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Abstract: In this paper, we estimate the parameter of stress-strength reliability (R= P(X <Y )) of two independent random variables X

and Y , X denote to stress, Y denote to strength and have Burr XII distributions. Based on the assumption of strength and stress variables

are subjected to partially step-stress accelerated life test the reliability of a system is discussed. The point estimate of R is computes

with maximum likelihood and Bayes estimations. Also, confidence intervals of R are computed with asymptotic distribution, bootstrap

technique and Bayesian credible intervals. The reliability of the system under R is computed with respected to numerical example. The

results are assessed and compared by constructed Monte Carlo simulation study.
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1 Introduction

In applied science, when the stress is greater than the
applied strength the system is failing. The mechanical
reliability of a system or units is measuring by estimating
R. Practice, if we denoted to the lifetimes of two devices
by variables X and Y then the parameter R is used to
measure the probability that one fails before the other. For
example, in a laboratory test put under failure voltage
levels the two types of electrical cable insulation.
Increasing voltage stress is applied on the two types
electrical cable insulation. Our objective is determining
the longer life type of insulation. If, we denoted to the
lifetimes of type 1 by X and the lifetimes of type 2 by Y .
Hence, the estimate value of R = P(X > Y ) take the value
greater than 0.5 then Type 1 of insulation is superiority in
the form of longevity. The parametric and nonparametric
estimate of R discussed early by AL-Hussaine et al. [1].
For extensive review of R see, Nadarajah [2], Mokhlis [3],
Kundu and Gupta [4], Kundu and Gupta [5],
Krishnamoorthy and Mukherjee [6] and Kundu and
Raqab [7]. Recently, this problem discussed by Mahmoud
et al. [8], Abd-Elmougod and Abu-Zinadah [9] and
Sarhan and Tolba [10].

Under modern technology a highly reliable products
are available and the problem of obtaining more

information about the lifetime of products is more
difficult. Also, a long period of time is used to test units
under normal conditions. One way to overcome this
problem the authors used censoring schemes. But, the
important one in applied science to overcome this
problem is accelerated life tests (ALTs). The key word of
ALTs was presented by Nelson [11]. Different types of
ALTs are available, the first type of ALTs is called
constant stress ALTs, in which the stress is kept under
constant level of stress through the test. The second type
of ALTs is called progressive stress ALTs, in which the
stress level is continual increasing the test. The third type
of ALTs is called step-stress ALTs. In step-stress ALTs,
the stress level is changed through fixed time or number
of failure. When the model of ALTs pass through normal
and stress conditions then, we mean partially ALTs. In
this paper, we adopt partially step-stress ALTs, see
Soliman et al. [12] and Al-Essa et al. [13].

Burr XII distribution is one of Burr system which
contain twelve distributions with a variety of density
shapes, see Burr [14]. Its has applied in reliability studies,
quality control, business, chemical engineering, medical
study. The random variable X is called Burr XII random
variable if and only if has the probability density function
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(PDF) given by

f (x) = abxb−1(1+ xb)−(a+1), x > 0, a,b > 0, (1)

where a and b are shape parameters. Also, the cumulative
distribution function (CDF), survival function (S(.)) and
hazard failure rate function (H(.)) given respectively by

F(x) = 1− (1+ xb)−a, (2)

S(t) = (1+ tb)−a, (3)

and

H(t) = abtb−1(1+ tb)−1. (4)

The failure rate function of Burr XII distribution is
decreasing function when b ≤ 1 and unimodal function at
b > 1. The parameter a don’t effect in the shape of failure
rate function and the shape parameter b plays an
important role for the distribution. Different shapes of
PDF and hazard failure rate of Burr XII distribution when
b=2.5 and different values of a are represented in Fig 1
and 2. Different authors discussed Burr XII distribution,
see Lee et al.[15], Abushal et al. [16] and Ragab et al.
[17].

Fig. 1: Different shapes of PDFs for different value of a and b =
3.0.

We aim to develop estimation problem of system
reliability of Bur XII lifetime population. Therefore, we
consider independent strength and stress variables X and
Y of Burr XII lifetime populations with common one
shape parameter and different other shape parameter. The
strength and stress data are collected under partially
step-stress ALT model. The classical and Bayes methods
are used study the estimation of R. The proposed model is

Fig. 2: Different shapes of hazard failure rate functions for

different value of a and b = 3.0.

tested under Monte Carlo simulation study. And, real data
is used to determine the reliability of a real populations.

The paper is organized with respected to the following
sections. In Section 2, The model of stress-strength
reliability formulated under partially step-stress ALTs. In
Section , The maximum likelihood method to estimate of
R with corresponding asymptotic confidence interval. The
parametric bootsrap-p and boostrap-t confidence interval
of R in Section 4. Bayesian approach to estimate R in
Section 5. The proposed model is analyzed under
numerical example in Section 5. Monte Carlo simulation
studying in Section 6. Finally, Some concluding remarks
reported in Section 7.

2 R under Partially Step-stress ALTs Model

Let, a samples of sizes m and n selected randomly from
the Burr XII distributions with PDFs fx(.) and fy(.),given
respectively by

fx(x) = a1bxb−1(1+ xb)−(a1+1), x > 0, a1, b > 0, (5)

and

fy(y) = a2bxb−1(1+ xb)−(a2+1), x > 0, a1, b > 0, (6)

The two samples are tested normal conditions until
reaching the time τ then, tested under stress conditions.
The collected data from the two sample are given by
X = (X1, X1, ..., Xk1

, Xk1+1, ..., Xm), Xk1
< τ < Xk1+1 and

0 ≤ k1 ≤ m as well as Y = (Y1, Y1, ..., Yk2
, Yk2+1, ..., Yn),

Xk2
< τ < Xk2+1and 0 ≤ k2 ≤ n. As given by DeGroot and

Goel [26]. Under consideration the partially step-stress
ALTs the total test time W is given by

W =

{
T, at T ≤ τ

τ + (T−τ)
β , T > τ

, (7)
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where τ is the stress change time and β is accelerated
factor.

2.1 Model assumption

Let, the random variable X (stress variable) has Burr XII
with parameters a1 and b and random variable Y (strength
variable) has Burr XII with parameters a2 and b. The
density functions under partially step-stress ALT model
are given by

fx(x) =





f1x(x) = a1bxb−1(1+ xb)−(a1+1), x ≤ τ

f2x(x) = a1bβ (τ +β (x− τ))b−1

×(1+(τ +β (x− τ))b)−(a1+1), x > τ

, (8)

and

fy(y) =





f1y(y) = a2byb−1(1+ yb)−(a2+1), y ≤ τ

f2y(y) = a2bβ (τ +θ (y− τ))b−1

×(1+(τ +β (y− τ))b)−(a2+1), y > τ

. (9)

The corresponding CDFs are given by

Fx(x) =

{
F1x(x) = 1− (1+ xb)−a1 , x ≤ τ

F2x(x) = 1− (1+(τ +β (x− τ))b)−a1 , x > τ
,

(10)
and

Fy(y) =

{
F1y(y) = 1− (1+ yb)−a2 , y ≤ τ

F2y(y) = 1− (1+(τ +β (y− τ))b)−a2 , y > τ
.

(11)

2.2 Stress-strength model

From Eq.s (8) to (11) the stress-strength reliability model
of Burr XII distributions is given by

R = P(X < Y ) =

τ∫

0

f1y(y)F1x(y)dy+

∞∫

τ

f2y(y)F2x(y)dy.

(12)
From (8) to (11) the relation (12) is reduced to

R =

τ∫

0

a2byb−1(1+ yb)−(a2+1)
[
1− (1+ yb)−a1

]
dy

+

∞∫

τ

a2bβ (τ +β (y− τ))b−1 (1+(τ +θ (y− τ))b)−(a2+1)

×
[
1− (1+(τ +β (y− τ))b)−a1

]
dy.

=
a1

a1 + a2

. (13)

3 MLE of R

The non-normalized likelihood function of two samples X
and Y is given by

L(x,y|Θ)∝
k1

∏
i=1

f1x(xi)
m

∏
i=k1+1

f2x(xi)
k2

∏
i=1

f1y(yi)
n

∏
i=k2+1

f2y(yi),

(14)
where Θ = {a1, a2, b, β} is the parameter vector. (14) is
reduced to

L(Θ |x,y) =
k1

∏
i=1

a1bxb−1
i (1+xb

i )
−(a1+1)

m

∏
i=k1+1

a1bβ (τ +β (xi − τ))b−1

× (1+(τ +β (xi − τ))b)−(a1+1)
k2

∏
i=1

a2byb−1
i (1+yb

i )
−(a2+1)

n

∏
i=k2+1

a2bβ (τ +β (yi − τ))b−1 (1+(τ +β (yi − τ))b)−(a2+1),

L(Θ |x,y) = am
1 an

2b(m+n)β m+n−(k1+k2) exp

[
(b−1)

{
k1

∑
i=1

log [xi]

+
m

∑
i=k1+1

log [τ +β (xi − τ)]

}
− (a1 +1)

{
k1

∑
i=1

log
[
1+xb

i

]

+
m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

]}
+(b−1)

×
{

k1

∑
i=1

log [yi]+
n

∑
i=k1+1

log [τ +β (yi − τ)]

}
− (a2 +1)

×
{

k1

∑
i=1

log
[
1+yb

i

]
+

n

∑
i=k1+1

log
[
1+(τ +β (yi − τ))b

]}
.

(15)

The natural logarithms of (15) is reduced to

ℓ(Θ |x,y) = m loga1 +n log a2 +(m+n) log b

+(m+n− (k1 +k2)) logβ +(b−1)

×
{

k1

∑
i=1

log [xi]+
m

∑
i=k1+1

log [τ +β (xi − τ)]

}
− (a1 +1)

×
{

k1

∑
i=1

log
[
1+xb

i

]
+

m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

]}

+(b−1)

{
k2

∑
i=1

log [yi]+
n

∑
i=k2+1

log [τ +β (yi − τ)]

}
− (a2 +1)

×
{

k2

∑
i=1

log
[
1+yb

i

]
+

n

∑
i=k2+1

log
[
1+(τ +β (yi − τ))b

]}
(16)

3.1 Point Estimators

In this section, we adopt the classical ML estimators of R

as well as adopt Bayesian approach the formulate the point
estimate of R.
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3.2 Point ML estimate of R

The zero value of the first partially derive of (16) with
respected to a1and a2 are reduced to

∂ℓ(Θ |x,y)
∂a1

=
m

a1

−
{

k1

∑
i=1

log
[
1+ xb

i

]
+

m

∑
i=k1+1

log
[
1+(τ +β (xi− τ))b

]}
= 0,

and

∂ℓ(Θ |x,y)
∂a2

=
n

a2

−
{

k2

∑
i=1

log
[
1+ yb

i

]
+

m

∑
i=k2+1

log
[
1+(τ +β (yi − τ))b

]}
= 0,

which are reduced to

â1(b,β ) =
m

k1

∑
i=1

log
[
1+ xb

i

]
+

m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

] , (17)

and

â2(b,β ) =
n

k2

∑
i=1

log
[
1+ yb

i

]
+

m

∑
i=k2+1

log
[
1+(τ +β (yi − τ))b

] . (18)

Also, the zero value of the first partially derive of (16)
with respected to b and β are reduced to

∂ℓ(Θ |x,y)
∂b

=
m+n

b
+

{
k1

∑
i=1

log [xi]

+
m

∑
i=k1+1

log [τ +β (xi − τ)]

}
− (a1 +1)

×
{

k1

∑
i=1

xb
i logxi

1+xb
i

+
m

∑
i=k1+1

(τ +β (xi − τ))b
log [τ +β (xi − τ)]

1+(τ +β (xi − τ))b

}

+

{
k2

∑
i=1

log [yi]+
n

∑
i=k2+1

log [τ +β (yi − τ)]

}
− (a2 +1)

×
{

k2

∑
i=1

xb
i logyi

1+yb
i

+
n

∑
i=k2+1

(τ +β (yi − τ))b
log [τ +β (yi − τ)]

1+(τ +β (yi − τ))b

}

= 0, (19)

and

∂ℓ(Θ |x,y)
∂β

=
m+ n− (k1+ k2)

β
+(b− 1)

×
m

∑
i=k1+1

(xi − τ)

τ +β (xi − τ)

− (a1 + 1)
m

∑
i=k1+1

b(xi − τ)(τ +β (xi− τ))b−1

1+(τ +β (xi − τ))b

+(b− 1)
n

∑
i=k2+1

(yi − τ)

τ +β (yi − τ)

− (a2 + 1)
n

∑
i=k2+1

b(yi − τ)(τ +β (yi− τ))b

1+(τ +β (yi − τ))b
= 0 (20)

The likelihood equation are reduced to two non-linear
equations (19) and (20) solve by using Newton–Raphson

iteration to obtain the estimate values b̂ and β̂ . Therefore,
the ML estimate of the parameters a1 and a2 are obtained
from (17) and (18). The ML estimate of reliability R is
given by

R̂ =
â1

â1 + â2

(21)

3.3 Bayesian estimator of R

In this section, we adopt independent gamma
distributions as the prior distributions for the parameters
a1, a2 and β . Also, the non-informative prior information
for the accelerated factor β as follows

a1 ∝ a
c1−1
1 exp{−d1a1} , a2 ∝ a

c2−1
2 exp{−d2a2}

b ∝ bc3−1 exp{−d3b} , (22)

and

β ∝
1

β
. (23)

The joint prior distribution is defined by

Π ∗(a1,a2,b,β ) ∝ a
c1−1
1 a

c2−1
2 bc3−1β−1

× exp{−d1a1 − d2a2 − d3b} . (24)
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The joint posterior distribution is obtained from (15) and
(24) is formulated as

Π(a1,a2,b,β |x,y) ∝ a
m+c1−1
1 a

nc2−1
2 b(m+n)+c3−1

×β m+n−(k1+k2)−1 exp

{
(b− 1)

(
k1

∑
i=1

log [xi]

+
m

∑
i=k1+1

log [τ +β (xi− τ)]

)
− (a1 + 1)

(
k1

∑
i=1

log
[
1+ xb

i

]

+
m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

])
+(b− 1)

×
(

k2

∑
i=1

log [yi]+
n

∑
i=k2+1

log [τ +β (yi− τ)]

)
− (a2 + 1)

×
(

k2

∑
i=1

log
[
1+ yb

i

]
+

n

∑
i=k2+1

log
[
1+(τ +β (yi − τ))b

]}

−d1a1 − d2a2 − d3b} . (25)

The joint posterior distribution given by (25) has
shown that, the closed for of posterior distribution and the
corresponding posterior estimator under any loss function
cannot be obtained in the closed form. Therefore, the
approximate methods are employed in this cases such as
numerical integration, lindely method and Markov chen
Monte Carlo method (MCMC). In this section, we
employed the MCMC method to obtain the approximate
empirical distribution and the corresponding parameters
estimate.

3.3.1 Posterior full conditional distributions

The full conditional distributions from the joint posterior
distribution (25) formulated by

Π1(a1|b,β ,x,y) ∝ a
m+c1−1
1 exp

{
−a1

(
d1 +

k1

∑
i=1

log
[
1+xb

i

]

+
m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

])}
, (26)

Π1(a2|b,β ,x,y) ∝ a
n+c2−1
2 exp

{
−a2

(
d2 +

k2

∑
i=1

log
[
1+yb

i

]

+
n

∑
i=k2+1

log
[
1+(τ +β (yi − τ))b

])}
. (27)

Π3(b|a1,a2,β ,x,y) ∝ b(m+n)+c3−1 exp

{
−d3b+b

(
k1

∑
i=1

log [xi]

+
m

∑
i=k1+1

log [τ +β (xi − τ)]

)
− (a1 +1)

(
k1

∑
i=1

log
[
1+xb

i

]

+
m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

])
+b

(
k1

∑
i=1

log [yi]+

n

∑
i=k1+1

log [τ +β (yi − τ)]

)
− (a2 +1)

(
k1

∑
i=1

log
[
1+yb

i

]

+
n

∑
i=k1+1

log
[
1+(τ +β (yi − τ))b

])}
, (28)

and

Π4(β |a1,a2,b,x,y) ∝ β m+n−(k1+k2)−1

×exp

{
(b−1)

(
m

∑
i=k1+1

log [τ +β (xi − τ)]

)

− (a1 +1)

(
m

∑
i=k1+1

log
[
1+(τ +β (xi − τ))b

])

+(b−1)

(
n

∑
i=k1+1

log [τ +β (yi − τ)]

)

−(a2 +1)

(
n

∑
i=k1+1

log
[
1+(τ +β (yi − τ))b

])}
. (29)

The full conditional distributions have shown that, two gamma

distribution are obtained as (26) and (27). Also, two more

general function its plots similar normal distribution. Therefore

the empirical distribution is obtained by adopted the MCMC

method (MH under Gibbs algorithms) as the following

algorithms.

3.3.2 MH under Gibbs algortms

In the problem at hand MH algorithms under Gibbs sample is

more suitable to generate empirical posterior distribution and

the corresponding estimate, see Metropolis et al. [30] as the

following algorithms.

Algorithm 1 (Empirical posterior distribution and Bayes

estimate of R)

1.Put s=1 and begin with the initial value a
(0)
1=â1, a

(0)
2=â2, b

(0)
= b̂

and β
(0)
= β̂ .

2.By using gamma distribution (26) and (27) generate the

iterate values a
(s)
1 , a

(s)
2 .

3.by using MH algorithms generate the values b(s), β (s) from

(28) and (29) under normal proposal distribution.

1.Compute R(s) =
a
(s)
1

a
(s)
1 +a

(s)
2

.

5.put s = s+1.

6.Steps from 2 to 5 are repeat MB times.

2.Report R(1), R(2), ...,R(MB).

3.Compute The Bayes estimate of R by

R̂B =
1

MB−MB∗
MB

∑
i=MB∗+1

R(i), (30)
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where MB∗ is the first iteration needed to reach the stationary

distribution.
4.Compute The Bayes variance of R by

R̂B =
1

MB−MB∗
MB

∑
i=MB∗+1

(R(i)− R̂B)
2. (31)

3.4 interval Estimate of R

In this section, we discuss interval estimation of the model

parameters by, approximate ML confidence interval, bootstrap

confidence interval and credible intervals of R.

3.5 Approximate confidence interval of R

From the second derivative with respected to a1 and a2 of the

log-likelihood function (16), we obtain

Ia1a1
=

∂ 2ℓ(Θ |x,y)
∂a2

1

=
−m

a2
1

, (32)

Ia2a2
=

∂ 2ℓ(Θ |x,y)
∂a2

2

=
−n

α2
2

, (33)

Ia1a2
= Ia2a1

=
∂ 2ℓ(Θ |x,y)

∂a1∂a2
=

∂ 2ℓ(Θ |x,y)
∂a2∂a2

= 0. (34)

The Fisher information matrix (FIM) of the vector Ψ = (a1,a2)
is defined by

FIM(a1,a2) =

( −m
a2

1

0

0 −n
α2

2

)
, (33)

and the inverse one of FIM is given by

FIM−1(a1,a2) =

(
a2

1

m 0

0
a2

2

n

)
. (35)

Also, delta method is used to obtain the variance of R by

VR =

(
∂R

a1

)2

FIM−1
11 +

(
∂R

a2

)2

FIM−1
22 . (36)

Hence,

VR =

(
m+n

mn

)(
a1a2

(a1 +a2)
2

)2

. (37)

Hence, (1-2α)100% confidence interval of R is given by
(
R̂−Zα

√
VR, R̂+Zα

√
VR

)
, (38)

where Zα is percentile normal variate N(0, 1) and confidence

level given by γ .

3.6 Bootstrap confidence interval of R

Bootstrap technique is commonly method not only in

parameters estimation but it used to predict of the variance and

bias of an estimators as well as in testing hypothesis. More

information about parametric and nonparametric bootstrap

techniques presented by Davison and Hinkley [27] and Efron

[28]. In this section, we adopt parametric percentile technique

(bootstrap-p), see DiCiccio and Efron [29] as follows.

3.7 Algorithm 2: (Approximate bootstrap-p

confidence interval)

1For given the stress change time τ and strength stress

samples X = (X1, X1, ..., Xk1
, Xk1+1, ..., Xm), and Y = (Y1,

Y1, ..., Yk2
, Yk2+1, ..., Yn) determine the integer m, n, K1 and

k2.

1.Compute the ML estimate of the model parameters value â,

â2, b̂ and β̂ .
2Under the same value of m, n and τ generate bootstrap

sample X∗= (X∗
1 , X∗

2 , ..., X∗
k1
, X∗

k1+1, ..., X∗
m) and Y∗=(Y ∗

1 ,

Y ∗
2 , ..., Y ∗

k2
, Y ∗

k2+1, ..., Y ∗
n ).

3Determine the integer value k1 and k2.

4Compute bootstrap sample estimate â∗, â∗2, b̂∗ and β̂ ∗.

5Compute the bootstrap estimate value of R, R∗ = â∗1
â∗1+â∗2

.

6Repeat steps (2-5) S times, we obtain the sample estimates

of R, say R∗(1), R∗(2), ..., R∗(S).
7The sample estimates of R, put in ascending order R∗

(1), R∗
(2),

..., R∗
(S).

8The empirical CDF of ordered values R∗
(1), R∗

(2), ..., R∗
(S) is

defined by ,

Γ (w) = P(R̂∗ < w) and R̂∗
boot-p = Γ −1(w). (39)

9The bootstrap-p confidence intervals of with 2α confidence

level is given by

(
R̂∗

boot-p(α), R̂∗
boot-p(1−α)

)
. (40)

3.8 Bayesian credible interval of R

Algorithm 3 (Credible interval of R)

1.Put the sample R(1+MB∗), R(2), ...,R(MB) in ascending order

R(1), R(2), ...,R(MB−MB∗).

2.The empirical CDF of ordered values R(1),

R(2), ...,R(MB−MB∗) is defined by ,

Γ B(w) = P(R̂B < w) and R̂CI = Γ B−1(w). (41)

3.The Bayes (1−2α)100% credible intervals of R is given by

(
Rα(MB−MB∗), R(1−α)(MC−MC∗)

)
. (42)

4 Numerical Example

To illustrate the developed results in this paper, we consider a

numerical samples generated from Burr XII distributions.

Therefore, we consider two populations Burr XII with shape

parameters {a1,b}={0.8, 0.5} and {a2,b}={1.5, 0.5}.to

discuss the inference procedures. Also, the sample size

m = n =30, accelerated factor β = 1.5 and stress change time

τ = 0.5. The strength data generated from Burr XII with

{a1,b}={0.8, 0.5} is given by

{0.00104922, 0.0190217, 0.0235457, 0.0335899,

0.0975236, 0.0975334, 0.124916, 0.14277, 0.471222, 0.923666,

1.12178, 1.15805, 1.2345, 2.68943, 3.23917, 6.78473, 12.8286,
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17.3145, 42.4134, 74.8762, 142.408, 143.452, 282.632,

362.374, 368.707, 849.952, 2383.04, 3007.98, 13082.,

13587.6}.

Also The stress data generated from Burr XII with

{a1,b}={1.5, 0.5} is given by

{0.00000626096, 0.00218342, 0.00471568, 0.00503699,

0.00554835, 0.00587211, 0.0153165, 0.0241679, 0.0245518,

0.0251434, 0.0724508, 0.136352, 0.14772, 0.178771, 0.271778,

0.299763, 0.541363, 0.668674, 0.734493, 0.743836, 0.754889,

1.52874, 1.71577, 3.41646, 3.47571, 4.74769, 5.23083,

7.45187, 86.7267, 321.488}.

Under change stress time τ = 0.5 and accelerated factor

β = 1.5 two data transformed to X ={ 0.00104922, 0.0190217,

0.0235457, 0.0335899, 0.0975236, 0.0975334, 0.124916,

0.14277, 0.471222, 0.782444, 0.914519, 0.938699, 0.989669,

1.95962, 2.32612, 4.68982, 8.71909, 11.7096, 28.4423,

50.0842, 95.105, 95.8016, 188.588, 241.749, 245.971, 566.801,

1588.86, 2005.49, 8721.51, 9058.58} and

Y ={0.00000626096, 0.00218342, 0.00471568,

0.00503699, 0.00554835, 0.00587211, 0.0153165, 0.0241679,

0.0245518, 0.0251434, 0.0724508, 0.136352, 0.14772,

0.178771, 0.271778, 0.299763, 0.527576, 0.612449, 0.656329,

0.662557, 0.669926, 1.18583, 1.31051, 2.4443, 2.48381,

3.33179, 3.65389, 5.13458, 57.9844, 214.492}.

From the last data, we observe k1 = 9 and k2 = 16. The point

estimate of R under ML and Bayes method and the corresponding

ACI, Boot-p CI, and CI are reported in Table 8.

5 Mote Carlo Studying

In this section, we are presented Monte Carlo simulation study

to assessed the quality of developed results in this work of

estimation R. Therefore, we assess the point estimate of

different methods, ML, bootstrap and Bayes estimation by

computing mean estimate (ME) and mean square error (MSE).

But, the approximate confidence interval (ACI), two bootstrap

confidence intervals (CIs), and Bayes credible intervals (BCI) of

R are assessed by computing mean interval length (MIL) and

probability coverage (PC). In our studying, we test the results

for different parameter values, different acceleration factor and

different stress change time τ . Also, we adopt sample sizes

described in the tables. The following algorithms describe the

outline of this study.

Algorithm 2: (Mote Carlo simulation study)

1:Begin with indicator s = 1.

2:For given m,n, τ and parameter vector Θ = {a1, a2, b, β}
generate two samples X = (X1, X1, ..., Xk1

, Xk1+1, ..., Xm)
and Y = (Y1, Y1, ..., Yk2

, Yk2+1, ..., Yn).
3:Form (21) and (30) compute the ML and Bayes point estimates

4:From (38), (40) and (42) compute interval estimates by,

approximate ML confidence interval, percentile bootstrap

confidence interval and credible interval.

5:Put s = s+1.

6:Repeat the Step 2 to 5 1000 times.

7:Compute the the ME and MSE from the relations

ME =
1

1000

1000

∑
i=1i

R(i), (433)

and

MSE(R) =
1

1000

1000

∑
i=1i

(
R(i)−ME

)2
, (44)

8:Compute the value of MIL and PC and all results are reported

in tables from 2 to 5.

Numerical discussion: All the results of simulation study

have shown that, the model of estimation the reliability of

system present a good results. Also, some points are observed

from Tables 2 to 5 are given as follows

1.The MSEs and MILs are decreasing when sample sizes are

increasing.

2.Bayes point estimate with respected to MSE serve well than

ML estimate.

3.Bayesian credible interval with expected to MIL and PC

serve well than Approximate confidence interval and

percentile bootstrap confidence interval.

4.PCs are closed to proposed one at a large sample size.

5.The proposed inference methods of R present consistent

results.

6.The large value of τ serve well than small value of τ .

6 Conclusions

In this paper, we discussed the problem of estimation the

parameter of stress strength reliability when two variables

strength and stress have Burr XII distribution. This problem is

discussed under partially step-stress ALT model. We exposed

the estimation problem of R by different method of estimation.

We applied ML and Bayes methods to obtain the point estimates

of R. Also, interval estimate of R discussed under Approximate

ML confidence interval, percentile bootstrap confidence interval

as well as Bayesian credible interval interval. The numerical

results of numerical example and simulation study have shown

that, each methods serve well.
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Table 1: The point and interval estimate of (R)

R̂Exact R̂ML R̂Bayes ACI Boot-p CI CI

0.3478 0.2701 0.3208 (0.1703, 0.3698) (0.2752, 0.4215) (0.2100, 0.3978)

Table 2: ME, MSR, MIL and PC of R =0.25 when Θ = {0.5, 1.5, 1.5, 1.5}
τ (m, n) Point estimate Interval estimate

ME MSE MIL CP

ML Bayes ML Bayes ACI Boot-p CI ACI Boot-p CI

0.5 (15,15) 0.243 0.245 0.0345 0.0287 0.354 0.374 0.347 (0.89) (0.88) (0.90)

(15,25) 0.255 0.253 0.0324 0.0256 0.342 0.361 0.328 (0.90) (0.91) (0.92)

(25,15) 0.254 0.251 0.0321 0.0253 0.337 0.354 0.319 (0.91) (0.90) (0.93)

(25,25) 0.247 0.253 0.0301 0.0228 0.319 0.327 0.302 (0.92) (0.93) (0.94)

(40,40) 0.245 0.249 0.0272 0.0201 0.298 0.311 0.289 (0.93) (0.92) (0.96)

(40,60) 0.248 0.251 0.0261 0.0189 0.291 0.304 0.275 (0.91) (0.93) (0.95)

(60,40) 0.250 0.249 0.0257 0.0183 0.292 0.301 0.269 (0.94) (0.97) (0.94)

(60,60) 0.252 0.253 0.0235 0.0159 0.281 0.292 0.261 (0.93) (0.93) (0.95)

1.5 (15,15) 0.245 0.254 0.0337 0.0281 0.347 0.371 0.342 (0.90) (0.90) (0.91)

(15,25) 0.242 0.251 0.0317 0.0251 0.338 0.347 0.325 (0.92) (0.90) (0.93)

(25,15) 0.255 0.252 0.0317 0.0248 0.334 0.351 0.320 (0.933) (0.92) (0.92)

(25,25) 0.248 0.251 0.0295 0.0224 0.313 0.324 0.303 (0.91) (0.94) (0.96)

(40,40) 0.247 0.252 0.0268 0.0197 0.293 0.35 0.284 (0.92) (0.94) (0.95)

(40,60) 0.251 0.247 0.0254 0.0182 0.288 0.301 0.271 (0.94) (0.92) (0.94)

(60,40) 0.253 0.252 0.0251 0.0180 0.288 0.303 0.264 (0.93) (0.94) (0.95)

(60,60) 0.250 0.251 0.0232 0.0154 0.278 0.290 0.254 (0.96) (0.97) (0.94)

Table 3: ME, MSR, MIL and PC of R =0.456 when Θ = {1.0, 1.2, 2.0, 1.5}
(m, n) Point estimate Interval estimate

ME MSE MIL CP

ML Bayes ML Bayes ACI Boot-p CI ACI Boot-p CI

0.4 (15,15) 0.465 0.446 0.0554 0.0503 0.614 0.635 0.601 (0.90) (0.90) (0.91)

(15,25) 0.461 0.459 0.0542 0.0494 0.597 0.624 0.587 (0.91) (0.92) (0.93)

(25,15) 0.447 0.454 0.0513 0.0452 0.575 0.600 0.542 (0.92) (0.91) (0.96)

(25,25) 0.458 0.455 0.0497 0.0428 0.562 0.589 0.529 (0.96) (0.93) (0.94)

(40,40) 0.455 0.453 0.0481 0.0407 0.549 0.565 0.511 (0.92) (0.94) (0.93)

(40,60) 0.447 0.452 0.0458 0.0382 0.520 0.541 0.491 (0.92) (0.93) (0.93)

(60,40) 0.457 0.449 0.0451 0.0374 0.511 0.529 0.482 (0.93) (0.97) (0.94)

(60,60) 0.452 0.451 0.0432 0.0344 0.482 0.503 0.454 (0.94) (0.92) (0.95)

0.8 (15,15) 0.463 0.448 0.0550 0.0501 0.68 0.631 0.597 (0.90) (0.92) (0.91)

(15,25) 0.459 0.447 0.0537 0.0491 0.592 0.619 0.583 (0.92) (0.91) (0.94)

(25,15) 0.448 0.451 0.0508 0.0448 0.571 0.601 0.539 (0.94) (0.93) (0.94)

(25,25) 0.459 0.449 0.0492 0.0423 0.557 0.583 0.524 (0.92) (0.94) (0.93)

(40,40) 0.452 0.457 0.0478 0.0402 0.544 0.561 0.507 (0.94) (0.93) (0.96)

(40,60) 0.449 0.451 0.0456 0.0378 0.514 0.537 0.487 (0.93) (0.93) (0.95)

(60,40) 0.458 0.454 0.0447 0.0371 0.506 0.524 0.479 (0.94) (0.94) (0.93)

(60,60) 0.453 0.454 0.0429 0.0341 0.478 0.501 0.451 (0.92) (0.97) (0.94)
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