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Abstract: Many statistical functions require that a distribution be normal or nearly normal. In time series models, data is
assumed to follow a normal distribution. Two numerical measures of shape skewness and kurtosis can be used to test for
normality. Autoregressive models are one of the models used to estimate time series data. The missing data in time series
models affect in terms of their following a normal distribution. In this paper, derive the moments, skewness and kurtosis of
AR (1) Model with Missing data without constant term and used the parameter of the model by using ordinary least squares
(OLS), Yule Walker (YW) and weighted least squares (WLS). Moreover, Monte Carlo simulation at various sample sizes
and different proportions of missing data for comparative study skewness and kurtosis between ordinary least squares
(OLS), Yule-Walker (YW) and weighted least squares (WLS). In addition, time series real data with missing data was
measures of kurtosis could be used to compare between these methods.

Keywords: The moment, Time series, AR (1) Model, Missing data, Skewness and Kurtosis.

1 Introduction

Jones (1962) measured the case of periodic sampling where the observed data consist of repeated in two groups, the first
group consecutive observations followed by second group missed observations. Following Parzen (1963) introduced time
series model with missing observations as a specific case of stationary process. He observed that the data

T

p }can be represented as,

X =1+ Lty pixp—i + & g ~ iid(0,0?) (1)
Vi = QpXy k = 1’2’ ...... ,n (2)
Under the following assumptions:
E(¢,)=0 )
E(y,)=a,E(x,) an
E(x,.&)=0 (1)
Where {a;, k = 1,2, ,n} represent the state of observation such that,
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1 if x,1s obsrved,
a, =

0 O/W

Typical examples of {a " }are a stochastic markov process and periodic deterministic case. If {x ‘ } is a stationary process,
it means the start from the infinite past.

Scheinok (1965) and Bloomfield (1970) investigated the case where x;, is observed when a ‘‘success’’ is achieved on a
Bernoulli trial. These references concentrate on non-parametric spectral analysis of time series with missing values.
Dunsmuir and Robinson (1981) suggested the estimator of AR (1) model with missing observations without constant by
using Yule-Walker method. In a time series regression with missing observations, Shively (1993) created several tests for
autoregressive disturbances, where the disturbance terms are produced by the AR(1) and AR(p) processes with a potential
seasonal component. Takeuchi (1995) obtained another estimator for AR (1) model with missing observations without
constant by using OLS method. Park and Fuller (1995) introduced a weighted symmetric estimator for AR (1) model. Vrbik
(2005) described a simple technique for computing the first few moments of a large class of sample statistics related to the
first-order autoregressive model with normally distributed error terms. Youssef (2006) presented a performance of
alternative predictors for the unit root process. Abdelwahab, et al. (2012) proposed a general form of moments for AR (1)
and AR (2) model with and without constant term. Abdelwahab (2016) presented estimator of AR (1) and AR (2) model
with missing observations with and without constant term and studied the properties of this estimator. Saadatmand, et al.
(2017) examined two approaches to estimating the missing value with respect to Pitman's measure of proximity and
considered estimate of a missing value for AR (1) with exponential innovations. Abdelwahab and Issa (2019) obtained the
Forms of the moments of AR(P) model with missing observations and they suggested general form of mean and variance
for this model. Issa and Abdelwahab (2020) derived OLS estimator for AR (1) panel data model with missing data. Issa
(2021) suggested a new form of the estimator of AR (1) model with constant term with missing observations by using
Ordinary Least Squares (OLS) method. In (2022) used another method to Estimate the parameter for AR(1) Model With
Incomplete Data by using weighted Least Squares (OLS) method and he studied the properties of OLS and WLS estimators
are discussed. Enany, et al. (2023) introduced a closed form estimator for p in case of missing observations using maximum
likelihood (ML) of AR(1) model without constant term with missing observations when y, is random.

The aims of research is to derive the moment, skewness and kurtosis of AR (1) Model with missing data without constant
term. In addition, To compare skewness and kurtosis with other estimate techniques at various sample sizes and missing
data percentages, a Monte Carlo simulation analysis was done. The remainder of the essay is structured as follows: Provide
the estimation techniques for the AR (1) model with missing data in section (2). In Section (3), the moment of AR (1)
model with missing data without constant term and derivation the skewness and kurtosis of AR (1) with missing data
without constant term. In section (4), simulation studies are carried out to compare between the skewness and kurtosis with
other estimation methods OLS estimator, YW estimator, and weighted least squares (WLS). In section (5) applied studies
by using real data. In section (6), conclusion of the theory and simulation study has been presented.

2 Materials and Methods

In this section. we will describe the three different estimation methods for the AR (1) Model with Missing Data used in this
paper.
Yule-Walker Estimator of AR (1) Model

Dunsmuir and Robinson (1981) suggested estimator of AR (1) model with missing observations without constant term be
using Yule-Walker method when |p|<1 is given by
Bow = k=2 YiVi-1/Xk=2 U Qg1
T NSy /Ei

Least Square Estimator of AR (1) Model

(€)

Takeuchi (1995) derived the estimator of AR (1) model with missing observations with constant term be using Least
Square method when |p| < 1 is given by
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Pose = Yk=2 WYk V-1 4)
ols Z;(lzz akylz—l

Weighted Least Square Estimator of AR (1) model

Issa (2022) derived the estimator of AR (1) model with missing data by using weighted
Least Square method when |p| < 1 and |y| < 1 is given by:

’,b _ V=2 Wik QY V-1 (5)
LS k=2 Wkakylg—l

Where

Wi = |y 172 (6)
Wi = [y 1771 (N
Where, v is the coefficient of heteroscedasticity according to Brewer (2002) which is used in regression models. We will be

revised y in case of AR(1) model with missing observations to minimize the residual sum of squares.
By substituting equation (6) in equation (5), to get;

5 _ Yhe2 Gl V-1 7 ViV 3
WSt D=2 UelVie—1 |_ZVY£—1

Wheny = 0, then py.s; = Pors
Moreover, Substitute the equation (7) in equation (5), then;

5 D L 5 ©)
wLsi = -
k=2 Gl Yie—1 |V YRy

Wheny = 1, then py511 = Pors
3 Results and Discussion

The moment of the autoregressive models with missing data. Will be introduced in the following section
- The First Moment About Zero of AR (1) Model
The AR (1) with the missing data by using equation (1) takes the form:
Vi = PQXg_q + sy, k=712, N (10)
By taking the expectation of equation (10), we will get
E() = pE(ayxy-1) + E(axex)

By using assumption (I) in model, we will get
E(i) —pE() =0
A=p)EQ) =0

E(y) =0= H1.4R(1) (11)
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- The Second Moment About Zero of AR (1) Model
We will square the equation (10) and taking the expectation, we will get

Vi = [pagxy_1 + ape]?

Vi = (pagXy_1)* + 2a,&pXy_q + ajef; , ,
akO' - akO' p
EGD =m——7——
Y= T = -p)

2
E(yp) = H2.4r(1) = _‘115;2 (12)
- The Third Moment about Zero of AR (1) Model.

Now, the third moment of y;, will be derived

E[yi] = Elpaxxy_1 + ay&]?

E[yi] = p*Elaixi_,] + 3a,p?Elaixt,|Eley] +3awpElayx, 11E[e8] + aiElef]  (13)

From the assumptions (I) and (II) of the model, the expected value of the model can be calculated

Ei) = E(axxi-1)

EWi) = EQk-1) = Mar@)
E(i) = Waar)

We get:

H3.4r(1) = E[y,i‘] =0 (14)

Where
a,o

Hiara) =0 and H2.ar(1) = 1——/)2

- The Fourth Moment About Zero of AR (1) Model.
The fourth moment of y, will be derived by taking the expectation of equation (10), The fourth moments can be calculated
as follows:
Elyg] = Elpagxi—y + ayg,]*
Elyil = p*Elakxi-1] + akEleg] + 4axpElarx,— 1E[&]] + 4p°Elaixi_]E[&]
+ 6a,p E[aixic_11E[£F]

(15)
By using the assumption (I) and (II), Equation (15) can be rewritten as:
_ _aga*+6axa?p?u, 4p(1)
E[ylf] - u4-.AR(1) - 1-p* (16)
Lemma (3.1) The Skewness of AR (1) with missing data
The Skewness is measures often used to describe a probability distribution by:
_ H3.ar()
A34R(1) = 3 ) (17)
K5 apeny
By substituting equation (12) and (14) in equation (17), we get:
a3.4r1) = 0 (18)
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Lemma (3.2) The Kurtosis of AR (1) with missing data
- The kurtosis can be defined as follows:

a _ E(y, —w)* _ Ha.AR(1).trad (19)
+ARCL) [E(yk - “)2]2 u%_AR(D '

By substituting equation (12) and (16) in equation (19), we get:

_ [ak04 + 6ak02P2IJz.AR(1)] (20)
A4 AR(1) = . 7
1-p )[MZ.AR(D]
2
[ak04 + 6a,02p? ff—;z)] 2y
d44R(1) = 212
_ 4 akgo
1-p )[1_p2]

_ ago*(1-p?)+6arc*p?|
Ay AR(1) = 1p?)1p®) arot (22)
[1-p2*

1+ 5p?

_— 23
1+ p? (23)

Aaar(1) =
By using equations (3, 4,8 and 9) in equation (23). We can get the kurtosis of AR (1) model by using the estimator of OLS,
YW, WLS.I and WLSII.company.

4 Simulation study

In this section, we analyze how the Monte Carlo simulations-based kurtosis for OLS, YW, WLS.I and WLS.II behave in
finite samples. A Comparison between OLS, YW, WLS.I and WLS.II methods for AR (1) is presented using Bias and
Relative Bias of Kurtosis [The setting of model and the results of the simulation study are discussed] To perform the
simulation, the model is needed to construct as follows:

I- AR (1) model without constant term is generated. The errors are generated ~ IIDN (0, 1), and the autoregressive
parameter p is chosen to be (0.1,-0.1,0.3, -0.3, 0.5, -0.5) and y is chosen to be (0.2).based on (Issa 2022)

2-  The values of sample size n are equal to 20, 50, 100 and 250 to represent small, medium and large samples of time
series.

3- To verify that the data follows a normal distribution, we randomly generate different percentages of missing values
equals to [(5 to 10), (15 to 20) and (25 to 30)]

4-  All replications in Monte Carlo attempts involved 10000.

We compare the p value of Kurtosis for ordinary least squares estimator (OLS) defined in equation (4), with the Yule
Walker estimator (YW) which is defined in equation (3) and weighted least squares estimators (WLSI and WLSII) defined
in equations (7 and 9). By using (0.05) Level of significance to test the claim Kurtosis=3 and the Relative Bias (RB) based
on ordinary least squares estimator (OLS) is comparison standard for as methods. The results of simulation study explained
in different cases of percentages of missing data: case (I) (5 to 10) missing data, case (II) (15 to 20) missing data and case
(II1) (25 to 30) missing data [When y = 0.2 (with different values of y do not affect in statistically significant for p-value)].
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Case (I): (5 to 10) missing data

- From table (1) for small, medium and large sample size, A p-value less than 0.05 is statistically significant. It
indicates strong evidence against the null hypothesis. Therefore, we reject the null hypothesis, and accept the alternative
hypothesis, except the case (n = 20 and p = —0.5) A p-value more than 0.05 is not statistically significant by using YW,
WLS.I and WLS.II methods. Then the missing values affect the shape of the distribution in coefficient of kurtosis for all
methods used when presenting missing from (5 to 10) percentage and compare the RB of these estimators as follows:

In case small sample sizes, and different values of (p), the (OLS) estimator has the best RB, but when p=- 0.3, the (OLS)
has the worst RB. In case medium sample sizes, and different values of (p), the (OLS) estimator has the best RB, but when
p= 0.1, the (OLS) has the worst RB and when p=-0.1and -0.3, the (YW and WLSI) has the best RB. In case large sample
sizes, and different values of (p), the (OLS) estimator has the worst RB, but when p= 0.1, the (OLS) has the worst RB and
when p = 0.5, the (YW and WLSI) has the best RB.

Case (II): (15 to 20) missing data

- From table (2) for small, medium and large sample size, A p-value less than 0.05 is statistically significant. Then the
missing values affect the shape of the distribution in coefficient of kurtosis for all methods used when presenting
missing from (15 to 20) percentage. And compare the RB of these estimators as follows:

In case small and medium sample sizes, and different values of (p), the (OLS) estimator has the best RB. In case large
sample sizes, and different values of (p), the (WLSI and WLSII) estimator has the best RB where n=250 and the (YW and
WLSI) has the best RB where n =100 but when p=-0.5 and n=100, the (OLS) has the best RB.

Case (IID): (25 to 30) missing data

- From table (3) for small sample size, A p-value less than 0.05 is statistically significant, except the case (p =
—0.3 ) A p-value more than 0.05 is not statistically significant by using WLS.II method. and compare the RB of these
estimators as follows:

In case small sample sizes, and different values of (p), the (OLS) estimator has the best RB where p = 0.1 and 0.3 but
when p = £0.5 the (OLS) estimator has the worst RB and n=100, the (YW) has the best RB wherep = —0.1 and — 0.3.

- From table (3) for medium sample size, A p-value less than 0.05 is statistically significant, except the case (p = —0.5 )
A p-value more than 0.05 is not statistically significant by using OLS, YW, WLS.I and WLS.II methods. and compare
the RB of these estimators as follows:

In case medium sample sizes, and different values of (p), the (OLS) estimator has the best RB where p = 0.1,0.3 and —
0.5 and n=50 but when p =0.5 and — 0.3 the (YW) estimator has the best RB and when p = —0.1 the (WLSI)
estimator has the best RB. Where n=100 the (YW) has the best RB where p = £0.5 , the (WLSI) has the best RB
where p = 40.3 and the (OLS) has the worst RB where p = +0.1 .

- From table (3) for large sample size, A p-value less than 0.05 is statistically significant, except the case (p =
—0.5 ) A p-value more than 0.05 is not statistically significant by using YW method. And compare the RB of these
estimators as follows:

In case large sample sizes, and different values of (p), the (WLSII) estimator has the best RB in p = 0.1 and = +0.3 but
the (OLS) estimator has the best RB in p = +0.5.

5 Applications of Real Data

To clarify the extent of the impact of missing data in time series model as the data follow a normal distribution. Using time
series data for the US unemployment rate recorded obtained from Bureau of Labor Statistics, US Department of Labor,
accessed June 5, 2020, choosing Unemployment Rate icon for Historical Data by year from 1960 to 2019.

The unemployment rate (UR) data series can plotted and shows the results of the stationarity test (ADF test) on the data by
using EViews software
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Fig.1: US unemployment rate from 1960 to 2019.

10 15

In addition, augmented Dickey-Fuller unit root test on US unemployment rate, the results are shown in the table (1)

Table (I) augmented Dickey-Fuller unit root test

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.583332 0.0091
Test critical values: 1% level -3.548208
5% level -2.912631
10% level -2.594027

*MacKinnon (1996) one-sided p-values.

The initial unemployment rate (UR) sequence is stationary when the significance level of 0.01, 0.05, and 0.1 is larger than
ADF=-3.583332. The UR sequence continues to reject the null hypothesis with a low P value. The UR sequence is
stationary, however, and Figure 2 shows the autocorrelation and partial autocorrelation function graphs for the UR series.
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0.000
0.000
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Fig. 2: Autocorrelation and partial autocorrelation function graphs of the UR series.

The autocorrelation coefficient of the UR sequence is substantially higher than zero when the lag order is 1, as seen in
Figure 2, hence q can be taken as 1. The partial autocorrelation coefficient is significantly different from zero when the lag
order is 1, and it is also significantly different from zero when the lag order is 1, therefore p=1 or p=2 can be taken into
consideration. The range of p and q values is suitably modified in light of the subjective character of the assessment, and
several ARMA (p, q) models are developed to produce a more accurate model. The order with 0, 1, and 2 in autoregressive
moving average pre-estimation is applied to the processed sample data. The results of the ARMA (p, q) test for various
parameters are shown in Table 3. AIC value, SC value, and regression S.E. are crucial selection factors for models. The
best model is often chosen and ranked using the AIC and SC criterion. The higher the coefficient of determination, the
smaller the residual variance, AIC, and SC values. It is superior to the ARIMA (P, I, Q) model that it relates to in table (2).

© 2024 NSP
Natural Sciences Publishing Cor.



1052 N = M. Abdelwahab: Measures of Sample Skewness ...
Table (2) Test results of ARMA (P, Q)

(P, Q) Adjusted R-squared AIC SC S.E. of regression
(0,1) -3.466552 5.384421 5.454232 3.465767
(0,2) -3.973685 5.517633 5.587444 3.657231
(1,0) 0.606106 2.986069 3.055880 1.029207
(1,1)* 0.654750 2.875880 2.980597 0.963563
(1,2)* 0.612302 2.987257 3.091974 1.021081
(2,0) -0.032893 3.976129 4.045940 1.666637
(2,1) 0.599885 3.018668 3.123385 1.037303
(2,2)* -0.032422 3.992187 4.096905 1.666257

It should be noted that although the AIC and SC values are typically used to define the appropriate ARMA model, they are
insufficient for the optimum ARIMA model. The approach used in this work is to first build a model with the lowest AIC
and SC values, after which the estimated data are subjected to parameter significance tests and residual randomness tests. If
the test is successful, the model can be regarded as the best one; if not, the second smallest AIC and SC values are picked,
and the appropriate statistical test is run. Until the ideal model is picked. A "*" was placed in this Table next to the model

that failed both the residual randomness and parameter significance tests. Ultimately, it is recommended to use the ARMA
(1, 0) model.

The ARIMA model's estimated results are as follows:
Estimation results of the ARMA model

Variable Coefficient Std. Error t-Statistic Prob.
AR(1) 0.984333 0.021679 45.40432 0.0000
SIGMASQ 1.023959 0.166863 6.136532 0.0000
R-squared 0.612782 Mean dependent var 5.960000
Adjusted R-squared 0.606106 S.D. dependent var 1.639884
S.E. of regression 1.029207 Akaike info criterion 2.986069
Sum squared resid 61.43752 Schwarz criterion 3.055880
Log likelihood -87.58207 Hannan-Quinn criter. 3.013376

Durbin-Watson stat 1.379347

Inverted AR Roots .98

The final model in the LWC sequence is ARMA (1, 0), and Equation (1) demonstrates its particular shape. Under the
equation, the matching estimate value's t-test statistic is shown in parentheses.

URt = 0.984333 URt-1

The t statistic of the model coefficients and its P value demonstrate that the parameter estimates of each explanatory
variable are all statistically significant at the significance level of 0.01 for the model. The outcome of fitting the model to
the UR data is shown in Figure 3. The upper and lower dotted lines reflect the model's fitted values and residuals, while the
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solid line represents the actual data.
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Fig. 3: Actual series, fitted series and residual series of the UR sequence.

After appropriate the ARIMA (1, 0) model, a white noise test is performed on the residual. The autocorrelation and partial
autocorrelation function graphs for the residual series are shown in Figure 4. The residual is clearly white noise, showing
that the model is correct.
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Fig.4: Autocorrelation and partial autocorrelation function graphs of the residual series.
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Comparing the techniques of estimate for the parameter of the AR (1) model using (OLS), (YW), (WLSI), and (WLSII) in
the presence of missing observations using the value of kurtosis and different values of y. The results of table (3) showed
that for the majority of missing observation percentages, the WLSI and WLSII technique produces kurtosis values that are
higher. and different values of y with respect to other methods.

Table (3) Kurtosis for different (methods, % of missing observations and y)

percentages
v Fstimators 5to 10 15 to 20 2510 30
OLS 1.198336 1.131494 1.147030
YW 1.212363 1.166641 1.145087
o1 WLSI 1.207032 1.142901 1.153240
WLSII 1.203134 1.150722 1.151579
OLS 1.291318 1.292417 1.299306
YW 1.285654 1.290379 1.279982
02 WLSI 1.342161 1.316161 1.322527
WLSII 1.378974 1.324333 1.327920
OLS 1.281212 1.252516 1.112602
YW 1.264566 1.201447 1.118709
03 WLSI 1.279351 1.245705 1.117111
WLSII 1.242882 1.202478 1.136324
OLS 1.217243 1.192098 1.251655
YW 1.224087 1.185476 1.230913
04 WLSI 1.318916 1.267309 1.272837
WLSII 1.294004 1.254415 1.275301
OLS 1.196618 1.084760 1.202985
YW 1.279259 1.112132 1.167792
0 WLSI 1.199837 1.092342 1.207728
WLSII 1.241871 1.115158 1.203658
OLS 1.168562 1.166945 1.106645
YW 1.165875 1.182462 1.131156
0 WLSI 1.147478 1.237511 1.185423
WLSII 1.194755 1.196052 1.139742
OLS 1.200663 1.206101 1.294753
YW 1.196806 1.218353 1.308418
o7 WLSI 1.202228 1.031471 1.161168
WLSII 1.226253 1.223142 1.314782
0.8 OLS 1.156595 1.190031 1.200779
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percentages
Y Estimators
5to 10 15to 20 25030
YW 1.019129 1.072152 1.167914
WLSI 1.154722 1.203272 1.246950
WLSII 1.162164 1.205311 1.209746
OLS 1.166150 1.268261 1.275134
YW 1.165650 1.274266 1.282757
00 WLSI 1.725289 1.298057 1.399807
WLSII 1.165729 1.277651 1.286213

6 Conclusions

In this article, Kurtosis and Skewness for AR (1) model with missing data without constant term has been derived by using
OLS, YW and WLS methods. In addition, Monte Carlo simulation has been constructed using different methods of
estimation (OLS, YW, WLSI and WLSII) Based on p-value and RB criteria. The results of simulation are divided to the
presenting missing and y=2: for different percentage a p-value less than 0.05 is statistically significant and the (WLSII)
estimator has the best RB in large sample size. In small and medium sample sizes, the (OLS) estimator has the best RB
followed by (YW) and (WLSI) methods.

Finally, the results of Monte Carlo simulation confirmed the missing data in time series models affect in terms of a normal
distribution.
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