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Abstract: Interest rate derivatives are important financial instruments whose values are influenced by movements in interest rates. A

good risk manager has to price and compute sensitivities in order to evade unnecessary risks for the interest rate derivatives. In this

paper, we derive expressions for the important greeks, namely, vega and Theta needed to determine how sensitive a derivative price is

to changes in the volatility of its underlying interest rate and how the price changes as time to maturity draws near. This is achieved

using integration by parts techniques of Malliavin calculus. The derived expressions will assist a risk manager in order to curtail risks.
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1 Introduction

A variance gamma (VG) process established by Madan & Seneta [1], being a class of Lévy processes, has contributed to
better pricing and hedging of financial instruments such as interest rate derivatives (Bayazit & Nolder [2], Bavouzet et al
[3], Udoye & Ekhaguere [4] and Bavouzet & Messaoud [5]). To minimize risks, an experienced risk manager has to study
and understand possible effects of changes in parameters representing certain factors, such as unexpected happenings and
abrupt information, that bring about spikes and jumps in the market.

Udoye & Ekhaguere [4] initiated a broadened Vasicek model motivated by a VG process, applied the modified Vasicek
short rate model in deriving expression representing the price of a certain interest rate derivative (IRD) named a zero-

coupon bond (ZCB). In this paper, we extend the work of Udoye & Ekhaguere [4] by deriving expressions for the special
greeks that help to understand the effects of changes in the volatility of the interest rates and possible reactions as time to
maturity draws near. Conor [6] emphasized that Theta calculates the extent at which an option will decay theoretically in
price.

Bayazit & Nolder [2] considered sensitivity study for a stock market motivated by a Lévy process of exponential
attribute using the Malliavin calculus. We employ the Malliavin calculus in the derivation of important greeks namely,
vega and Theta. The Ornstein-Uhlenbeck operator and differentiation tools of the Malliavin calculus in Bayazit & Nolder
[2], Bavouzet et al [3], Bavouzet & Messaoud [5] and Udoye & Ekhaguere [4] are to be employed in obtaining expressions
for the desired greeks that deal with the sensitivities of a bond price with respect to alterations in selected parameters. The
greeks assist risk managers in hedging so as to minimize risks.

The rest of this paper is arranged in the following order: Section 2 considers important facts needed for the success of
the work. Section 3 deals with our results. Then, conclusion follows.

2 Foundational Notion

This section considers important definitions. Some results of Udoye & Ekhaguere [4] required for the realization of this
paper are specified.

Definition 1. The Vasicek model [7] is an interest rate model with dynamics given by

drt = α(♭− rt)dt +σdXt ,
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where α, ♭ and σ 6= 0 represent mean-reversion speed, long-term mean rate and volatility for the interest rate, respectively.

Xt stands for a given Lévy process.

Definition 2. An arithmetic Brownian motion is indicated by

Xt = θ t + σ̆Wt ,

where θ stands for drift and σ̆ 6= 0 stands for its volatility, while Wt denotes a Wiener process. Time-changing the

arithmetic Brownian motion by a gamma process gives a VG process.

Theorem 1. [4] Let the price of a ZCB at time t having maturity time T of an extended Vasicek model under a VG process

be P = P(t,T ). Then, the price satisfies

P(t,T ) = exp

(
−

([
−

r0

α

(
e−αT − e−αt

)
+ ♭

(
T − t +

1

α
(e−αT − e−αt)

)
+

σ w̃

α

[
T − t +

1

α
(e−αT

− e−αt)

]
+σ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s)e−α(υ−s)+ σ̆∆(G(s))1/2e−α(υ−s)Z

)]
+σ

(
w̃[T − t]

+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))

)
−

σ2

2

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2

)))
,

(1)

where

w̃ =
1

ν
ln(1−θν − 0.5σ̆2ν);

r0 represents the initial interest rate, ν stands for variance of a gamma process utilized as the subordinator; △G(t)
represents G(t+)−G(t−); while Z symbolizes Gaussian random variables, G symbolizes gamma random variable.

Definition 3. A call option price having P as its underlying satisfies

V := e−r0T
E[max(P−K,0)] = e−r0T

E[Φ̄(P)],

where Φ̄(P) is the payoff function, K is the strike price, while V reacts to alterations in several parameters.

Theorem 2. (Integration by part theorem of Malliavin calculus [2]) Let Qη =
∂P

∂η
where η stands for selected parameters

of the ZCB price. Assume that D stands for Malliavin derivative operator, it follows that M(P) = 〈DP,DP〉 denotes the

Malliavin covariance matrix, having inverse
1

M(P)
= M(P)−1 such that DP 6= 0. Also, let L stands for the Ornstein-

Uhlenbeck operator. Given a smooth function denoted by Φ̄ : R→ R, the equation below holds:

E[∂Φ̄(P)Q] := E[Φ̄(P)H(P,Q)].

Moreover, H(P,Q) stands for the Malliavin weight given by

H(P,Q) = QM(P)−1LP−〈DP,DM(P)−1〉Q−〈DP,DQ〉M(P)−1

such that E[H(P,Q)]< ∞.

The following theorems from Udoye & Ekhaguere [4] will be useful in the computation of the desired greeks.

Theorem 3. Let P = P(t,T ) be given by equation (1). Then, the Malliavian derivative on P becomes

DP =−

[
σσ̆

(
∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+ ∑
υ∈[t,T ]

(△(G(υ))1/2)

)
−σ2σ̆

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ))△ (G(υ))1/2

)]
P.

(2)
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Theorem 4. Let P = P(t,T ) be given by equation (1). Then, the Ornstein-Uhlenbeck operator L acts on P to give

LP =−

[
σ2σ̆2 ∑

υ∈[t,T ]

(△(G(υ))1/2)2 +

(
σσ̆ · ∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)

−σ2σ̆
(

∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))△ (G(υ))1/2

)2

+Z

(
σσ̆

(
∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+ ∑
υ∈[t,T ]

△(G(υ))1/2
)

−σ2σ̆

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z+θ △G(υ))△ (G(υ))1/2

))]
P.

(3)

Theorem 5. Let P = P(t,T ) be given by equation (1). Then, the Malliavin covariance matrix of P satisfies

M(P) =σ2σ̆2 ·

[
∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+ ∑
υ∈[t,T ]

(△(G(υ))1/2)

−σ ∑
υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)△ (G(υ))1/2

]2

P2.

Moreover,

M(P)−1 =(σσ̆)−2 ·

([
∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+ ∑
υ∈[t,T ]

(△(G(υ))1/2)

−σ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z+θ △G(υ))△ (G(υ))1/2

]
P

)−2

.

(4)

Theorem 6. Let P = P(t,T ) be given by equation (1). Assume that M(P)−1 is the inverse Malliavin covariance matrix of

P(t,T ). Then,

DM(P)−1 =

[(
σσ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)−σ2σ̆ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ))△ (G(υ))1/2

)−3]
2P−2 ×

[
σ2σ̆2 ∑

υ∈[t,T ]

(△(G(υ))1/2)2 +

[
σσ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)

+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)−σ2σ̆ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))△ (G(υ))1/2

]2]
.

(5)

3 Results

The expressions for the greeks are obtained in what follows.

3.1 Computation of Vega for the VG-driven interest rate derivatives

In this subsection, the greek vega for VG-driven IRD is obtained.

V =
∂

∂σ
e−r0T

E[Φ̄(P)] = e−r0T
E

[
Φ̄ ′(P)

∂P

∂σ

]
= e−r0T

E

[
Φ̄(P)H

(
P,

∂P

∂σ

)]
.

We state Lemmas 1-4 needed for Theorem 7.
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Lemma 1. Let P = P(t,T ) be given by equation (1) and Qσ =
∂P

∂σ
. Suppose that DQσ is the Malliavin derivative of Qσ .

Then,

Qσ =−

[
w̃

α

[
T − t +

1

α
(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ ·△G(s)e−α(υ−s)+ σ̆ △ (G(s))1/2e−α(υ−s)Z

)

+ w̃[T − t]+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))−σ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2

]
P.

(6)

Also,

DQσ =−

[
σ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

(△(G(s))1/2e−α(υ−s))+ σ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)

− 2σσ̆ ∑
υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)△ (G(υ))1/2

]
P

+

[
w̃

α

[
T − t +

1

α
(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s)e−α(υ−s)+ σ̆ △ (G(s))1/2e−α(υ−s)Z

)

+ w̃[T − t]+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))−σ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2

]
K P

(7)

where

K =σσ̆ ∑
υ∈[t,T ]

∑
s∈[0,t]

△(G(s))1/2e−α(υ−s)+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)−σ2σ̆ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ))△ (G(υ))1/2.

(8)

Proof. Since Qσ =
∂P

∂σ
, it follows from equation (1) that

Qσ =−

[
w̃

α

[
T − t +

1

α
(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s)) · e−α(υ−s)+ σ̆ △ (G(s))1/2e−α(υ−s)Z

)
+ w̃[T − t]

+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))−
2σ

2

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2

)]
P

which gives equation (6).
Furthermore, the Malliavin derivative

DQσ = P×

(
−

[
∑

υ∈[t,T ]
∑

s∈[0,t]

(σ̆ △ (G(s))1/2e−α(υ−s))+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2)− 2σ

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ))σ̆ △ (G(υ))1/2

)])
+

(
−

[
w̃

α

[
T − t +

1

α
(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s)e−α(υ−s)

+ σ̆ △ (G(s))1/2e−α(υ−s)Z
)
+ w̃[T − t]

+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z+θ △G(υ))−σ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2

])
DP
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=−

[
σ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

(△(G(s))1/2e−α(υ−s))+ σ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)− 2σσ̆ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ))△ (G(υ))1/2

]
P+−

[
w̃

α

[
T − t +

1

α
(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s)e−α(υ−s)

+ σ̆ △ (G(s))1/2e−α(υ−s)Z
)]

+ w̃[T − t]+ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))

−σ ∑
υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)2

]
(−K P)

where K follows from equation (8).

Lemma 2. Let P = P(t,T ) be given by equation (1). Then,

QσM(P)−1LP = Λ

[
K

−2σ2σ̆2 ∑
υ∈[t,T ]

(△(G(υ))1/2)2 + 1+
Z

K

]
(9)

where K is specified in equation (8) and

Λ =
w̃

α

[
T − t +α−1(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △G(s) · e−α(υ−s)+σ̆△(G(s))1/2e−α(υ−s)Z

)
+ w̃[T − t]

+ ∑
υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)−σ ∑
υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ △G(υ))2.
(10)

Proof. Let Λ be as given above; from equations (6), (4) and (3), it follows that

QσM(P)−1LP =−ΛP ·K −2P−2

(
−

[
σ2 ∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2)2 +K
2 +ZK

])
P

= ΛK
−2σ2σ̆2

(
∑

υ∈[t,T ]

(△(G(υ))1/2)2
)
+Λ +

ΛZ

K
.

Lemma 3. Let P = P(t,T ) be given by equation (1). It implies that

M(P)−1〈DP,DQσ 〉=−Λ +

[
σ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

(△(G(s))1/2e−α(υ−s)+ σ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)− 2σσ̆

·

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z +θ△G(υ))△ (G(υ))1/2

)]
K

−1

(11)

where K follows from equation (8) and Λ is specified in equation (10).

Proof.

Expression in equation (11) is obtained by replacing and simplifying equation (4) in place of M(P)−1, (2) in place of
DP, while equation (7) is in place of DQσ .

Lemma 4. Let P = P(t,T ) be given by equation (1). This implies that

Qσ 〈DP,DM(P)−1〉= 2Λ

[
K

−2σ2σ̆2 ∑
υ∈[t,T ]

(△(G(υ))1/2)2 + 1

]
(12)

where K follows from equation (8) and Λ is specified in equation (10).

Proof. Let K and Λ be as specified in equations (8) and (10), respectively. Then, the result of equation (12) is derived
by replacement of equation (6) for Qσ , equation (2) in place of DP, while equation (5) in place of DM(P)−1, and further
simplification.
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Theorem 7. Let P = P(t,T ) be given by equation (1). Then, the greek vega satisfies

V =e−r0T

(∫

R

∫

R

Φ̄(℘(t,T,g,z)) ·H

(
℘,

∂℘

∂σ

)
(2π)−

1
2 · e−

1
2 z2

(
ν− t

ν

Γ
(

t
ν

)g
t
ν −1e−

1
ν g

)
dzdg

)
,

where

H

(
℘,

∂℘

∂σ

)
=

Λ̄z

ˆK
−

[
σ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

(△(g(s))1/2 · e−α(υ−s)+ σ̆ ∑
υ∈[t,T ]

(△(g(υ))1/2)− 2σσ̆

(
∑

υ∈[t,T ]

(σ̆ △ (g(υ))1/2z+θ △g(υ))△ (g(υ))1/2

)]
ˆK
−1 −

Λ̄
ˆK 2

[
σ2σ̆2 ∑

υ∈[t,T ]

(△(g(υ))1/2)2

]
,

ˆK =σσ̆

[
∑

υ∈[t,T ]
∑

s∈[0,t]

△(g(s))1/2e−α(υ−s)+ ∑
υ∈[t,T ]

(△(g(υ))1/2)−σ ∑
υ∈[t,T ]

(σ̆ △ (g(υ))1/2z

+θ △g(υ))△ (g(υ))1/2

]
.

(13)

and

Λ̄ =
w̃

α

[
T − t +α−1(e−αT − e−αt)

]
+ ∑

υ∈[t,T ]
∑

s∈[0,t]

(
θ △g(s)e−α(υ−s)+ σ̆ △ (g(s))1/2e−α(υ−s)z

)

+ w̃[T − t]+ ∑
υ∈[t,T ]

(θ △g(υ)+ σ̆ △ (g(υ))1/2z)−σ ∑
υ∈[t,T ]

(σ̆ △ (g(υ))1/2z+θ △g(υ))2.
(14)

Proof.

V =
∂V

∂σ
= e−r0T

E

[
Φ̄(P)H(P,Qσ )

]
.

Also, from Theorem 2,

H(P,Qσ ) = QσM(P)−1LP−〈DP,DQσ 〉M(P)−1 −〈DP,DM(P)−1〉Qσ .

Substituting equations (9), (11) and (12) into the above equation yields the desired weight function given by

H(P,Qσ ) =
ΛZ

K
−

[
σ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

(△(G(s))1/2e−α(υ−s))+ σ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)− 2σσ̆

(
∑

υ∈[t,T ]

(σ̆ △ (G(υ))1/2Z

+θ △G(υ)△ (G(υ))1/2

)]
K

−1 −
Λ

K 2

[
σ2σ̆2 ∑

υ∈[t,T ]

(△(G(υ))1/2)2

]
.

Moreover,

V =e−r0T ·E

[
Φ̄(P) ·H

(
P,

∂P

∂σ

)]

= e−r0T ·

(∫

R

∫

R

Φ̄(℘(t,T,g,z) ·H

(
℘,

∂℘

∂σ

)
fN (z;0,1) · fG(g;

t

ν
,

1

ν
)dzdg

)

= e−r0T

(∫

R

∫

R

Φ̄(℘(t,T,g,z)H

(
℘,

∂℘

∂σ

)
(2π)−

1
2 · e−

1
2 z2

(
ν− t

ν

Γ
(

t
ν

)g
t
ν −1e−

1
ν g

)
dzdg

)

where fN (z;0,1) stands for the probability density function of a Gaussian random variable, while fG(g; t
ν ,

1
ν ) stands for

the probability density function of a gamma random variable. Consequently, the result follows.
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3.2 Computation of Theta for the VG-driven interest rate derivatives

We compute the greek Theta Θ as follows:

Θ =
∂

∂T
e−r0T

E[Φ̄(P)] =−r0e−r0T
E[Φ̄(P)]+ e−r0T

E

[
Φ̄(P)H

(
P,

∂P

∂T

)]

= −r0e−r0T
E[Φ̄(P)]+ e−r0T

E
[
Φ̄(P)H(P,QT )

]
.

Lemma 5. Let P be a VG-driven ZCB price. Then,

QT =−
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
P (15)

and

DQT =
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
K P, (16)

where K is as specified in equation (8).

Proof. Applying partial derivative to equation (1) with respect to maturity time T and simplifying gives equation (15).
Furthermore, the Malliavin derivative

DQT =−
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
DP.

Substituting DP from equation (2) into the above equation gives

DQT =−
(
r0e−αT + ♭(1− e−αT )+

σ w̃

α
(1− e−αT )+ w̃σ

)
×−

[
σσ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)

+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)−σ2

(
∑

υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)σ̆ △ (G(υ))1/2

)]
P

=
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
·

[
σσ̆ ∑

υ∈[t,T ]
∑

s∈[0,t]

△(G(s))1/2e−α(υ−s)

+σσ̆ ∑
υ∈[t,T ]

(△(G(υ))1/2)−σ2σ̆

(
∑

υ∈[t,T ]

(θ △G(υ)+ σ̆ △ (G(υ))1/2Z)△ (G(υ))1/2

)]
P

where K is specified in equation (8).

Lemma 6. Let P be a VG-driven ZCB price. Then,

QTM(P)−1LP =
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
·

[
σ2σ̆2

(
∑υ∈[t,T ](△(G(υ))1/2)2

)

K 2
+ 1+

Z

K

]
. (17)

Proof. By equations (15), (4) and (3), the expression in equation (17) follows by the replacement of equation (15) for QT ,
equation (4) in place of M(P)−1 while equation (3) is in place of LP, and further simplification.

Lemma 7. Let P be a ZCB price under a VG process. It follows that

M(P)−1〈DP,DQT 〉=−
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
. (18)

Proof. The result in equation (18) is derived by replacing equations (4), (2) including (16) for M(P)−1, DP and DQT ,
respectively, with appropriate simplification.

Lemma 8. Let P be a VG-driven ZCB price. Then,

QT 〈DP,DM(P)−1〉=2
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
·

[
σ2σ̆2

(
∑υ∈[t,T ](△(G(υ))1/2)2

)

K 2
+ 1

]
. (19)
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Proof. The result follows by substituting and simplifying equations (15), (2) and (5) into QT , DP with DM(P)−1,
respectively.

Theorem 8. Let P denote a VG-driven ZCB price. Then,

Θ =−r0e−r0T
E[Φ̄(P)]+ e−r0T ·E

[
Φ̄(P)H(P,QT )

]
= e−r0T

(∫

R

∫

R

Φ̄(℘(t,T,g,z)) ·H

(
℘,

∂℘

∂T

)
(2π)−

1
2

· e−
1
2 z2

(
ν− t

ν

Γ
(

t
ν

)g
t
ν −1e−

1
ν g

)
dzdg

)
,

where

H

(
℘,

∂℘

∂T

)
=
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
×

[
z

ˆK
−

σ2σ̆2
(

∑υ∈[t,T ](△(g(υ))1/2)2
)

ˆK 2

]

and ˆK is specified in equation (13).

Proof. Θ =
∂V

∂T
=−r0e−r0T

E[Φ̄(P)]+ e−r0T
E
[
Φ̄(P)H(P,QT )

]
. From Theorem 2,

H(P,QT ) = QTM(P)−1LP−〈DP,DQT 〉M(P)−1 −QT 〈DP,DM(P)−1〉.

Substituting equations (17), (18) and (19), and simplifying gives

H(P,QT ) =ZK
−1
(
r0e−αT − ♭(e−αT − 1)+

σ w̃

α
(1− e−αT )+ w̃σ

)
−

σ2σ̆2
(

∑υ∈[t,T ](△(G(υ))1/2)2
)

K 2

‘.0·
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)

=
(
r0e−αT + ♭(1− e−αT)+

σ w̃

α
(1− e−αT )+ w̃σ

)
×

[
Z

K
−

σ2σ̆2
(

∑υ∈[t,T ](△(G(υ))1/2)2
)

K 2

]
.

Hence, the result follows.

4 Application

The greeks give information on how sensitive the worth of the zero-coupon bond option price is to alterations in its
independent variables and parameters. Vega provides a measure of the extent that 1% change in the independent variable
volatility affects the dependent variable option price on the interest rate derivative. A portfolio manager has to understand
the greeks to minimize risk. The risk associated with the volatility of interest rate is minimized by understanding vega. A
vega V = 4 implies that for a 1% increase in volatility, the value of the option on the interest rate derivative will increase
by 0.04. Theta measures the rate at which the option price on the interest rate derivative changes as time to maturity draws
near, thus, assists in minimizing of risks.

Data of Bank of Ghana Interbank monthly average rate from January 2002 to March 2021 was used to estimate the
parameters of the interest rate derivatives using Least-square regression method and VarianceGamma package version
0.4-0 from R software version 3.2.2. The parameter values of the interest rate derivatives are obtained as follows:
α = 0.027018, ♭= 0.153394,σ = 0.028108, r0 = 0.262, σ̆ = 0.03318, θ = 0.11673, κ = 0.11840, and n = 225.
Thus, the price of a zero-coupon price using Bank of Ghana data gives

P(t,T ) =exp

(
−

([
−

0.262

0.02702

(
e−0.02702T − e−0.02702t

)
+ 0.153394

(
T − t +

1

0.02702
(e−0.02702T − e−0.02702t)

)

+
0.028108w̃

0.02702

[
T − t +

1

0.02702
(e−0.02702T − e−0.02702t)

]
+ 0.028108 ∑

υ∈[t,T]
∑

s∈[0,t]

(
0.11673△G(s)e−0.02702(υ−s)

+ 0.03318∆(G(s))1/2e−0.02702(υ−s)Z
)]

+ 0.028108

(
w̃[T − t]+ ∑

υ∈[t,T ]

(0.03318△ (G(υ))1/2Z

+ 0.11673△G(υ))

)
−

0.0281082

2

(
∑

υ∈[t,T ]

(0.03318△(G(υ))1/2Z + 0.11673△G(υ))2

)))
,
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where

w̃ =
1

ν
ln(1− 0.11673ν− 0.50.033182ν); ν = 0.11840.

5 Conclusion

We have derived expressions for the two important greeks, namely, vega and Theta. The greek vega gives the rate at
which the option price changes as a result of change in volatility, and hence, assists in taking the right position to avoid
unnecessary risks. The greek Theta gives the rate at which bond option price changes as time to maturity draws near, and
thus, assists a risk manager in minimizing risks. Furthermore, data from monthly average internank rate of Bank of Ghana
was used to estimate parameters of the interest rate derivative and thus, the zero-coupon bond price driven by a variance
gamma process was obtained.
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