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Abstract: Speckle noise has a negative impact that results in information loss for images. As a result, this work has developed a new

thresh function and began the study of the wave as a discrete. Then, estimate the underlying wave by removing the noise, blurring, and

sharp features. The form of the universal threshold is carefully developed and is the key to the outstanding outcomes received in the

extensive numerical simulations of wave and image denoising introduced here. A smooth wavelet basis is applied in this work, where

each wavelet basis has N vanishing moments; more precisely, all coefficients of any polynomial of degree N or less will be exactly zero.

A description of the wave using a new proposed method is investigated. The thresholding rule, whether hard or soft, is to threshold

or shrink some wavelet coefficients towards zero. Comparing that method with another one, such as classical thresh resulting in kills,

keeps the wavelet coefficients, and some wavelet coefficients are shrunk using the normal distribution. That method for the wavelet

analysis is not suitable.
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1 Introduction

In applied mathematics, wavelet, first present in
seismology, received much research attention, see[1].
Wavelet transform approaches focus on obtaining a higher
compression ratio without sacrificing image quality, and
they now offer a promising approach to image
compression. The wavelet generality and results benefit
various applications, including signals and numerical
analysis, [2], [3], [4]. Doppler waves are signals a medical
machine generates, such as an automated external
defibrillator. Most of the time, this machine is used to aid
patients. Pulse wave Doppler (PW) employs the Doppler
fundamental that moving objects change the
characteristics of sound waves by sending short and fast
sound pulses. In the mid-1800s, Christian Andreas
Doppler observed that when a sound wave of a specific
frequency hits a moving object, it will be reflected with a
various frequency. This technique is called the Doppler
effect. The principle was introduced in [5], who
popularized the concept of vascular ultrasound imaging.
At the end of the 20th century, transcranial Doppler
(TCD) ultrasound in clinical practice for assessing
cerebral hemodynamics opened a new generation in
cerebral circulation monitoring introduced by [6]. Over

the past few decades, ancient techniques have been used
in heavy care components, surgical laboratories, invasive
cardiology, and routine medical technique status; see [7],
[8]. The advancement of Doppler ultrasound technology
has proven to be an emergent tool in assessing various
physiological dynamics, including heartbeat and
respiration. The most known and commonly used
technologies for hydrodynamic monitoring allow the
measurement and acquisition of the two most common
physical parameters: pressure and flow. These parameters
are essential in describing the dynamics of blood flowing
through the vessels. Other significant measurement
parameters (distance, areas, and volumes) precisely
correlated to “dynamics” correspond to medical imaging.
Concurrently with the pressure and flow measurement
methods, researchers described some complementary
techniques to calculate different parameters directly
related to hydrodynamics (i.e., pulse wave velocity,
oxygen saturation, ballistocardiograph, cardiac
contractility, cardiac wall motion, etc.) because their
measuring and monitoring are quite familiar in additional
hospital environments. However, their usage has
improved with specialized advancements in medical
instrumentation. The scanner can be provided for
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continuous and pulse wave Doppler applications. One
part is activated continuously during wave scanning, and
the other obtains feedback. In contrast, during pulse wave
scanning, a short burst or pulse activates a transducer
component, and the same component obtains the return
feedback. This information will only believe pulse wave
scanning using both B-mode and Doppler methods.
B-mode or grayscale images are used to locate the area or
structure of interest for Doppler evaluation and serve as a
background for the color representation of blood flow.
Common terms associated with Doppler ultrasound are
italicized for equine veterinarians and biologists on the
principles using pulse wave Doppler imaging; see [9],
[10]. To sample blood flow velocity at a specific location
in the artery lumen, a combination of two-dimensional
grayscale ultrasound to image arterial structures and pulse
wave Doppler. A range of studies can be performed with
the Doppler wave, using those waves by most patients
with multilevel superficial femoral artery restenosis as an
example. This makes it substantial in the evaluation of
arteries and blood vessels. The anatomical location of the
stenos is and the degree of stenosis can be estimated using
continuous Doppler, Doppler waveforms, duplex
imaging, and velocity changes in the circuit. Changes in
the Doppler waveform are similar to those seen in
continuous wave Doppler, but the speed can be estimated
because the source of the signal sampling is known. The
turbulent flow also leads to a spectral broadening of the
Doppler signal; see [11], [12]. The article is organised as:
Section 2 provides the problem, section 3 gives
thresholding rules. In section 3 provides the procedure for
choosing the parameters α1 and α2, Section 5 gives an
extensive simulation. Section 6 provides an application to
medical data. Section 7 gives conclusion.

2 Problem statement

Suppose the model of described wave is given by

yi = βi + εi (1)

where yi is set of the observation, βi is the unknown
parameters. This means that the true wave is corrupted by
noise εi ∼ N(0,σ2). For example, recording a voice with
a background of wind. The second model is receiving
waves with low frequency, the model can be written as

yi = ∑
j

Zi jβi + εi, if i = 1,2,3, . . . ,n, (2)

where ∑ j Zi jβi is the true wave effects by transformation
matrix and Zi j is an element in the transform matrix. For
example, a vocal tuner corrects the voice at the studio.
However, the transform matrix is sometimes used to solve
inverse problems. Figure 1 shows the plots of the
transform matrix chosen as normal distribution and it
takes the form

Zi j = exp(
|i− j|

γ
), i = j = 1,2,3, . . . ,n, (3)
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Fig. 1: Plots of the true wave (solid lines), the impact of a matrix

transformation (dashed line) with γ = 0.05 in (3);(a) and the

impact of the matrix transformation and noise (dashed line) with

γ = 0.05 in (3) and normal independent noise equals 0.5; (b).

as γ increases the features of wave are vanish. The goal is
to estimate β with small L2 risk

R(β − β̂) :=
1

n

n

∑
i=1

E(β − β̂)2. (4)

Hence the second model can be explained the
transformation matrix and noise effect the true wave. The
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main idea of the wavelet method is to write the signal as

hs(x) =C0ψ0,0(x)+
s

∑
j=0

2 j−k

∑
k=0

D j,kφ j,k(x), x ∈ R
j, (5)

where C′s are the average coefficients, and

C0 =< φ0
0,k,y >= ∑k φ0

0,kyi, while D
j

j,k =< ψ
j

j,k,y > are

the different coefficients, p is the power of the data such
that n = 2s, k is the location of the coefficient at level j,
note that k = 2 j − 1. Hence, the non-parameters in (3)
take the form

C j,k =
1

n

2 j−1

∑
i=0

φ j,k(xi)yi, D j,k =
1

n

2 j−1

∑
i=0

ψ j,k(xi)yi, (6)

Figure 2 shows the impact of the transformation matrix,
where the value of the parameter γ = 0.05 as γ → ∞, the
shape of the wave becomes flat;2(a). Also, the combination
between matrix transformation and noise can be seen in
2(b). Moreover, ψ j,k is called the father wavelet, is given

Fig. 2: Diagram showing the translation wavelet coefficients

form data.

by

φ j,k(x) =

{

2 j/2φ(2 jx− k), if j ∈ Z, 0 ≤ k ≤ 2J − 1,
0, O.W,

(7)

and the mother wavelet is given as

ψ j,k(x) =

{

2 j/2ψ(2 jx− k), if j = j0, j0 + 1, . . . , log2(n),
0, O.W,

(8)

where n is the number of the data. In this article, the

smooth wavelet basis is applied, where each wavelet basis

has N vanishing moments, more precisely, all coefficients

of any polynomial of degree N or less, will be exactly

zero. Note that as the number of vanishing moments

increases, the basis of the wavelet becomes smooth. The

wavelet basis with 10 vanishing moments of extremal

phase wavelet family, and then there are 20 possible

filters, which are written as

H =
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.

Now, suppose that at level j, v j ∈ V and w j ∈ W, then

v j(x) =∑
k

C j,kψ j,k(x)

= ∑
k

C j−1,kψ j−1,k(x)+∑
k

D j−1,kφ j−1,k(x)

= v j−1,k +w j−1,k, (9)

where C j−1,k = ∑k hk−2nC j,k and h is high-pass filter wave
D j−1,k = ∑k gk−2nD j,k and g is low-pass filter wave.
Figure 2 shows a wave function introduced by Donoho,
and Johnstone, (1994)–see [11] for more detail. The
relationship between the average coefficients C′s and the
difference wavelet coefficients D′c and the location at
each level. This means that v j = v j−1

⊕

w j−1, where
v1 < v2 < · · · < v j−1, w1 < w2 < · · · < w j−1 and
⊕

j w j = L2(R). Moreover, the level v j contains two
different coefficients, the first v j−1 which contains the
scaling wavelet coefficients C j−1,k and the other is w j−1,k

which contains the mother wavelet coefficients. If the
haar wavelet basis is chosen then the 4× 4 transformation
matrix L is given by

L =
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4×4

,

where the element in the matrix indicates to the low-pass
filter and high-pass filter L. Hence, the first row in the
matrix L gives the scaling wavelet coefficients at level 3
and the other rows give the mother wavelet coefficients at
level 0,1. and 2. For example, let y = {3,1,4,7}, then

Ly =











1
2

1
2

1
2

1
2

1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2
1
2

− 1
2

1
2

− 1
2











%∗%







3
1
4
7






=







7.5
1.414214
−2.121320

−3.5






,

to invert the wavelet coefficients
{7.5,1.414214,−2.121320,−3.5}. In this example haar
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Fig. 3: Plots of cumulative approximations of Doppler wave,

at n = 512 equally spaced points, at successive levels s =
{0,1,2,3,4,5,6,7}, with the data shown as points.

basis is used, including the mother and the father wavelet
are implemented to generate the low-pass and high-pass
filters. Hence, y = LT Ly, where LT L = I. Figure 5 shows
the plots of Doppler test function (black lines) and the
function at each spaces are plots (red lines). For example,
figure 5(a) shows the wavelet coefficients at level j = 0,
where only father wavelet function is applied, while 5(b)
shows the wavelet coefficients at level j = 1, where the
father wavelet function at level j = 0 and the mother
wavelet function at level j = 1 are applied. Hence, the
reconstruction become more accurate as j → 2J−1 where
J = log2(n). Moreover, the wavelet coefficients at high
level, such as 2 j−1 − 1, become closed and as number of
data increases the number of wavelet increases and vice
versa at low level. Finally, the wavelet topic is more
complex and slightly difficult. It can not be covered
without taking about decimated and non-decimated
transformations. However, the decimated transformation
is implicated, which can make this article easy to
understand. For more knowledge, the easiest book can be
read which is written by Nason–see [13], for more
theoretical article, Vidakovic wrote a good book about
wavelet and explained the basic idea–see [14], [15] and
[16] who talked about the high and the low solution levels
and showed how the narrow and the wide the wavelet
coefficients are stretched out. For complex wavelet can be
found in [17], they calculate the real and imagery wavelet
coefficients and then treat the wavelet coefficients and
invert the result. However, the imagery wavelet
coefficients have a negligible effect.

3 Thresholding rules

There are several methods of thresholding were
introduced in the past decades. The easy way to obtain
shrinkage estimates of the true coefficients is to use
thresholding rule [18]. The main idea of a thresholding
rule is to threshold or shrink some wavelet coefficients
towards zero, while the other kept. For example, Hard
thresholding rule is the one of the classical rule which
‘kill’ or ‘kept’ some wavelet coefficients–see [19]. The
function of the Hard thresholding for the first model in (1)
can be written as

Hα((Ly) j,k,α) =

{

0, if |(Ly) j,k| ≤ α,
(Ly) j,k, O.W,

(10)

where h(.) indicates to the Hard thresholding rule and Ly

and then the wavelet coefficients are inverted LT h(Ly) and
the parameter α indicates the threshold value. The result
of Hard thresholding estimator is obtained by

β̂i = hα

(

∑
j

Li jyi,α

)

, j = 1,2, . . . ,n, (11)

Also, the second thresholding rule is Soft thresholding
which is competed the wavelet coefficients using the
slope and the intercept. The Soft thresholding function for
the first model in (1) can be written as

Sα((Ly) j,k,α) =







0, if |Ly| ≤ α,
(Ly) j,k +α, if (Ly) j,k > α,
(Ly) j,k −α, if (Ly) j,k < α

(12)

where S(.) indicates to the Soft threshoding rule. In this
article, the new thersholding rule depends on two
parameters α1 and α2 is proposed, and the function for
the first model in (1) can be written as

Mα1,α2
((Ly) j,k,α1,α2) (13)

=















0, if |(Ly) j,k| ≤ α1,
√

|α1−α2|
π

×exp{−|α1 −α2| ||(Ly) j,k||22}, if α1 < |(Ly) j,k|< α2,
(Ly) j,k, if |(Ly) j,k| ≥ α2,

where S(.) indicates to the proposed threshoding rule.
The medial part in (13) can be explained as normal
distribution. This thresholding rule kills, keeps the
wavelet coefficients and some wavelet coefficients are
shrunk using normal distribution. Note that

lim
α1→α2

Mα1,α2
((Ly) j,k,α1,α2) = hα1

((Ly) j,k,α1), (14)

while the function of rule takes normal distribution
between the parameters α1 and α2. Figure 6 shows the
plots of different thresholding rules. Note that all
thersholding rules kill the wavelet coefficients around
zero, in the interval [−α1,α1]. The new proposed and the
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Fig. 4: Plots of thersholding rules Hard, Soft and the new

threshold rule for different values of α1 and α2.

Hard thersholding rules keep the wavelet coefficients
outside the intervals [−∞,−α] and [α,∞]. The mean,
variance and the risk of the proposed function, are given
by

Meanα1,α2
((Lβ ) j,k) = E(Mα1,α2

((Ly) j,k,α1,α2)) (15)

Varα1,α2
((Lβ ) j,k) = Var(Mα1,α2

((Ly) j,k,α1,α2)) (16)

Rα1,α2
((Lβ ) j,k) = Var(Mα1,α2

((Ly) j,k,α1,α2))

+E(Mα1,α2
((Ly) j,k,α1,α2))

(17)

where

Meanα1,α2
((Lβ ) j,k)

=

∫ α2

α1

√

|α1 −α2|
2π2σ2

(Lβ ) j,k exp

{

−|α1 −α2| ||(Ly) j,k||22
}

× exp

{−||(Ly) j,k − (Lβ ) j,k||22
2σ2

}

d(Ly) j,k

+
∫ ∞

α2

(Lβ ) j,k√
2πσ2

exp

{−||(Ly) j,k − (Lβ ) j,k||22
2σ2

}

d(Ly) j,k,

(18)

and

Eα1,α2
((Lβ ) j,k)

2

=

∫ α2

α1

√

|α1 −α2|
2π2σ2

(Lβ )2
j,k exp

{

− 2|α1 −α2| ||(Ly) j,k||22
}

× exp

{−||(Ly) j,k − (Lβ ) j,k||22
2σ2

}

d(Ly) j,k

+

∫ ∞

α2

(Lβ )2
j,k√

2πσ2
exp

{−||(Ly) j,k − (Lβ ) j,k||22
2σ2

}

d(Ly) j,k,

(19)

then the varaince and the risk can be computed form the
equations (17) and (18).

4 Control the parameters α1 and α2

The biggest challenge is to specify the values of
thresholding α1 and α2. The popular choice for choosing
the value of the parameter α1 is the universal threshold, is
defined as

α1 = σ̂
√

2log2(n), (20)

where σ̂ is estimated the noise level for high resolution of
wavelet coefficients as σ̂ =Median((Ly)J−1,.), and n is the
number of wave points–see [13] and [11] for more details.
The parameter α2 in the new proposed thresholding rule
can be computed by

α2 = 2α1, (21)

this method was suggest by [20] where it was
successfully used in spectral density estimation. In this
article, the minimum mean square error is apply to use the
results as fix point. The mean idea of the minimum mean
square error is to find the value of the threshold which
makes the L2 small. Moreover, the producer of minimum
mean square error can be explained as

1.Propose the value of threshold and then used to
compute the thresholding rule.

2.Compute the Mean square error.
3.Repeat the step one and two.
4.Compute the average of MSE.

The average of the mean square error can be computed by
the following form

AMSE(β ) =
1

kn

k

∑
j=1

n

∑
i=1

(βi − β̂i)
2
j , (22)

where n is the number of wave points and k is the number
of replication, this can be used for the model 1 and the
model 2.
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Table 1: The results of AMSE for the Hard, Soft and the new

proposed thresholding rules to estimate the Doppler signal with

different levels of noise and blur. The red lines shows minimum

AMSE result at each row.
n γ σ Method AMSE Method AMSE Method AMSE

32

0.01
0.1

Hα

1.610119

Sα

1.610124

Mα1,α2

1.610070

0.2 1.832931 1.798107 1.814126

0.3 1.937834 1.990426 1.931449

0.5 1.856546 2.012618 1.929785

0.02
0.1 3.057686 2.992644 3.122664

0.2 3.535243 3.751970 3.535094

0.3 3.691593 3.843839 3.759440

0.5 3.354209 3.187035 3.392629

0.03
0.1 5.219001 5.218854 5.219250

0.2 5.221337 5.220493 5.220336

0.3 5.005338 5.086855 5.129062

0.5 4.214870 4.146241 4.250563

0.05
0.1 5.620662 5.619543 5.619304

0.2 5.594430 5.628892 5.629080

0.3 5.208057 5.111638 5.046385

0.5 5.530406 5.326494 5.369827

64

0.01
0.1

Hα

0.0008044755

Sα

0.01272352

Mα1,α2

0.01255887

0.2 0.0085782356 0.08438633 0.08427372

0.3 0.0425867517 0.27448985 0.27505246

0.5 0.3515195470 1.14283750 1.13602783

0.02
0.1 0.006094985 0.04490323 0.04299602

0.2 0.048819972 0.32882920 0.33698606

0.3 0.351650287 1.05202431 1.15375488

0.5 2.188631875 3.28372721 3.27003979

0.03
0.1 0.02223674 0.1192502 0.1257178

0.2 0.32299826 0.9184411 0.8891355

0.3 1.23417318 2.4897441 2.5414767

0.5 4.46438068 4.7384630 4.8008343

0.05
0.1 0.07956636 0.4441768 0.440935

0.2 1.63625337 2.7591055 2.721683

0.3 4.36172995 4.7381470 4.623866

0.5 10.54483710 7.6615978 7.765297

128

0.01
0.1

Hα

0.001605696

Sα

0.01248386

Mα1,α2

0.003433704

0.2 0.029166190 0.12644387 0.031575849

0.3 0.121893613 0.41438411 0.160883521

0.5 0.916280747 1.63841578 1.917945590

0.02
0.1 0.02898089 0.1119685 0.08056947

0.2 0.35323938 0.7780431 0.40749165

0.3 1.44976184 1.8476726 1.39150223

0.5 3.83819638 3.8464096 5.30061382

0.03
0.1 0.1143283 0.3739481 0.3921199

0.2 1.4130167 1.8608519 1.6074033

0.3 3.1698182 3.1317615 3.2525353

0.5 10.1434473 6.2523934 7.1991858

0.05
0.1 0.6001335 1.264580 2.486832

0.2 3.6497703 3.510369 4.445732

0.3 10.0125309 6.097469 8.851026

0.5 22.9699236 10.004043 15.205268

5 Simulation

Simulation study is applied using a wave which is
intrduced by [11]. Hence the the code starts from level
j0 = 3, as suggested by [12]. The wave can be chosen for
different equally spaced points n = {32,64,128}, it
corrupted by different levels of matrix transformation by
taking in the true wave γ = {0.01,0.02,0.03,0.05} in (3)
and the wave corrupted by level of noise, independent
Gaussian noise with zero mean and standard deviation
σ = {0.1,0.2,0.3,0.5} in models (1) and (2). For the
second model the form of the estimation is used and it
takes the form

β̂ = (ZT Z)−1ZT Tα(y), (23)

where Z is the transformation matrix in (3) and T is one
for the thresholding rule which is Hard, Soft, or the new
proposed rule. Hence, the estimation in (23) can be
explained as the first regression process, and then
thresholding method. Table 1 shows the results of
different rules, the Hard thresholding in 10 provides a
good estimate for the Doppler signal. Hence, as the
number of points increase the MSE becomes small,
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Fig. 5: Plots of BabyECG data (solid line) and sleep state (dashed

line), the number of observations is 2048, equally spaced points.

because the observation have information about the
underlying wave.

6 Application to medical data

The Hard, Soft and the suggested method are applied to a
real data, which is inductance plethysmography data to
estimate an underlying wave. The data collected by the
Department of Anaesthesia at the Bristol Royal Infirmary.
The number of observations is 2048, equally spaced
points, with variance equals 190.8263, Median equals
125.0 and Mean equals 127.6. anthers can access the data
within WaveThresh using the code data(BabyECG).
Moreover, the structure of the sleep state can be
downloaded using data(BabySS). Figure 5 shows the
plots of BabyECG and sleep stateduring the time (21 PM-
7 AM). Hence, the aim of the investigation of the
BabyECG was to specify the sleep state successfully from
the observations by removing the noise and blur. These
data were studied and investigated by other authors, for
example, [21], [22] and [23]. Now, the proposed method,
Hard and soft applied to the real data. Figure 6 shows the
plots of different thresholding rules; Hard rules gives the
estimation of the data, however, the noise still appeared in
Figure 6(a). Soft thresholding provides better estimation
than Hard, however, the noise still appeared in Figure
6(b). The proposed method gives a good result comparing
with Hard and soft rules.

7 Conclusion

In this article, Doppler wave was studying using wavelet
basis and a new thresholding method is considered to
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Fig. 6: Plots of the result of different thresholding rules; Hard

(a), Soft (b), and the proposed method (c) for BabyECG data.

remove the noise and the blur by using the normal
transformation matrix. The proposed method was
compared to state-of-the-art methods. Moreover, Hard
and Soft thresholding rules were applied to the Doppler
wave, providing a good results. However, the proposed
method gives a good result as applying to the real data.
Finally, the normal transformation matrix was applied to
the real data for removing the blur, however, the results
are not acceptable.
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