EOChW distribution with some competitive models
like odd log-logistic W (OLoLW), odd flexible Weibull W
(OFWW), Topp-Leaon W (ToLeW), Kumaraswamy W
(KuW), Gompertz W (GoW), transmuted W (TrW),
generalized W (GW), exponentiated W (EW) and W.
Tables 6 and 7 provide the MLEs for glass fiber data. and
goodness-of-fit measures respectively. Regarding Table
7, it is clear that, the EOChW model provides the best fit
to this data among all tested models because it has the
smallest value among −L, CvM, AD, KS as well as it has
the highest p-value. The empirical PDFs, CDFs and P-P
plots for glass fiber data are displayed in Figures 4 and 5
respectively, which support the results of Table 7.

It is clear that the data set plausibly came from all
tested models. But, the EOChW model is the best. In
Table 8 the results of Bayesian estimation for glass fiber
data are listed. The results presented in Table 8 are very
similar to the MLE results. It is also noticed that the IP is
more efficient than the NIP because of smaller associated
standard deviation. The hyperparameters for the real data
are selected in a similar way as described in the
simulation study section, where the MLEs are treated as
the nominal values. To assess the convergence visually,
we depicted the density, history and trace plots in Figures
6, 7 and 8 respectively. Figure 9 shows the RF, HRF, AvB,
MTTF and MTTR for glass fiber data using the EOChW
model model based on ML estimators.

Some statistics for glass fiber data are reported in
Table 9 using the EOChW model. The analysis reveals
that the glass fiber data exhibits characteristics of
under-dispersion, signifying that the variance is smaller
than the mean. Additionally, the data displays a moderate
left skewness, indicating a longer left tail with the
majority of the distribution concentrated towards the
right, accompanied by platykurtosis.

6 Concluding Reflections and Prospects

This study presents a comprehensive examination of the
EOChW distribution, thoroughly exploring its
mathematical and statistical characteristics. By
investigating its hazard rate function, which exhibits
diverse patterns including decreasing, increasing, bathtub,
or J-shaped, the study underscores the EOChW
distribution’s adaptability in effectively modeling a wide
array of data types. Moreover, the distribution
demonstrates remarkable versatility by accommodating
both positive and negative skewness, as well as symmetric
datasets with varying forms of kurtosis. Parameter
estimation techniques, including Bayesian and maximum
likelihood methods, were employed to estimate model
parameters, with simulation results showcasing the
efficacy of both approaches. It was observed that although
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Table 4. Posterior summaries for the EOChW distribution.

Prior n Parameters Mean SD MC Error 2.5% Median 97.5%

IP a 0.60462784 0.71469564 0.00654485 0.00450463 0.35400485 2.58500475

b 0.69410471 0.69560453 0.00653735 0.01590490 0.47874386 2.47402174

50 θ 1.69806584 0.70731863 0.00695589 0.61331326 1.59400093 3.30300582

α 1.51000475 0.71680474 0.00727494 0.44689642 1.39902178 3.22208478

β 1.58502947 0.69671743 0.00621048 0.54518567 1.48400474 3.21603255

a 0.60222746 0.71124956 0.00474639 0.00454405 0.35632153 2.55300583

b 0.69580058 0.69468264 0.00509275 0.01692784 0.48140384 2.43604388

150 θ 1.69806274 0.70465937 0.00510376 0.61432735 1.59805438 3.27409475

α 1.50401048 0.71312947 0.00505257 0.44934865 1.39200484 3.19302477

β 1.59506391 0.68585594 0.00469563 0.54680575 1.49103225 3.21204439

a 0.60170464 0.70621047 0.00419852 0.00491325 0.35404689 2.54700485

b 0.69787459 0.69365057 0.00403243 0.01734495 0.48153294 2.42600954

250 θ 1.69800458 0.70455587 0.00415237 0.61470474 1.60009574 3.22703265

α 1.50301184 0.71305875 0.00416355 0.44964264 1.39203226 3.19108004

β 1.59500575 0.68430477 0.00380489 0.54849476 1.49009474 3.20200047

a 0.60006483 0.70545478 0.00344343 0.00542625 0.35369474 2.54600463

b 0.69810946 0.67010264 0.00369485 0.01881288 0.47921454 2.35501746

350 θ 1.69905648 0.70422547 0.00360057 0.62050494 1.60206495 3.22604742

α 1.50204654 0.71238465 0.00370575 0.44983326 1.39200487 3.19004447

β 1.59506495 0.67320465 0.00350475 0.55289475 1.49005365 3.12284495

Table 5. Posterior summaries for the EOChW distribution.

Prior n Parameters Mean SD MC Error 2.5% Median 97.5%

NIP a 0.61283947 1.47609937 0.01427468 0.00000465 0.04393325 4.88809749

b 0.69990374 1.38300387 0.01468757 0.00000947 0.11850489 4.97604368

50 θ 1.70206394 1.40600047 0.01432293 0.12171133 1.33000357 5.38004947

α 1.48400375 1.40503374 0.01382164 0.05490457 1.07501438 5.20309946

β 1.60505643 1.42000464 0.01470434 0.08487473 1.21000474 5.38102144

a 0.61270294 1.47403362 0.01025532 0.00000353 0.04435547 4.88800477

b 0.70552143 1.37405483 0.01006483 0.00005647 0.12119473 4.94502273

150 θ 1.69902739 1.40007346 0.01050464 0.12270475 1.32505374 5.38003530

α 1.48402273 1.40103254 0.00898496 0.05526748 1.07509367 5.20109862

β 1.59409934 1.41300475 0.01104437 0.08569774 1.19904536 5.37408946

a 0.61545273 1.47305438 0.00798468 0.00000479 0.04610374 4.83108321

b 0.70433326 1.37204374 0.00813308 0.00000087 0.12215436 4.92213872

250 θ 1.70200485 1.39700048 0.00825484 0.12260415 1.33209464 5.28400469

α 1.48708346 1.39301434 0.00820465 0.05540475 1.07505437 5.12805437

β 1.60100475 1.40100475 0.00830374 0.08630462 1.20608564 5.34810464

a 0.61532354 1.46703254 0.00714752 0.00000036 0.04611328 4.82515473

b 0.70419477 1.36308745 0.00704766 0.00000090 0.12261338 4.89104846

350 θ 1.70000948 1.38419254 0.00708742 0.12640473 1.33200474 5.27407347

α 1.48909937 1.38404432 0.00729937 0.05627468 1.07504746 5.02700379

β 1.60601244 1.39102239 0.00734563 0.08649466 1.21305363 5.34200453

Table 6. The MLEs for glass fiber data.

Model α̂ β̂ â b̂ θ̂

EOChW 0.147 0.184 0.991 0.285 4.619

OLoLW 0.944 − 6.029 1.624 −
OFWW 2.215 16.865 0.263 0.559 −
ToLeW 1.839 0.413 6.450 1.821 −
KuW 0.708 23.436 8.011 2.851 −
GoW 0.748 0.031 5.615 1.554 −
TrW 0.925 − 5.977 1.809 −
GW 0.312 − 5.783 1.331 −
EW 0.671 − 7.291 1.718 −
W − − 5.783 1.628 −
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Figure 3. Some non-parametric plots of fiber glass data.

Table 7. Goodness-of-fit statistics for glass fiber data.

Model −L AD CvM KS p-value

EOChW 14.151 0.895 0.159 0.129 0.246

OLoLW 15.179 1.291 0.235 0.154 0.103

OFWW 14.974 1.251 0.228 0.150 0.117

ToLeW 14.556 1.099 0.198 0.146 0.138

KuW 15.152 1.292 0.235 0.152 0.109

GoW 15.181 1.291 0.235 0.152 0.109

TrW 15.136 1.311 0.239 0.152 0.110

GW 15.199 1.312 0.239 0.152 0.109

EW 14.665 1.119 0.202 0.146 0.136

W 15.199 1.312 0.239 0.152 0.109
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Figure 4. Fitted PDFs (left panel) and estimated CDFs (right panel) for glass fiber data.
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Figure 5. P-P plots for glass fiber data.

Table 8. Posterior summaries for glass fiber data.

Prior Parameters Mean SD MC Error 2.5% Median 97.5%

IP a 0.8221 0.6473 0.0034 0.0712 0.6599 2.4820

α 0.0799 0.1985 0.0010 0.0000 0.0044 0.6628

b 0.1547 0.2779 0.0015 0.0000 0.0398 0.9680

β 0.1708 0.2895 0.0015 0.0000 0.0522 1.0070

θ 3.7530 1.3740 0.0069 1.5700 3.586 6.8960

NIP a 0.8142 0.9010 0.0049 0.0103 0.5159 3.2910

α 0.0803 0.2814 0.0015 0.0000 0.0001 0.8401

b 0.1507 0.3798 0.0019 0.0000 0.0065 1.2470

β 0.1732 0.4082 0.0022 0.0000 0.0125 1.3900

θ 3.7380 1.9280 0.0099 0.9610 3.4130 8.3800

Table 9. Some statistics for glass fiber data.

Method ↓ Measure → Mean Variance Skewness Kurtosis

MLE 1.3102 0.0905 −0.0819 1.2603

the posterior means were very close to the nominal
parameter values, the standard deviation and MCMC
error varied significantly for each case. Additionally, it
was noticed that the standard deviation and MCMC error
decreased as the sample size increased, with IP having the
lowest standard deviation compared to the NIP cases.
Furthermore, credible intervals for the IP were narrower
than those for the NIP cases. Finally, the analysis of a
real-world dataset serves as a compelling illustration of
the significance and flexibility of the EOChW distribution
model, emphasizing its potential practical utility in
various statistical applications. Future research could
further delve into the practical applications and
extensions of the EOChW distribution explored in this
study. Investigating its performance in modeling
real-world datasets across diverse fields such as
engineering, finance, and healthcare could provide

valuable insights into its applicability and effectiveness in
various statistical scenarios. Additionally, exploring
alternative parameter estimation techniques and assessing
their robustness under different data conditions could
enhance our understanding of the distribution’s behavior
and improve estimation accuracy. Moreover, considering
the EOChW distribution’s ability to accommodate
asymmetry and various forms of kurtosis, future work
could focus on developing tailored inferential methods to
capitalize on these properties and optimize statistical
analyses. Furthermore, extending the study to investigate
multivariate versions or hierarchical structures of the
EOChW distribution could broaden its scope and utility
in complex data modeling tasks. Overall, continued
research into the EOChW distribution holds promise for
advancing statistical theory and methodology.
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Figure 6. Density plots for glass fiber data.

Figure 7. History plots for glass fiber data.
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Figure 8. Trace plots for glass fiber data.

Figure 9. Some reliability plots for glass fiber data.
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