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Abstract: Many statistical functions require that a distribution be normal or nearly normal. In time series models, data is 
assumed to follow a normal distribution. Two numerical measures of shape skewness and kurtosis can be used to test for 
normality. Autoregressive models are one of the models used to estimate time series data. The missing data in time series 
models affect in terms of their following a normal distribution. In this paper, derive the moments, skewness and kurtosis of 
AR (1) Model with Missing data without constant term and used the parameter of the model by using ordinary least squares 
(OLS), Yule Walker (YW) and weighted least squares (WLS). Moreover, Monte Carlo simulation at various sample sizes 
and different proportions of missing data for comparative study skewness and kurtosis between ordinary least squares 
(OLS), Yule-Walker (YW) and weighted least squares (WLS). In addition, time series real data with missing data was 
measures of kurtosis could be used to compare between these methods. 

Keywords: The moment, Time series, AR (1) Model, Missing data, Skewness and Kurtosis. 

 

1 Introduction 

Jones (1962) measured the case of periodic sampling where the observed data consist of repeated in two groups, the first 
group consecutive observations followed by second group missed observations. Following Parzen (1963) introduced time 
series model with missing observations as a specific case of stationary process. He observed that the data 

can be represented as, 

 			𝑥# = 𝜂 + ∑ 𝜌)𝑥#*)+
),- + 𝜀#																																		𝜀# ∼ 𝑖𝑖𝑑(0, 𝜎6)            (1) 

𝑦# = 𝑎#𝑥#																																																												𝑘 = 1,2,⋯⋯ , 𝑛 (2) 

Under the following assumptions: 

 (I) 

 (II) 

 (III) 

Where,{𝑎#, 𝑘 = 1,2,⋯⋯ , 𝑛} represent the state of observation such that, 

 

 

{ }1 2, , , py y y!!

( ) 0keE =

( ) ( )k k ky a xE = E

( ) 0k i kx e-E =



 1046                                                                                                                      M. Abdelwahab: Measures of Sample Skewness … 

 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

 

                         

 

Typical examples of are a stochastic markov process and periodic deterministic case. If is a stationary process, 
it means the start from the infinite past.  

Scheinok (1965) and Bloomfield (1970) investigated the case where 𝑥# is observed when a ‘‘success’’ is achieved on a 
Bernoulli trial. These references concentrate on non-parametric spectral analysis of time series with missing values. 
Dunsmuir and Robinson (1981) suggested the estimator of AR (1) model with missing observations without constant by 
using Yule-Walker method. In a time series regression with missing observations, Shively (1993) created several tests for 
autoregressive disturbances, where the disturbance terms are produced by the AR(1) and AR(p) processes with a potential 
seasonal component. Takeuchi (1995) obtained another estimator for AR (1) model with missing observations without 
constant by using OLS method. Park and Fuller (1995) introduced a weighted symmetric estimator for AR (1) model. Vrbik 
(2005) described a simple technique for computing the first few moments of a large class of sample statistics related to the 
first-order autoregressive model with normally distributed error terms. Youssef (2006) presented a performance of 
alternative predictors for the unit root process. Abdelwahab, et al. (2012) proposed a general form of moments for AR (1) 
and AR (2) model with and without constant term. Abdelwahab (2016) presented estimator of AR (1) and AR (2) model 
with missing observations with and without constant term and studied the properties of this estimator. Saadatmand, et al. 
(2017) examined two approaches to estimating the missing value with respect to Pitman's measure of proximity and 
considered estimate of a missing value for AR (1) with exponential innovations. Abdelwahab and Issa (2019) obtained the 
Forms of the moments of AR(P) model with missing observations and they suggested general form of mean and variance 
for this model. Issa and Abdelwahab (2020) derived OLS estimator for AR (1) panel data model with missing data. Issa 
(2021) suggested a new form of the estimator of AR (1) model with constant term with missing observations by using 
Ordinary Least Squares (OLS) method. In (2022) used another method to Estimate the parameter for AR(1) Model With 
Incomplete Data by using weighted Least Squares (OLS) method and he studied the properties of OLS and WLS estimators 
are discussed. Enany, et al. (2023) introduced a closed form estimator for ρ in case of missing observations using maximum 
likelihood (ML) of AR(1) model without constant term with missing observations when 𝑦B is random. 

The aims of research is to derive the moment, skewness and kurtosis of AR (1) Model with missing data without constant 
term. In addition, To compare skewness and kurtosis with other estimate techniques at various sample sizes and missing 
data percentages, a Monte Carlo simulation analysis was done. The remainder of the essay is structured as follows: Provide 
the estimation techniques for the AR (1) model with missing data in section (2). In Section (3), the moment of AR (1) 
model with missing data without constant term and derivation the skewness and kurtosis of AR (1) with missing data 
without constant term. In section (4), simulation studies are carried out to compare between the skewness and kurtosis with 
other estimation methods OLS estimator, YW estimator, and weighted least squares (WLS). In section (5) applied studies 
by using real data. In section (6), conclusion of the theory and simulation study has been presented. 

2  Materials and Methods 

In this section. we will describe the three different estimation methods for the AR (1) Model with Missing Data used in this 
paper. 

Yule-Walker Estimator of AR (1) Model 

Dunsmuir and Robinson (1981) suggested estimator of AR (1) model with missing observations without constant term be 
using Yule-Walker method when |ρ|<1 is given by 

𝜌CDE =
∑ 𝑦#𝑦#*-+
#,6 ∑ 𝑎#𝑎#*-+

#,6⁄
∑ 𝑦#*-6+*-
#,- ∑ 𝑎#+*-

#,-⁄          (3) 

Least Square Estimator of AR (1) Model 

 
Takeuchi (1995) derived the estimator of AR (1) model with missing observations with constant term be using Least 
Square method when |ρ| < 1 is given by 
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𝜌CIJK =
∑ 𝑎#𝑦#𝑦#*-+
#,6

∑ 𝑎#𝑦#*-6+
#,6

 
          (4) 

Weighted Least Square Estimator of AR (1) model 
 
Issa (2022) derived the estimator of AR (1) model with missing data by using weighted 
Least Square method when |ρ| < 1	𝑎𝑛𝑑	|𝛾| < 1 is given by: 
 

 

																									𝜌MENO =
∑ 𝑤#𝑎#𝑦#𝑦#*-+
#,6

∑ 𝑤#𝑎#𝑦#*-6+
#,6

																																																																													(5) 

Where  
 

																									𝑤# = |𝑦#*-|*6R																																																																																																	(6) 

                                        												𝑤# = |𝑦#*-|R*-                                                                                       (7) 
 
Where, γ is the coefficient of heteroscedasticity according to Brewer (2002) which is used in regression models. We will be 
revised γ in case of AR(1) model with missing observations to minimize the residual sum of squares. 
By substituting equation (6) in equation (5), to get; 
 

𝜌CENO.U =
∑ 𝑎#|𝑦#*-|*6R𝑦#𝑦#*-+
#,6

∑ 𝑎#|𝑦#*-|*6R𝑦#*-6+
#,6

 
              (8) 

When	γ = 0, then 𝜌CENO.U = 𝜌CWNO 
Moreover, Substitute the equation (7) in equation (5), then; 

 

𝜌CENO.UU =
∑ 𝑎#|𝑦#*-|R*-𝑦#𝑦#*-+
#,6

∑ 𝑎#|𝑦#*-|R*-𝑦#*-6+
#,6

 
              (9) 

 
When	γ = 1, then 𝜌CENO.UU = 𝜌CWNO 
 
3 Results and Discussion 
 

 

The moment of the autoregressive models with missing data. Will be introduced in the following section  
- The First Moment About Zero of AR (1) Model  

The AR (1) with the missing data by using equation (1) takes the form: 
          𝑦# = 𝜌𝑎#𝑥#*- + 𝑎#𝜀#,							𝑘 = 1,2,⋯⋯ , 𝑛    (10) 

By taking the expectation of equation (10), we will get 
                                   𝐸(𝑦#) = 𝜌𝐸(𝑎#𝑥#*-) + 𝐸(𝑎#𝜀#)   

 
By using assumption (I) in model, we will get 

                                   𝐸(𝑦#) − 𝜌𝐸(𝑦#) = 0   
                                   (1 − 𝜌)𝐸(𝑦#) = 0   

 
                       𝛦(𝑦#) = 0 = µ-.\](-)																					                                                                                        (11) 
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- The Second Moment About Zero of AR (1) Model  
       We will square the equation (10) and taking the expectation, we will get 

𝑦#6 = [𝜌𝑎#𝑥#*- + 𝑎#𝜀#]6	
 
                       𝑦#6 = (𝜌𝑎#𝑥#*-)6 + 2𝑎#𝜀#𝜌𝑥#*- + 𝑎#6𝜀#6                   

𝛦(𝑦#6) =
𝑎#𝜎6 − 𝑎#𝜎6𝜌
(1 − 𝜌6)(1 − 𝜌) 

 

 
 

 

     𝛦(𝑦#6) = µ6.\](-) =
`abc

-*dc
	 (12) 

- The Third Moment about Zero of AR (1) Model. 

Now, the third moment of 𝑦# will be derived  

𝛦[𝑦#e] = 𝛦[𝜌𝑎#𝑥#*- + 𝑎#𝜀#]e 

 

𝛦[𝑦#e] = 𝜌e𝛦[𝑎#e𝑥#*-e ] + 3𝑎#𝜌6𝛦[𝑎#6𝑥#*-6 ]𝛦[𝜀#] 	+ 3𝑎#𝜌𝛦[𝑎#𝑥#*-]𝛦[𝜀#6] + 𝑎#e𝛦[𝜀#e] 

 

 

    (13) 

From the assumptions (I) and (II) of the model, the expected value of the model can be calculated 

 

𝛦(𝑦#e) = 𝛦(𝑎#𝑥#*-e )  

𝛦(𝑦#) = 𝛦(𝑦#*-) = µ-.\](-),  

𝛦(𝑦#6) = µ6.\](-)  

We get: 

                        					µe.\](-) = 𝛦[𝑦#e] = 0                                                                                                            (14) 
 
Where  

µ-.\](-) = 0	𝑎𝑛𝑑		µ6.\](-) =
𝑎#𝜎6

1 − 𝜌6 
 

- The Fourth Moment About Zero of AR (1) Model. 
The fourth moment of 𝑦# will be derived by taking the expectation of equation (10), The fourth moments can be calculated 
as follows: 

𝛦[𝑦#g] = 𝛦[𝜌𝑎#𝑥#*- + 𝑎#𝜀#]g	
𝛦[𝑦#g] = 𝜌g𝛦[𝑎#g𝑥#*-g ] + 𝑎#g𝛦[𝜀#g] + 4𝑎#𝜌𝛦[𝑎#𝑥#*-]𝛦[𝜀#e] + 4𝜌e𝛦[𝑎#e𝑥#*-e ]𝛦[𝜀#]

+ 6𝑎#𝜌6𝛦[𝑎#6𝑥#*-6 ]𝛦[𝜀#6] 

 
 
 
            
(15) 

By using the assumption (I) and (II), Equation (15) can be rewritten as:  
 

𝛦[𝑦#g] = µg.\](-) =
`abijk`abcdclc.mn(o)

-*di
   

      (16) 
Lemma (3.1) The Skewness of AR (1) with missing data  
 
The Skewness is measures often used to describe a probability distribution by: 
 

𝛼e.\](-) =
µe.\](-)

µ6.\](-)
q
c

,  
      (17) 

By substituting equation (12) and (14) in equation (17), we get: 
𝛼e.\](-) = 0         (18) 
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Lemma (3.2) The Kurtosis of AR (1) with missing data  
 
     - The kurtosis can be defined as follows: 
 

𝛼g.\](-) =
𝛦(𝑦# − 𝜇)g

[𝛦(𝑦# − 𝜇)6]6
=
µg.\](-).st`u
µ6.\](-)6 , 

        (19) 
 
  

By substituting equation (12) and (16) in equation (19), we get: 
 
 

               (20) 

 

 

              (21) 

 

 
 

                                      𝛼g.\](-) =
v`abi(-*dc)jk`abidcw

(-*dc)(-*di) xayi

voz{cw
c

                                                     (22) 

 

																																																																			𝛼g.\](-) =
1 + 5𝜌6

1 + 𝜌6 																																																																																								(23) 

By using equations (3, 4,8 and 9) in equation (23). We can get the kurtosis of AR (1) model by using the estimator of OLS, 
YW, WLS.I and WLSII.company. 

4 Simulation study  

In this section, we analyze how the Monte Carlo simulations-based kurtosis for OLS, YW, WLS.I and WLS.II behave in 
finite samples. A Comparison between OLS, YW, WLS.I and WLS.II methods for AR (1) is presented using Bias and 
Relative Bias of Kurtosis [The setting of model and the results of the simulation study are discussed] To perform the 
simulation, the model is needed to construct as follows:        

1- AR (1) model without constant term is generated. The errors are generated ~ IIDN (0, 1), and the autoregressive 
parameter 𝜌  is chosen to be (0.1,-0.1,0.3, -0.3, 0.5, -0.5) and	𝛾	is chosen to be (0.2).based on (Issa 2022) 

2-  The values of sample size n are equal to 20, 50, 100 and 250 to represent small, medium and large samples of time 
series. 

3- To verify that the data follows a normal distribution, we randomly generate different percentages of missing values 
equals to [(5 to 10), (15 to 20) and (25 to 30)] 

4-  All replications in Monte Carlo attempts involved 10000. 

We compare the p value of Kurtosis for ordinary least squares estimator (OLS) defined in equation (4), with the Yule 
Walker estimator (YW) which is defined in equation (3) and weighted least squares estimators (WLSI and WLSII) defined 
in equations (7 and 9). By using (0.05) Level of significance to test the claim Kurtosis=3 and the Relative Bias (RB) based 
on ordinary least squares estimator (OLS) is comparison standard for as methods. The results of simulation study explained 
in different cases of percentages of missing data: case (I) (5 to 10) missing data, case (II) (15 to 20) missing data and case 
(III) (25 to 30) missing data [When 𝛾 = 0.2 (with different values of 𝛾 do not affect in statistically significant for p-value)]. 

 

𝛼g.\](-) =
v𝑎#𝜎g + 6𝑎#𝜎6𝜌6µ6.\](-)w

(1 − 𝜌g)vµ6.\](-)w
6  

                         

										𝛼g.\](-) =
|𝑎#𝜎g + 6𝑎#𝜎6𝜌6(

`abc

-*dc
)}

(1 − 𝜌g) |`ab
c

-*dc
}
6  
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Case (I): (5 to 10) missing data  

- From table (1) for small, medium and large sample size, A p-value less than 0.05 is statistically significant. It 
indicates strong evidence against the null hypothesis. Therefore, we reject the null hypothesis, and accept the alternative 
hypothesis, except the case (n = 20	and	ρ = −0.5	) A p-value more than 0.05 is not statistically significant by using YW, 
WLS.I and WLS.II methods. Then the missing values affect the shape of the distribution in coefficient of kurtosis for all 
methods used when presenting missing from (5 to 10) percentage and compare the RB of these estimators as follows: 

In case small sample sizes, and different values of (̂ρ), the (OLS) estimator has the best RB, but when ρ=- 0.3, the (OLS) 
has the worst RB. In case medium sample sizes, and different values of (̂ρ), the (OLS) estimator has the best RB, but when 
ρ= 0.1, the (OLS) has the worst RB and when ρ=-0.1and -0.3, the (YW and WLSI) has the best RB. In case large sample 
sizes, and different values of (̂ρ), the (OLS) estimator has the worst RB, but when ρ= 0.1, the (OLS) has the worst RB and 
when	ρ = ±0.5, the (YW and WLSI) has the best RB. 

Case (II): (15 to 20) missing data 

- From table (2) for small, medium and large sample size, A p-value less than 0.05 is statistically significant. Then the 
missing values affect the shape of the distribution in coefficient of kurtosis for all methods used when presenting 
missing from (15 to 20) percentage. And compare the RB of these estimators as follows: 

In case small and medium sample sizes, and different values of (̂ρ), the (OLS) estimator has the best RB. In case large 
sample sizes, and different values of (̂ρ), the (WLSI and WLSII) estimator has the best RB where n=250 and the (YW and 
WLSI) has the best RB where n =100 but when ρ= -0.5 and n=100, the (OLS) has the best RB.  

Case (III): (25 to 30) missing data  

- From table (3) for small sample size, A p-value less than 0.05 is statistically significant, except the case (ρ =
−0.3		) A p-value more than 0.05 is not statistically significant by using WLS.II method. and compare the RB of these 
estimators as follows: 

In case small sample sizes, and different values of (̂ρ), the (OLS) estimator has the best RB where	ρ = 0.1		𝑎𝑛𝑑	0.3 but 
when ρ = ±0.5 the (OLS) estimator has the worst RB and n=100, the (YW) has the best RB whereρ = −0.1		𝑎𝑛𝑑 − 0.3.  

- From table (3) for medium sample size, A p-value less than 0.05 is statistically significant, except the case (ρ = −0.5		) 
A p-value more than 0.05 is not statistically significant by using OLS, YW, WLS.I and WLS.II methods. and compare 
the RB of these estimators as follows: 

In case medium sample sizes, and different values of (̂ρ), the (OLS) estimator has the best RB where	ρ = 0.1,0.3		𝑎𝑛𝑑 −
0.5  and n=50 but when ρ = 0.5		𝑎𝑛𝑑 − 0.3   the (YW) estimator has the best RB and when ρ = −0.1 the (WLSI) 
estimator has the best RB. Where n=100 the (YW) has the best RB where	ρ = ±0.5 , the (WLSI) has the best RB 
where	ρ = ±0.3 and the (OLS) has the worst RB where	ρ = ±0.1  . 

- From table (3) for large sample size, A p-value less than 0.05 is statistically significant, except the case (ρ =
−0.5		) A p-value more than 0.05 is not statistically significant by using YW method. And compare the RB of these 
estimators as follows: 

In case large sample sizes, and different values of (̂ρ), the (WLSII) estimator has the best RB in	ρ = ±0.1	𝑎𝑛𝑑 = ±0.3		but 
the (OLS) estimator has the best RB in	ρ = ±0.5. 

5 Applications of Real Data 

To clarify the extent of the impact of missing data in time series model as the data follow a normal distribution. Using time 
series data for the US unemployment rate recorded obtained from Bureau of Labor Statistics, US Department of Labor, 
accessed June 5, 2020, choosing Unemployment Rate icon for Historical Data by year from 1960 to 2019.  

The unemployment rate (UR) data series can plotted and shows the results of the stationarity test (ADF test) on the data by 
using EViews software 
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Fig.1: US unemployment rate from 1960 to 2019. 

In addition, augmented Dickey-Fuller unit root test on US unemployment rate, the results are shown in the table (1) 

Table (I) augmented Dickey-Fuller unit root test 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -3.583332  0.0091 

Test critical values: 1% level  -3.548208  

 5% level  -2.912631  

 10% level  -2.594027  

     
     *MacKinnon (1996) one-sided p-values.  

The initial unemployment rate (UR) sequence is stationary when the significance level of 0.01, 0.05, and 0.1 is larger than 
ADF=-3.583332. The UR sequence continues to reject the null hypothesis with a low P value. The UR sequence is 
stationary, however, and Figure 2 shows the autocorrelation and partial autocorrelation function graphs for the UR series. 

 
Fig. 2: Autocorrelation and partial autocorrelation function graphs of the UR series. 

 

The autocorrelation coefficient of the UR sequence is substantially higher than zero when the lag order is 1, as seen in 
Figure 2, hence q can be taken as 1. The partial autocorrelation coefficient is significantly different from zero when the lag 
order is 1, and it is also significantly different from zero when the lag order is 1, therefore p=1 or p=2 can be taken into 
consideration. The range of p and q values is suitably modified in light of the subjective character of the assessment, and 
several ARMA (p, q) models are developed to produce a more accurate model. The order with 0, 1, and 2 in autoregressive 
moving average pre-estimation is applied to the processed sample data. The results of the ARMA (p, q) test for various 
parameters are shown in Table 3. AIC value, SC value, and regression S.E. are crucial selection factors for models. The 
best model is often chosen and ranked using the AIC and SC criterion. The higher the coefficient of determination, the 
smaller the residual variance, AIC, and SC values. It is superior to the ARIMA (P, I, Q) model that it relates to in table (2). 

3
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Table (2) Test results of ARMA (P, Q) 

(P, Q)  Adjusted R-squared AIC SC S.E. of regression 
(0,1) -3.466552  5.384421  5.454232  3.465767  
(0,2) -3.973685  5.517633 5.587444 3.657231  
(1,0) 0.606106  2.986069  3.055880  1.029207  
(1,1)* 0.654750  2.875880  2.980597  0.963563  
(1,2)* 0.612302  2.987257  3.091974  1.021081  
(2,0) -0.032893  3.976129 4.045940  1.666637  
(2,1) 0.599885  3.018668  3.123385  1.037303  
(2,2)* -0.032422  3.992187  4.096905  1.666257  

 

It should be noted that although the AIC and SC values are typically used to define the appropriate ARMA model, they are 
insufficient for the optimum ARIMA model. The approach used in this work is to first build a model with the lowest AIC 
and SC values, after which the estimated data are subjected to parameter significance tests and residual randomness tests. If 
the test is successful, the model can be regarded as the best one; if not, the second smallest AIC and SC values are picked, 
and the appropriate statistical test is run. Until the ideal model is picked. A "*" was placed in this Table next to the model 
that failed both the residual randomness and parameter significance tests. Ultimately, it is recommended to use the ARMA 
(1, 0) model. 

The ARIMA model's estimated results are as follows: 

Estimation results of the ARMA model 

Variable Coefficient Std. Error t-Statistic Prob.   

          
AR(1) 0.984333 0.021679 45.40432 0.0000 

SIGMASQ 1.023959 0.166863 6.136532 0.0000 

          
R-squared 0.612782     Mean dependent var 5.960000 

Adjusted R-squared 0.606106     S.D. dependent var 1.639884 

S.E. of regression 1.029207     Akaike info criterion 2.986069 

Sum squared resid 61.43752     Schwarz criterion 3.055880 

Log likelihood -87.58207     Hannan-Quinn criter. 3.013376 

Durbin-Watson stat 1.379347    

          
Inverted AR Roots       .98   

          
The final model in the LWC sequence is ARMA (1, 0), and Equation (1) demonstrates its particular shape. Under the 
equation, the matching estimate value's t-test statistic is shown in parentheses. 

URt = 0.984333 URt-1 

The t statistic of the model coefficients and its P value demonstrate that the parameter estimates of each explanatory 
variable are all statistically significant at the significance level of 0.01 for the model. The outcome of fitting the model to 
the UR data is shown in Figure 3. The upper and lower dotted lines reflect the model's fitted values and residuals, while the 
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solid line represents the actual data. 

 
 

Fig. 3: Actual series, fitted series and residual series of the UR sequence. 

After appropriate the ARIMA (1, 0) model, a white noise test is performed on the residual. The autocorrelation and partial 
autocorrelation function graphs for the residual series are shown in Figure 4. The residual is clearly white noise, showing 
that the model is correct. 

 
Fig.4: Autocorrelation and partial autocorrelation function graphs of the residual series. 
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Comparing the techniques of estimate for the parameter of the AR (1) model using (OLS), (YW), (WLSI), and (WLSII) in 
the presence of missing observations using the value of kurtosis and different values of	γ. The results of table (3) showed 
that for the majority of missing observation percentages, the WLSI and WLSII technique produces kurtosis values that are 
higher. and different values of γ with respect to other methods. 

Table (3) Kurtosis for different (methods, % of missing observations and γ) 

 percentages  
Estimators 𝛄 

25 to 30 15 to 20 5 to 10 

1.147030 1.131494 1.198336 OLS 

0.1 
1.145087 1.166641 1.212363 YW 

1.153240 1.142901 1.207032 WLSI 

1.151579 1.150722 1.203134 WLSII 

1.299306 1.292417 1.291318 OLS 

0.2 
1.279982 1.290379 1.285654 YW 

1.322527 1.316161 1.342161 WLSI 

1.327920 1.324333 1.378974 WLSII 

1.112602 1.252516 1.281212 OLS 

0.3 
1.118709 1.201447 1.264566 YW 

1.117111 1.245705 1.279351 WLSI 

1.136324 1.202478 1.242882 WLSII 

1.251655 1.192098 1.217243 OLS 

0.4 
1.230913 1.185476 1.224087 YW 

1.272837 1.267309 1.318916 WLSI 

1.275301 1.254415 1.294004 WLSII 

1.202985 1.084760 1.196618 OLS 

0.5 
1.167792 1.112132 1.279259 YW 

1.207728 1.092342 1.199837 WLSI 

1.203658 1.115158 1.241871 WLSII 

1.106645 1.166945 1.168562 OLS 

0.6 
1.131156 1.182462 1.165875 YW 

1.185423 1.237511 1.147478 WLSI 

1.139742 1.196052 1.194755 WLSII 

1.294753 1.206101 1.200663 OLS 

0.7 
1.308418 1.218353 1.196806 YW 

1.161168 1.031471 1.202228 WLSI 

1.314782 1.223142 1.226253 WLSII 

1.200779 1.190031 1.156595 OLS 0.8 
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 percentages  
Estimators 𝛄 

25 to 30 15 to 20 5 to 10 

1.167914 1.072152 1.019129 YW 

1.246950 1.203272 1.154722 WLSI 

1.209746 1.205311 1.162164 WLSII 

1.275134 1.268261 1.166150 OLS 

0.9 
1.282757 1.274266 1.165650 YW 

1.399807 1.298057 1.725289 WLSI 

1.286213 1.277651 1.165729 WLSII 

 

6 Conclusions 

In this article, Kurtosis and Skewness for AR (1) model with missing data without constant term has been derived by using 
OLS, YW and WLS methods. In addition, Monte Carlo simulation has been constructed using different methods of 
estimation (OLS, YW, WLSI and WLSII) Based on p-value and RB criteria. The results of simulation are divided to the 
presenting missing and γ=2: for different percentage a p-value less than 0.05 is statistically significant and the (WLSII) 
estimator has the best RB in large sample size. In small and medium sample sizes, the (OLS) estimator has the best RB 
followed by (YW) and (WLSI) methods. 

Finally, the results of Monte Carlo simulation confirmed the missing data in time series models affect in terms of a normal 
distribution. 
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