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Abstract: We demonstrate that a generalization of the Mehler’s formula can be achieved by employing techniques commonly utilized

in quantum optics. The methodology involves deriving the Mehler’s formula through the solution of a Schrödinger-type equation. The

selection of the initial conditions, determines the type of Mehler’s formula obtained; for example, the usual Mehler’s formula is obtained

when the initial condition is the product of two harmonic oscillator base functions. In this article, we focus on investigating specific

initial conditions that hold significance within the quantum optics community.
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1 Introduction

The Mehler’s formula has been a fundamental tool in the
fields of mathematics [1–6], theoretical physics [7], and
more specifically, in quantum mechanics [8–11].
However, in recent years, there has been a growing
interest for application in various scientific contexts:
neural networks, materials science, and chemical
birth-death process [12–14], among others. Given that the
product of Hermite polynomials leads to the Mehler’s
formula, Mehler-type formulas have been proposed by
generalizing the Hermite polynomials [15–17].
Furthermore, additional extensions have been
considered [18, 19].

In the context of quantum mechanics, the Mehler’s
formula has been used to comprehend the concept of the
fractional-order Fourier transform [20], and has been
applied in the study of quantum correlations [21, 22]. It
has also been employed in solving time-dependent
problems [23–26], optical fiber [27], and in the treatment
of two-mode squeezed states [28, 29].

The article is organized as follow: In Section 2, we
begin obtaining the generating function for Hermite
polynomials defining an alternative form of ladder
operators. During Section 3, the Mehler’s formula is
derived using the formal solution of a proposed
Schrödinger-type equation. In Section 4, we use the
results obtained in the previous section to generalize the
Mehler’s formula for any initial conditions, e.g., ground
states, coherent states, and two arbitrary harmonic

oscillator wave functions. Our conclusions are contained
in the Section 5.

2 Hermite polynomials

To illustrate the techniques that we will use later to
generalize the Mehler’s formula, in this section, using
those techniques, we will find the well-known generating
function of the Hermite polynomials.
Hermite polynomials can be defined in several ways; in
this article it is convenient to use the Rodrigues’
formula [30]; that is, we will use the following definition

Hn(x)≡ (−1)nex2 dn

dxn
e−x2

, n = 0,1,2, . . . . (1)

The generating function for the Hermite polynomials is

e−α2+2αx =
∞

∑
n=0

Hn(x)
αn

n!
. (2)

The Hermite polynomials satisfy the recurrence relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (3)

and
dHn(x)

dx
= 2nHn−1(x). (4)

All Hermite polynomials can be generated with the
Rodrigues’ formula, or with the recurrence relations.
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From the above recurrence relations, we can prove that if
we define the normalized simple harmonic oscillator
wave functions [30]

ϕn(x) =
π−1/4

√
2nn!

e−x2/2Hn(x), n = 0,1,2, . . . , (5)

the following relations are satisfied

Â†ϕn(x)≡
1√
2

(

x− d

dx

)

ϕn(x) =
√

n+ 1ϕn+1(x), (6)

and

Âϕn(x)≡
1√
2

(

x+
d

dx

)

ϕn(x) =
√

nϕn−1(x), (7)

where Â and Â† are the so-called ladder operators.
Introducing the differential operator D̂, defined as

D̂ ≡ d

dx
, (8)

we can rewrite the Rodrigues’ formula, (1), in the form
[31]

Hn(x) = (−1)nex2

D̂ne−x2

= (−1)n
(

ex2

D̂e−x2
)n

. (9)

The operator inside the parenthesis in (9) has the form

eξ ÂB̂e−ξ Â, and we can use the Hadamard’s
lemma [32–34] which establish that

eξ ÂB̂e−ξ Â = B̂+ ξ
[

Â, B̂
]

+
ξ 2

2!

[

Â,
[

Â, B̂
]]

+ . . . , (10)

to show that

ex2
D̂e−x2

= D̂− 2x, (11)

and then, we can write

Hn(x) = (−1)n (D− 2x)n
1. (12)

Using this last expression, we can write the right hand side
of the generating function (2) as

∞

∑
n=0

Hn(x)
αn

n!
=

∞

∑
n=0

(−α)n

n!

(

D̂− 2x
)n

1 = e−α(D̂−2x)1.

(13)
We have obtained the exponential of the sum of two
operators that do not commute, D̂ and x. Using the
Baker-Hausdorff formula [35], the above exponential can
be factorized in the product of two exponentials; indeed,
if in that formula we make the identifications

A → 2αx, B →−αD̂, (14)

we have that

[A,B] =−2α2
[

x, D̂
]

= 2α2, (15)

and we get

∞

∑
n=0

Hn(x)
αn

n!
= e−α2

e2αxeαD̂1. (16)

Using now the obvious fact that eαD̂1 = 1, we finally
obtain the desired result

∞

∑
n=0

Hn(x)
αn

n!
= e−α2+2αx, (17)

which is the generating function for Hermite polynomials,
as we wanted to show.

3 Mehler’s formula

The Mehler’s formula [36–39] establishes that the function

S(x,y;ρ) =
1

√

1−ρ2
exp

[

−ρ2
(

x2 + y2
)

− 2ρxy

1−ρ2

]

,

(18)
can be expanded in terms of Hermite polynomials, as

S(x,y;ρ) =
∞

∑
n=0

ρn

2nn!
Hn(x)Hn(y). (19)

In this section, we will show how the Mehler’s formula
can be obtained using the methods of quantum optics,
outlined in the previous section. The idea of proving this
well-known and perfectly well-proven formula in this
way, is to illustrate the method that we will use in its
generalization.
First, we multiply (19) by a product of Gaussian functions
in x and y, and use the eigenfunctions of the harmonic
oscillator (5), to write

e−
x2

2 e−
y2

2 S(x,y;ρ) =
√

π
∞

∑
n=0

ρnϕn(x)ϕn(y). (20)

As a key point in this work, we introduce the Schrödinger-
type equation

i
∂Φ (x,y, t)

∂ t
= (yp̂x + xp̂y)Φ (x,y, t) , (21)

where, as usual, p̂ξ = −i∂/∂ξ , (ξ = x,y), and t is a real
parameter. The formal solution of this Schrodinger-like
equation is

Φ(x,y, t) = e−it(yp̂x+xp̂y)Φ0(x,y), (22)

where Φ0(x,y) = Φ(x,y, t = 0) is the initial condition.
Next, we will show that with the appropriate initial
condition, the solution of this equation is essentially the
function S(x,y, t) on the left side of the Mehler’s formula,
Eq. (18). For that, we write the formal solution (22) as

Φ(x,y, t) = e−it(yp̂x+xp̂y)Φ0(x,y)e
it(yp̂x+xp̂y)e−it(yp̂x+xp̂y)1,

(23)
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where we have introduced the unit operator Î, written as

Î = eit(yp̂x+xp̂y)e−it(yp̂x+xp̂y) at the end.
Using again the Hadamard’s lemma [32, 33], Eq. (10), we
can demonstrate that

e−it(yp̂x+xp̂y)xeit(yp̂x+xp̂y) = xcosh t − ysinht, (24)

and that

e−it(yp̂x+xp̂y)yeit(yp̂x+xp̂y) = ycosh t − xsinht. (25)

From the definition of the operators p̂x and p̂y, which are
derivatives, it is obvious that

e−it(yp̂x+xp̂y)1 = 1. (26)

Thus, we can cast (22) as

Φ(x,y, t) = Φ0(xcosh t − ysinht,ycosht − xsinht). (27)

We now use the special initial condition mentioned above,
which is

Φ0(x,y) = ϕ0(x)ϕ0(y), (28)

where ϕ0(ξ ) is the harmonic oscillator eigenfunction (5)
with n = 0, that is just a Gaussian function. Hence,

Φ(x,y) =
1√
π

e−
(xcosht−y sinht)2+(ycosht−x sinht)2

2 . (29)

Making the identification tanh(t) = ρ , and after some
simple algebra, we arrive to

Φ(x,y) =
1√
π

exp

[

−1

2

(y−ρx)2 +(x−ρy)2

1−ρ2

]

. (30)

Now, we go back to the formal solution (22), and we are
going to express it in a way that is essentially the right hand
side of the Mehler’s formula, (18). For that, we introduce
the common ladder operators for x and y [40, 41],

â =
x+ ip̂x√

2
, â† =

x− ip̂x√
2

, (31)

and

b̂ =
y+ ip̂y√

2
, b̂† =

y− ip̂y√
2

, (32)

and we cast the formal solution, Eq. (22), as

Φ(x,y, t) = exp
[

t
(

â†b̂† − âb̂
)]

Φ0(x,y) . (33)

In Appendix A, we prove that the evolution operator

Û(t) = exp
[

t
(

â†b̂† − âb̂
)]

can be factorized as

Û(t) = etanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)e− tanh(t)âb̂. (34)

We apply this evolution operator to the special initial
condition Φ0(x,y) = ϕ0(x)ϕ0(y). As âϕ0(x) = 0 and

b̂ϕ0(y) = 0, it is easy to convince yourself that

Φ(x,y, t) =
1

cosh(t)
etanh(t)â†b̂†

ϕ0(x)ϕ0(y); (35)

expanding in Taylor series the exponential, and using the

fact that â† and b̂† commute, we obtain

Φ(x,y, t) =
1

cosht

∞

∑
n=0

tanhn(t)

n!
â†nb̂†nϕ0(x)ϕ0(y). (36)

We know that â†nϕ0(x) =
√

n!ϕn(x) and that b̂†nϕ0(y) =√
n!ϕn(y), so

Φ(x,y, t) =
1

cosh(t)

∞

∑
n=0

tanhn(t)ϕn(x)ϕn(y). (37)

Substituting back the harmonic oscillator eigenfunctions,
(5), we arrive to

Φ(x,y, t) =
e−

x2+y2

2√
π cosht

∞

∑
n=0

tanhn t

2nn!
Hn(x)Hn(y). (38)

Remembering the identification ρ = tanh(t), we get

Φ(x,y, t) =
1√
π

√

1−ρ2 e−
x2+y2

2

∞

∑
n=0

ρn

2nn!
Hn(x)Hn(y).

(39)
Finally, we match Eqs. (30) and (39) to reproduce the
Mehler’s formula.

4 Generalization of the Mehler’s formula

The generalizations of the Mehler’s formula that we
present below are obtained by changing the initial
condition of the Schrödinger type equation, Eq. (21), and
employing the same tactic as for the usual Mehler’s
formula; i.e., using in one side the solution (27), and in
the other side the solution obtained with the evolution
operator (34). First, we will use a ground state times a
coherent state, then the product of two coherent states,
and finally, the product of two arbitrary harmonic
oscillator eigenfunctions.

4.1 Ground and coherent states

We start with the case where the initial condition is the
product of a ground state and a coherent state, such that
initial condition is

Φ0(x,y) = ϕ0(x)ψα(y), (40)

where ψα(y) is the wave function of the coherent state.
Employing Eq. (27), we obtain

Φ(x,y, t) = ϕ0(xcosh t − ysinht)ψα(ycosht − xsinht).
(41)

Besides, from Eq. (34),

Φ(x,y, t) =etanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)

e− tanh(t)âb̂ϕ0(x)ψα (y). (42)
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In the equation above, we proceed to apply each of the
operators from right to left. As, âϕn(x) = 0, we have

e− tanh(t)âb̂ϕ0(x)ψα (y) = ϕ0(x)ψα (y), and

Φ(x,y, t) = etanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)ϕ0(x)ψα (y).
(43)

Applying the following operator in a right-to-left sequence
(see Appendix B), we arrive at

Φ(x,y, t) = f (α, t)etanh(t)â†b̂†

ϕ0(x)ψβ (y), (44)

where

f (α, t) =
1

cosht
exp

(

−|α|2
2

+
|β |2

2

)

, (45)

with β = α/cosh t.
In Appendix C, we show that the action of the remainder
operator leads us to

Φ(x,y, t) =
e
−|α|2

2

cosh(t)

∞

∑
j=0

∞

∑
m=0

tanh j(t)√
j!

β m

m!
√

( j+m)!ϕ j(x)ϕ j+m(y). (46)

Returning to the Hermite polynomials using (5),

Φ(x,y, t) =
e−

x2+y2

2 e
−|α|2

2

√
π cosh(t)

∞

∑
j=0

∞

∑
m=0

tanh j(t)

j!m!

β m

2 j+m
2

H j(x)H j+m(y). (47)

To obtain the final generalized form of the Mehler’s
formula, we need to equate this last expression with the
equation obtained substituting the explicit wave functions
for ϕ0(x) and for ψα(y) in Eq.(41), and make the
identification tanh(t) = ρ . We write the explicit result
only in the case in which α is real,

1
√

1−ρ2
exp

[

−ρ2
(

x2 + y2
)

+ 2ρxy

1−ρ2

]

× exp

[

−α2

2
+

√
2α (y+ρx)
√

1−ρ2

]

=
∞

∑
j=0

∞

∑
m=0

ρ jαm
(

1−ρ2
)m/2

j!m!2 j+m/2
H j(x)H j+m(y). (48)

Note that if α = 0 in the expression above, we recover the
formula (18) as it should be, because in that case the
Mehler’s generalized formula must be reduced to the
traditional one.

4.2 Coherent states

We consider now the case when the initial condition is the
product of two coherent states; i.e.,

Φ0(x,y) = ψαx(x)ψαy(y). (49)

According to Eq. (27), we get

Φ(x,y, t) =ψαx(xcosh t − ysinht)ψαy(ycosht − xsinht).

(50)

Furthermore, from (34) we obtain

Φ(x,y, t) =etanh(t)â†b̂†
e− ln(cosh(t))(ââ†+b̂†b̂)e− tanh(t)âb̂

ψαx(x)ψαy(y). (51)

Similarly to the previous case, we need to apply each of
the operators in the above expression. Thus, after applying
the first one, we arrive to

Φ(x,y, t) =e− tanh(t)αxαyetanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)

ψαx(x)ψαy(y). (52)

Upon applying the second operator, we can write

Φ(x,y, t) = f (αx,αy, t)e
tanh(t)â†b̂†

ψβx
(x)ψβy

(y), (53)

with

f (αx,αy, t) =
e− tanh(t)αxαy

cosh(t)
e−

|αx|2
2 − |αy|2

2 +
|βx|2

2 +
|βy|2

2 , (54)

βx =
αx

cosh(t)
, and βy =

αy

cosh(t)
.

Expanding the last operator in its Taylor series,

Φ(x,y, t) = f (αx,αy, t)
∞

∑
j=0

tanh j(t)

j!
(â†b̂†) jψβx

(x)ψβy
(y).

(55)
Then,it is easy to see that

Φ(x,y, t) =
e− tanh(t)αxαy

cosh(t)
e−

|αx|2
2 − |αy|2

2

∞

∑
j=0

∞

∑
n,m=0

tanh j(t)

j!

β n
x β m

y

n!m!

√

( j+ n)!( j+m)!ϕ j+n(x)ϕ j+m(y).

(56)

Finally, using (5), we write the last equation in terms of
the Hermite polynomials

Φ(x,y, t) =
e− tanh(t)αxαy e−

x2+y2

2

√
π cosh(t)

e−
|αx|2

2 − |αy|2
2

∞

∑
j=0

∞

∑
n,m=0

tanh j(t)

j!n!m!

β n
x β m

y

2 j+ n+m
2

H j+n(x)H j+m(y).

(57)

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 2, 463-471 (2024) / www.naturalspublishing.com/Journals.asp 467

Like in the previous case, to generalize the Mehler’s
formula, it is necessary to equate the above expression
with Eq. (50), when we substitute the explicit wave
functions for ψαx(x) and ψαy(y), and set tanh(t) = ρ . We
will provide the explicit result only in the case where αx

and αy are real, which is

1
√

1−ρ2
exp

[

−ρ2
(

x2 + y2
)

+ 2ρxy

1−ρ2

]

exp

[

−
α2

x +α2
y

2
+

√
2(1+ρ)(xαx + yαy)

√

1−ρ2
+ραxαy

]

=
∞

∑
j=0

∞

∑
n,m=0

ρ jαn
x αm

x

(

1−ρ2
)

n+m
2

j!n!m!2 j+ n+m
2

H j+n(x)H j+m(y). (58)

In Fig. 1, we plot the square of the absolute value of the
field in Eq. (50) for different values of αx and αy; we
display four different cases in which we can readily
observe displacement, rotation and slight compression in
each of the states, based on the values of αx and αy; these
changes occur due to the value assigned to t.
Furthermore, for longer times, this compression becomes
increasingly conspicuous, primarily because the term

exp
[

tanh(t) â†b̂†
]

tends to diverge exponentially.

−4

−2

0

2

4

y

(a) (b)

−2.5 0.0 2.5

x

−4

−2

0

2

4

y

(c)

−2.5 0.0 2.5

x

(d)

0.0

0.5

1.0

1.5

2.0

2.5
×10−1

Fig. 1: The square of the absolute value of the field in
Eq. (50) for different values of αx and αy at t = 0.25; (a)
αx = αy = 0, (b) αx = 0 and αy = 2, (c) αx = 2 and αy = 0,
(d) αx = 1 and αy = 1.

4.3 Two harmonic oscillator wave functions

Finally, we delve into the case of two harmonic oscillator
wave functions; for this, we take our initial condition as

Φ0(x,y) = ϕn(x)ϕm(y), (59)

where the functions ϕ j(x) are given by (5).
From Eqs. (27) and (34), we have

Φ(x,y, t) = ϕn(xcosh t − ysinht)ϕm(ycosh t − xsinht),
(60)

and

Φ(x,y, t) =etanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)e− tanh(t)âb̂

ϕn(x)ϕm(y), (61)

respectively. In the same manner as in the previous cases,
we have to apply each of the operators in the last
expression; after applying the first one, we get

Φ(x,y, t) = etanh(t)â†b̂†
e− ln(cosh(t))(ââ†+b̂†b̂)

min(n,m)

∑
j=0

[− tanh(t)] j

j!

√

n!m!

(n− j)!(m− j)!
ϕn− j(x)ϕm− j(y);

(62)

as we have (n− j)! and (m− j)! in the denominator, the
sum over j can be extended to infinity, giving

Φ(x,y, t) = etanh(t)â†b̂†

e− ln(cosh(t))(ââ†+b̂†b̂)

∞

∑
j=0

(−1) j tanh j(t)

j!

√

n!m!

(n− j)!(m− j)!
ϕn− j(x)ϕm− j(y).

(63)

Applying the second operator, we obtain

Φ(x,y, t) =
1

coshn+m+1(t)
etanh(t)â†b̂†

∞

∑
j=0

(−1) j tanh j(t)cosh2 j(t)

j!

√

n!m!

(n− j)!(m− j)!

ϕn− j(x)ϕm− j(y). (64)

Applying the third operator, we arrive to

Φ(x,y, t) =

√
n!m!

coshn+m+1(t)
∞

∑
j,k=0

(−1) j
√

(n− j+ k)!(m− j+ k)!

j!k!(n− j)!(m− j)!

tanh j+k(t)cosh2 j(t)ϕn− j+k(x)ϕm− j+k(y).
(65)

Finally, substituting in (60) and in (65) the explicit
expression for the quantum harmonic oscillator
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eigenfunctions, Eq. (5), making tanh(t) = ρ , and equating
those two expressions, we get the following
generalization of the Mehler’s formula,

1

(1−ρ2)
n+m+1

2

exp

[

−ρ2
(

x2 + y2
)

− 2ρxy

1−ρ2

]

Hn

(

x−ρy
√

1−ρ2

)

Hm

(

y−ρx
√

1−ρ2

)

=
∞

∑
j,k=0

(−1) jn!m!

2k− j j!k!(n− j)!(m− j)!

ρ j+k

(1−ρ2) j/2

Hn− j+k(x)Hm− j+k(y). (66)

If we chose n = m = 0 in (66), we return to the standard
Mehler’s formula Eq. (19), as must be.
In Fig. 2, we depict the square of the absolute value of
the field in Eq. (60) for different values of n and m at t =
0.25; we observe that the states are compressed according
to the value of t that we have chosen. Furthermore, for
larger times, this compression increases, as in the previous
case. In addition, the values of n and m indicate how many
spots will be generated.

−4

−2

0

2

4

y

(a) (b)

−2.5 0.0 2.5

x

−4

−2

0

2

4

y

(c)

−2.5 0.0 2.5

x

(d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
×10−2

Fig. 2: The square of the absolute value of the field in
Eq. (60) for different values of n and m at t = 0.25: (a)
n = m = 0, (b) n = 5 and m = 10, (c) n = 10 and m = 10,
(d) n = 10 and m = 10

5 Conclusions

The generalizations of the Mehler’s formula broaden its
scope and applicability, enabling us to address a variety of
initial conditions and more complex quantum phenomena.

In summary, this paper presents three generalizations of
the Mehler’s formula:
(1) The first one is obtained when a product of the ground
state of the harmonic oscillator and a coherent state is
considered as initial state. The generalization obtained is
presented in expression (48).
(2) The generalization formula (58) is obtained when the
initial condition is the product of two coherent states with
real amplitudes.
(3) If the initial state is the product of two eigenfunctions
of the harmonic oscillator, we acquire the third and final
generalization of the Mehler’s formula. The new formula
is given in (66).
These generalizations are achieved through the formal
solution of a Schrödinger-type equation, along with the
utilization of well-established tools in quantum optics.
Furthermore, we apply it to various initial conditions,
thereby demonstrating its utility and practicality.

A Factorization of Û(t)

In this appendix, we factorize the evolution operator

et(â†b̂†−âb̂).
To achieve the factorization, we propose the ansatz

Û(t) = et(â†b̂†−âb̂) = e f1(t)â
† b̂†

e f2(t)(ââ†+b̂†b̂)e f3(t)âb̂, (67)

where f1(t), f2(t) and f3(t) are functions of time to be
determined.
The derivative of the evolution operator with respect to t

gives, on the one hand,

dÛ(t)

dt
= (â†b̂† − âb̂)Û(t), (68)

and, on the other hand,

dÛ(t)

dt
=

d f1

dt
â†b̂†e f1(t)â

†b̂†

e f2(t)(ââ†+b̂†b̂)e f3(t)âb̂

+
d f2

dt
e f1(t)â

† b̂†
(ââ† + b̂†b̂)e f2(t)(ââ†+b̂†b̂)e f3(t)âb̂

+
d f3

dt
e f1(t)â

† b̂†

e f2(t)(ââ†+b̂†b̂)âb̂e f3(t)âb̂. (69)

By properly inserting the identity operator, written in
different ways several times, the expression above can be
copied as

dÛ(t)

dt
=
[d f1

dt
â†b̂† +

d f2

dt
e f1(t)â

†b̂†
(ââ† + b̂†b̂)e− f1(t)â

†b̂†

+
d f3

dt
e f1(t)â

†b̂†

e f2(t)(ââ†+b̂†b̂)âb̂e− f2(t)(ââ†+b̂†b̂)e− f1(t)â
†b̂†
]

Û(t). (70)

Using above the Hadamard lemma, Eq. (10), and equating
the result obtained with the derivative in (68), we get the

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 2, 463-471 (2024) / www.naturalspublishing.com/Journals.asp 469

set of coupled differential equations

1 =
d f1

dt
− 2 f1

d f2

dt
+ f 2

1

d f3

dt
e−2 f2 , (71a)

0 =
d f2

dt
− f1

d f3

dt
e−2 f2 , (71b)

−1 =
d f3

dt
e−2 f2 , (71c)

subject to the initial conditions f1(0) = f2(0) = f3(0) = 0.
It is not difficult to show that the solution of the above
system of equations is

f1(t) = tanht, f2(t) =− ln(cosh t), f3(t) =− tanht. (72)

B Appendix B

In this appendix, we show that

e− ln(cosht)(ââ†+b̂†b̂)ϕ0(x)ψα(y) = f (α, t)ϕ0(x)ψβ (y),
(73)

where

f (α, t) =
1

cosht
e

1
2(−|α |2+|β |2), (74)

and β = α/cosht.

As the operators â and â† commute with b̂ and b̂†, we can
write

e− ln(cosh t)(ââ†+b̂†b̂) = e− ln(cosht)ââ†
e− ln(cosht)b̂†b̂; (75)

thus,

e− ln(cosht)(ââ†+b̂†b̂)ϕ0(x)ψα (y)

= e− ln(cosh t)ââ†
ϕ0(x)e

− ln(cosht)b̂†b̂ψα(y). (76)

Since [â, â†] = 1, we can cast the first term in the right hand
side of the equation above as

e− ln(cosht)ââ†

ϕ0(x) = e− ln(cosht)(â†â+1)ϕ0(x), (77)

and because â†âϕ0(x) = 0, we get

e− ln(cosht)ââ†

ϕ0(x) = e− ln(cosht)ϕ0(x) =
ϕ0(x)

cosht
. (78)

On the other hand, to deal with the term

e− ln(cosht)b̂†b̂ψα(y), we write the coherent state ψα(y) in
terms of the harmonic oscillator eigenfuntions ϕn(y) as

ψα(y) = e−
|α|2

2

∞

∑
j=1

α j

j!
ϕ j(y), (79)

and then

e− ln(cosht)b̂†b̂ψα(y) = e− ln(cosh t)b̂†b̂e−
|α|2

2

∞

∑
j=1

α j

j!
ϕ j(y)

= e−
|α|2

2

∞

∑
j=1

α j

j!
e− ln(cosht)b̂†b̂ϕ j(y);

(80)

we have that b̂†b̂ϕ j(y) = jϕ j(y), thus

e− ln(cosh t)b̂†b̂ψα(y) = e−
|α|2

2

∞

∑
j=1

α j

j!
e− ln(cosht) jϕ j(y)

= e−
|α|2

2

∞

∑
j=1

α j

j!

1

cosh j t
ϕ j(y)

= e−
|α|2

2

∞

∑
j=1

1

j!

( α

cosh t

) j

ϕ j(y)

= e−
|α|2

2 e
| α
cosh t

|2
2 e−

| α
cosh t

|2
2

∞

∑
j=1

1

j!

( α

cosht

) j

ϕ j(y). (81)

Hence,

e− ln(cosht)b̂†b̂ψα(y) = e
1
2 (−|α |2+|β |2)ψβ (y). (82)

Finally, using (78) and (82), we get (73), as wished.

C Appendix C

In this appendix, we prove that

etanh(t)â†b̂†
ϕ0(x)ψβ (y) =e−

|β |2
2

∞

∑
j=0

∞

∑
m=0

√

( j+m)!√
j!m!

tanh j(t)β mϕ j(x)ϕ j+m(y). (83)

Using the definition of the exponential operator in terms
of its Taylor’s series, we have

etanh(t)â† b̂†

ϕ0(x)ψβ (y)

=

[

∞

∑
j=0

tanh j(t)

j!

(

â†b̂†
) j

]

ϕ0(x)ψβ (y); (84)

since â† and b̂† commute, we can write

etanh(t)â†b̂†
ϕ0(x)ψβ (y) =

∞

∑
j=0

tanh j(t)

j!
â† jϕ0(x)b̂

† jψβ (y).

(85)

We have already used in Appendix B that
â† jϕ0(x) =

√
j!ϕ j(x), so

etanh(t)â†b̂†

ϕ0(x)ψβ (y) =
∞

∑
j=0

tanh j(t)√
j!

ϕ j(x)b̂
† jψβ (y).

(86)

We turn now to the term b̂† jψβ (y). For that, we use the

expansion of the coherent wave function ψβ (y) in terms of
the eigenfunctions of the harmonic oscillator; i.e.,

ψβ (y) = e−
|β |2

2

∞

∑
m=0

β m

√
m!

ϕm(y), (87)
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in such a way that

b̂† jψβ (y) =b̂† je−
|β |2

2

∞

∑
m=0

β m

√
m!

ϕm(y)

=e−
|β |2

2

∞

∑
m=0

β m

√
m!

b̂† jϕm(y); (88)

using the well know fact that

b̂† jϕm(y) =

√

( j+m)!

m!
ϕ j+m(y), (89)

we get

b̂† jψβ (y) = e−
|β |2

2

∞

∑
m=0

β m

m!

√

( j+m)!ϕ j+m(y), (90)

which substituted in (86) gives us (83), as we were
looking.
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