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Abstract: Numerically, we verify the theoretical results about the behavior of the solutions of a nonlinear parabolic problem with

homogeneous Neumann boundary conditions, when a nonlinear reaction term is concentrated in a neighborhood of the boundary of a

domain in R
2, using the finite element method. We assume that this neighborhood shrinks to the boundary as a parameter ε goes to zero.

Also, we suppose that the “inner boundary” of this neighborhood presents an oscillatory behavior. We evaluate the error made when the

numerical solution of a parabolic problem with nonlinear Neumann boundary conditions is approximated by the family of numerical

solutions of the concentrated problem, as ε goes to zero. Numerical results associated with the dynamics of these concentrated problems

will be presented as a great novelty.
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1 Introduction

Dynamic systems in infinite dimensional spaces are
mathematical models for a large number of problems in
applied areas such as physics, biology, chemistry,
economics and engineering, among many others. There
are several works to study the asymptotic behavior of
dynamic systems generated by parabolic partial
differential equations in spaces of infinite dimension, see
for example [1, 2, 3, 4, 5, 6, 7].

On the other hand, the technique of terms
concentrating on the boundary of a domain Ω ⊂ R

n,
n ≥ 2, is more recent. The first paper [8] analyzed the
limit of the solutions of an elliptic problem when some
reaction and potential terms are concentrated in a
neighborhood of the boundary ∂Ω of class C 2 and this
neighborhood shrinks to ∂Ω as a parameter ε goes to
zero. Later, the asymptotic behavior of a parabolic
problem of the same type was analyzed in [9, 10], where
the upper semicontinuity of attractors was proved. In [11]
some results of [8] were adapted to a nonlinear elliptic
problem posed on an open square Ω in R

2 with terms

concentrating in a neighborhood of the boundary and this
neighborhood presents a highly oscillatory behavior.
Moreover, in [12] was studied a nonlinear parabolic
problem still considering concentrated terms and
oscillatory behavior, this work will be described in more
detail below. We can also cite other more recent works
such as [13, 14], where the continuity of the pullback
attractors of non-autonomous damped wave equations
with terms concentrating on the boundary was studied.

In this work, we numerically verify the theoretical
results about the behavior of the solutions of a nonlinear
parabolic problem with terms concentrating in an
oscillatory neighborhood of the boundary of a domain in
R

2, using the finite element method. Note that the
numerical behavior was not approached in the works cited
above and that is indeed our main contribution in this
paper.

To describe the results obtained in [12], let Ω ⊂R
2 be

an open bounded set with a C 2 boundary ∂Ω and
g : [0,T ]×R→ R, T > 0, be a positive smooth function
such that y 7→ g(x,y) has period l(x) in y for each x, with
period l(x) uniformly bounded in [0,T ]. Given ε > 0 and
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ν > 0, let gε(·) be a positive bounded function which may
oscillate as the parameter ε goes to zero. This function
has the form

gε(s) = g
(

s,
s

εν

)
, s ∈ [0,T ].

Let x,y ∈ C
2 ([0,T ]) such that the curve

ψ(s) = (x(s),y(s)) , s ∈ [0,T ], is a parametrization of
class C 2 for the boundary ∂Ω with ‖ψ ′(s)‖

R2 = 1, for all
s ∈ [0,T ]. We define the strip with width ε and base ∂Ω
as

ωε =
{

ξ ∈ R
2 : ξ = ψ(s)− tN(ψ(s)), s ∈ [0,T ] and

t ∈ [0,εgε(s))} ,

for sufficiently small ε , say 0 < ε ≤ ε0, where N(ψ(s))
is the unit outward normal vector to ∂Ω . For small ε , ωε

is a neighborhood of the boundary ∂Ω on the Ω , which
shrinks to ∂Ω as the ε parameter goes to zero. Note that
the “inner boundary” of ωε ,

{
ξ ∈ R

2 : ξ = ψ(s)− εgε(s)N(ψ(s)), s ∈ [0,T ]
}
,

presents a highly oscillatory behavior established by
function gε . Moreover, the height of ωε and the amplitude
of the oscillations have the same order ε, while the period
of the oscillations presents order εν for any ν > 0.

In particular, in [12] was studied the behavior, for small
ε , of the solutions of the nonlinear parabolic problem with
homogeneous Neumann boundary conditions given by






∂uε

∂ t
−∆uε + uε =

1

ε
χωε f (uε ), in (0,∞)×Ω

∂uε

∂N
= 0, on (0,∞)× ∂Ω

uε(0) = ϕ0 ∈ H1(Ω),
(1)

where f : R→R is a C 2 function, χωε is the characteristic

function of the set ωε and we refer to the term
1

ε
χωε f (uε )

as the nonlinear reaction concentrating on the region ωε .
The authors showed that the limit problem of the

concentrated problem (1) is given by the following
parabolic problem with nonlinear Neumann boundary
conditions






∂u0

∂ t
−∆u0 + u0 = 0, in (0,∞)×Ω

∂u0

∂N
= µ f (u0), on (0,∞)× ∂Ω

u0(0) = ϕ0 ∈ H1(Ω),

(2)

where the boundary coefficient µ ∈ L∞(∂Ω) is related to
the periodic function g as follows

µ(s) = µ(ψ(s)) =
1

l(s)

∫ l(s)

0
g(s,τ)dτ, ∀s ∈ (0,T ). (3)

Under the usual assumptions of regularity and
dissipativeness, the authors proved the existence and
upper semicontinuity of the family of attractors in H1(Ω)
with respect to ε . And, assuming hiperbolicity of the
equilibria of the limit problem (2), they also proved the
lower semicontinuity of the attractors.

In this paper, some numerical simulations will be
presented to verify some theoretical results about the
behavior of the solutions of (1) and (2) as ε goes to zero,
in a particular case. For this, we consider

Ω =
{
(x,y) ∈ R

2 : x2 + y2
< 1

}
, f (u) = u(1 − u) for

u ∈ R, ϕ0(x,y) = sin(x2 + y2) for (x,y) ∈ Ω , and

gε(s) = 2+ cos
( s

ε

)
for s ∈ [0,2π ] and 0 < ε ≤ ε0, that

is, the oscillatory function gε presents a purely periodic
behavior with 1 ≤ gε(s) ≤ 3, for all s ∈ [0,2π ]. In this
case, by (3) we get the constant boundary coefficient
µ = 2.

We take the following parametrization

ωε =
{

ξ ∈ R
2 : ξ = ((1− t)cos(s),(1− t)sin(s)) ,

s ∈ [0,2π ] and t ∈ [0,εgε(s))} ,

with 0 < ε ≤ ε0, for sufficiently small ε0.
We are interested in analyzing, as ε goes to zero, how

the family of numerical solutions of the following
concentrated nonlinear parabolic problem with
homogeneous Neumann boundary conditions





∂uε

∂ t
−∆uε +uε =

1

ε
χωε uε(1−uε ), in (0,∞)×Ω

∂uε

∂N
= 0, on (0,∞)×∂Ω

uε (0) = sin(x2 +y2),

(4)

converges to the solution of the following parabolic
problem with nonlinear Neumann boundary conditions





∂u0

∂ t
−∆u0 + u0 = 0, in (0,∞)×Ω

∂u0

∂N
= 2u0(1− u0), on (0,∞)× ∂Ω

u0(0) = sin(x2 + y2).

(5)

We will refer to ε = 0 for the limit problem (5). We
will build differents “inner boundaries” on ωε . The
Figure1 illustrates an example of this construction. Then,
for each of these “inner boundaries”, we will use a finite
element scheme to discretize Ω together with ωε . So, for
sufficiently small ε , we will evaluate the error made when
we approximate the unique solution of (5) by solutions of
the problem (4).
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Fig. 1: The domain Ω , in black, and “inner boundary” of ωε , in

magenta, for ε = 0.2.

This paper is organized as follows: in Section 2, we
will obtain some technical results to ensure that the
problems (4) and (5) have a unique global solution. In
Section 3, we will show the numerical scheme to
numerical verification of some results obtained in Section
2 and [12].

2 Existence and uniqueness of solutions

Before we analyze the numerical behavior, we will need
to show that the problems (4) and (5) have a unique global
solution on suitable spaces. For this, we will prove some
technical results.

Initially, we denote by Hα ,p(Ω) the Bessel Potentials
spaces, where α ≤ 1 and 1 < p < 1. We note that
H0,p(Ω) = Lp(Ω) and Hα ,2(Ω) = Hα(Ω). Note that the
regularity of Ω and standard trace theory imply that for

any function v ∈ Hα ,p(Ω), with α >
1

p
, the trace of v,

denoted by γ(v), is well defined and it lies in Lq(∂Ω),

provided α −
n

p
≥ −

(n− 1)

q
, for Ω ⊂ R

n; in our case

n = 2. Moreover, the trace operator
γ : Hα ,p(Ω) → Lq(∂Ω) is continuous linear. For more
details on the standard trace theory in regular domains,
see [15, 16].

We will get a result about concentrated integrals,
which is an adaptation of [12, Lemma 2.1].

Lemma 1.Let v ∈ Hα(Ω) with
1

2
< α ≤ 1 e α − 1 ≥−

1

q
.

Then, for sufficiently small ε0, there exists a constant C > 0
independent of ε and v such that for any 0 < ε ≤ ε0, we

have
1

ε

∫

ωε

|v|qdξ ≤C‖v‖q

Hα (Ω)
.

Proof. We notice that

1

ε

∫

ωε

|v|qdξ ≤
1

ε

∫

rε

|v|qdξ ,

where rε is given by

rε =
{

ξ ∈ R
2 : ξ = ((1− 3ε)cos(s),(1− 3ε)sin(s)) ,

s ∈ [0,2π ]} ,

with 0 < ε ≤ ε0, as illustrated in Figure 2.

Fig. 2: The domain Ω , in cyan, the “inner boundaries” of ωε and

rε , in magenta and black, respectively, for ε = 0.2.

Thus, the result follows from [8, Lemma 2.1]. �

The problems (4) and (5) can be written in abstract
forms. To do this, we introduce the following continuous
bilinear form a : H1(Ω)×H1(Ω)→ R given by

a(u,v) =

∫

Ω
(∇u∇v+ uv)dxdy, ∀u,v ∈ H1(Ω).

Moreover, the bilinear form a is uniformly coercive in
H1(Ω).

Thus, we can define the linear operator A : H1(Ω) ⊂
H−1(Ω)→ H1(Ω) by

〈Au,v〉−1,1 = a(u,v), ∀v ∈ H1(Ω).

Remark.This operator A can also be considered as going

from H2−α(Ω)⊂H−α(Ω) into H−α(Ω), with
1

2
<α ≤ 1.

With some abuse of notation we will identify all different
realizations of this operator and we will write all of them as
A. So, the operator A : H2−α(Ω)⊂ H−α(Ω)→ H−α(Ω),
1

2
< α ≤ 1, is invertible, selfadjoint and positive, thus a

sectorial operator with spectrum contained in the subset
(0,∞)⊂ R.

Now, we define the abstract maps associated to the
nonlinearities in the problems (4) and (5). Initially, for
each 0 < ε ≤ ε0, we define Fε : H1(Ω)→ H−α(Ω), with
1

2
< α ≤ 1, by

〈Fε(u),φ〉=
1

ε

∫

ωε

u(1− u)φ dξ , (6)
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for all u ∈ H1(Ω) and for all φ ∈ Hα(Ω).

We define F0 : H1(Ω) → H−α(Ω), with
1

2
< α ≤ 1,

by

〈F0(u),φ〉=

∫

∂Ω
2γ(u)(1− γ(u))γ(φ)dS, (7)

for all u ∈ H1(Ω) and for all φ ∈ Hα(Ω), where dS is
the surface measure associated to ∂Ω and γ is the trace
operator.

Therefore, the problems (4) and (5) can be written in
the following abstract form




duε(t)

dt
+Auε(t) = Fε(uε(t)), t > 0 and 0 ≤ ε ≤ ε0

uε(0) = ϕ0 ∈ H1(Ω),
(8)

where ϕ0(x,y) = sin(x2 + y2), for (x,y) ∈ Ω .
Next, we study the behavior of the maps Fε defined

in (6) and (7). In particular, we conclude that the abstract
parabolic problem (8) is well posed in H1(Ω).

Proposition 1.Suppose
1

2
< α ≤ 1, then:

(a) There exists K > 0 independent of ε such that

‖Fε(u)‖H−α (Ω) ≤ K ‖u‖H1(Ω)

(
1+ ‖u‖H1(Ω)

)
,

for all u ∈ H1(Ω) and 0 ≤ ε ≤ ε0.

In particular, the map Fε : H1(Ω) → H−α(Ω) is

bounded, uniformly in ε , in bounded sets of H1(Ω).

(b) There exists L > 0 independent of ε such that

‖Fε(u)−Fε(v)‖H−α (Ω) ≤ L‖u− v‖H1(Ω)

(
1+ ‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
,

for all u,v ∈ H1(Ω).
In particular, for each 0 ≤ ε ≤ ε0, the map

Fε : H1(Ω) → H−α(Ω) is locally Lipschitz, uniformly in

ε.

(c) For each u ∈ H1(Ω), we have

‖Fε(u)−F0(u)‖H−α (Ω) → 0, as ε → 0.

Furthermore, this limit is uniform for u in bounded sets of

H1(Ω).

Proof. (a) Given u ∈ H1(Ω) and 0 ≤ ε ≤ ε0, we have

‖Fε(u)‖H−α (Ω) = sup
φ∈Hα (Ω)

‖φ‖Hα (Ω)=1

|〈Fε(u),φ〉| .

For each 0 < ε ≤ ε0, φ ∈ Hα (Ω) and u ∈ H1 (Ω) ,
using (6) we have

|〈Fε(u),φ〉| ≤
1

ε

∫

ωε

|u||1− u||φ |dξ

≤
1

ε

∫

ωε

|u| |φ | dξ +
1

ε

∫

ωε

|u|2 |φ | dξ = I1 + I2.

In the case of I1, using the Cauchy-Schwartz inequality
and Lemma 1, we obtain

I1 ≤

(
1

ε

∫

ωε

|u|2 dξ

) 1
2
(

1

ε

∫

ωε

|φ |2 dξ

) 1
2

≤ C1 ‖u‖H1(Ω) ‖φ‖Hα (Ω) ,

where C1 > 0 is independent of ε . Similarly for I2, we
obtain

I2 ≤

(
1

ε

∫

ωε

|u|4 dξ

) 1
2
(

1

ε

∫

ωε

|φ |2 dξ

) 1
2

≤ C2 ‖u‖2
H1(Ω) ‖φ‖Hα (Ω) ,

where C2 > 0 is independent of ε .
Consequently, there exists K1 > 0 independent of ε

such that

|〈Fε(u),φ〉| ≤ K1 ‖u‖H1(Ω)

(
1+ ‖u‖H1(Ω)

)
‖φ‖Hα (Ω) ,

(9)
for 0 < ε ≤ ε0.

In the case ε = 0, for each φ ∈ Hα (Ω) and
u ∈ H1 (Ω) , using (7) we have

|〈F0(u),φ〉| ≤ 2

∫

∂Ω
|γ(u)||1− γ(u)||γ(φ)|dS

≤ 2(I3 + I4) ,

with

I3 =

∫

∂Ω
|γ(u)| |γ(φ)| dS, I4 =

∫

∂Ω
|γ(u)|2 |γ(φ)| dS.

In the case of I3, using the Cauchy-Schwartz
inequality and trace theorem, that is, the continuity of the

trace operator γ : Hα(Ω)→ L2(∂Ω), with
1

2
< α ≤ 1, we

have there exists C3 > 0 such that

I3 ≤

(∫

∂Ω
|γ(u)|2 dS

) 1
2
(∫

∂Ω
|γ(φ)|2 dS

) 1
2

≤ C3 ‖u‖H1(Ω) ‖φ‖Hα (Ω) .

While for I4, using also the continuity of the trace
operator γ : H1(Ω) → L4(∂Ω), we have there exists
C4 > 0 such that

I4 ≤

(∫

∂Ω
|γ(u)|4 dS

) 1
2
(∫

∂Ω
|γ(φ)|2 dS

) 1
2

≤ C4 ‖u‖2
H1(Ω) ‖φ‖Hα (Ω) .

Therefore, there exists K2 > 0 such that

|〈F0(u),φ〉| ≤ K2 ‖u‖H1(Ω)

(
1+ ‖u‖H1(Ω)

)
‖φ‖Hα (Ω) .

(10)
Now, taking the supreme, in (9) and (10), over all

function φ ∈ Hα(Ω) such that ‖φ‖Hα (Ω) = 1, we obtain

there exists K > 0 independent of ε such that

‖Fε(u)‖H−α (Ω) ≤ K ‖u‖H1(Ω)

(
1+ ‖u‖H1(Ω)

)
,
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for all u ∈ H1(Ω) and 0 ≤ ε ≤ ε0.

(b) Given u,v ∈ H1(Ω) and 0 ≤ ε ≤ ε0, we have

‖Fε(u)−Fε(v)‖H−α (Ω) = sup
φ∈Hα (Ω)

‖φ‖Hα (Ω)=1

|〈Fε(u)−Fε(v),φ〉| .

For each 0 < ε ≤ ε0, φ ∈ Hα (Ω) and u,v ∈ H1 (Ω) ,
using (6) we have

|〈Fε(u)−Fε(v),φ〉|

≤
1

ε

∫

ωε

|u− v| |φ | dξ +
1

ε

∫

ωε

|u2 − v2| |φ | dξ = I5 + I6.

Using the Cauchy-Schwartz inequality and Lemma 1,
there exists C1 > 0 independent of ε such that

I5 ≤

(
1

ε

∫

ωε

|u− v|2 dξ

) 1
2
(

1

ε

∫

ωε

|φ |2 dξ

) 1
2

≤ C1 ‖u− v‖H1(Ω) ‖φ‖Hα (Ω) .

For I6, using the Cauchy-Schwartz inequality and
Lemma 1, there exists C2 > 0 independent of ε such that

I6 ≤

(
1

ε

∫

ωε

|u− v|2 |u+ v|2 dξ

) 1
2
(

1

ε

∫

ωε

|φ |2 dξ

) 1
2

≤C2 ‖u− v‖H1(Ω) ‖u+ v‖H1(Ω) ‖φ‖Hα (Ω)

≤C2 ‖u− v‖H1(Ω)

(
‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
‖φ‖Hα (Ω) .

Therefore, there exists L1 > 0 independent of ε such
that

|〈Fε(u)−Fε(v),φ〉| ≤ L1 ‖u− v‖H1(Ω)

(
1+ ‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
‖φ‖Hα (Ω) ,

(11)
for 0 < ε ≤ ε0.

In the case ε = 0, for each φ ∈ Hα (Ω) and
u,v ∈ H1 (Ω) , using (7) we have

|〈F0(u)−F0(v),φ〉| ≤ 2

∫

∂Ω
|γ(u)− γ(v)| |γ(φ)| dS

+ 2

∫

∂Ω
|(γ(u))2 − (γ(v))2| |γ(φ)| dS

= 2(I7 + I8) .

Using the Cauchy-Schwartz inequality, trace theorem
and similar arguments to those used to estimate the
integrals I5 and I6, we can get C3,C4 > 0 such that

I7 ≤C3 ‖u− v‖H1(Ω) ‖φ‖Hα (Ω)

and

I8 ≤C4 ‖u− v‖H1(Ω)

(
‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
‖φ‖Hα (Ω) .

Therefore, there exists L2 > 0 such that

|〈F0(u)−F0(v),φ〉| ≤ L2 ‖u− v‖H1(Ω)

(
1+ ‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
‖φ‖Hα (Ω) .

(12)

Thus, taking the supreme, in (11) and (12), over all
function φ ∈ Hα(Ω) such that ‖φ‖Hα (Ω) = 1, we obtain

there exists L > 0 independent of ε such that

‖Fε(u)−Fε(v)‖H−α (Ω) ≤ L‖u− v‖H1(Ω)

(
1+ ‖u‖H1(Ω)+ ‖v‖H1(Ω)

)
,

for all u,v ∈ H1(Ω) and 0 ≤ ε ≤ ε0.

(c) Initially, we take
1

2
< α0 ≤ 1.

Note that, for each u ∈ H1(Ω) and φ ∈ Hα0(Ω), we
have

|〈Fε(u)−F0(u),φ〉| =

∣∣∣∣
1

ε

∫

ωε

u(1− u)φ dξ −

∫

∂Ω
2γ(u)(1− γ(u))γ(φ) dS

∣∣∣∣ .

From [12, Lemma 2.2], for each φ ∈ Hα0(Ω), we
obtain

〈Fε(u),φ〉 → 〈F0(u),φ〉, as ε → 0. (13)

Moreover, fixing u ∈ H1(Ω) and using item (a), we
have that the set {Fε(u) ∈ H−α0(Ω) : 0 < ε ≤ ε0} is
equicontinuous. Thus, the limit (13) is uniform for φ in
compact sets of Hα0(Ω). Hence, choosing α0 such that
1

2
< α0 < α ≤ 1, we have that the embedding

Hα(Ω) →֒ Hα0(Ω) is compact, and then, in particular,

‖Fε(u)−F0(u)‖H−α (Ω) → 0, as ε → 0. (14)

Now, we will show that the limit (14) is uniform for u∈
H1(Ω), with ‖u‖H1(Ω) ≤ R for some R> 0. Let un ⇀ u0 in

H1(Ω), as n → ∞. Since H1(Ω) →֒ Hs(Ω) with compact
embedding, for s < 1, we have un → u0 in Hs(Ω), as n →
∞.

Proceeding similarly to item (b) with
1

2
< s < 1, we

get

‖Fε(un)−Fε(u0)‖H−α (Ω) → 0, as n → ∞.

Therefore, for each 0 < ε ≤ ε0, Fε : H1(Ω)→ H−α(Ω) is
continuous in H1(Ω) with the weak topology. Hence, Fε

is uniformly continuous in compact sets of H1(Ω) with
the weak topology. We note that the set

B̄R(0) =
{

u ∈ H1(Ω) : ‖u‖H1(Ω) ≤ R
}

, with R > 0, is

compact in H1(Ω) with the weak topology. From this and
(14), we obtain that the limit (14) is uniform in B̄R(0). �

Remark.The Remark 2 and item (b) of the Proposition 1
imply the local existence and uniqueness of solutions of
the problem (8) (or equivalently of (4) and (5)), see [5,
Theorem 3.3.3]. Using also item (a) of the Proposition 1,
we obtain that the local solution of (8) is globally defined
and we have well defined semigroup in H1(Ω), see [5,
Corolary 3.3.5]. Moreover, item (c) of the Proposition 1
and [12, Proposition 4.1] ensure that the limit problem of
the concentrated problem (4) is given by the parabolic
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problem with nonlinear Neumann boundary conditions
(5). Finally, as done in [12], we can show the continuity
of the family of attractors of (8) with respect to ε , for this,
we need to study the behavior of Fréchet derivatives of
the abstract nonlinearities Fε , defined by (6) and (7), and
we analyze the linearized problems.

3 Numerical Scheme

In Section 2, we establish an abstract form for the
problems (4) and (5) given by (8). Using this same
abstract form, we want to establish a Finite Element
Scheme to obtain a numerical aproach to the solutions of
the problems (4) and (5). The development of such
scheme applied to parabolic problems can be influenced
by work [17], where different Galerkin methods are
applied to a certain parabolic problem with nonlinear
Neumann boundary conditions.

Furthermore, more recent works such as [18, 19]
analyze the convergence of certain algorithms based on
the Finite Difference Method for a certain class of
problems, which the Laplacian is perturbed by a value ε.
These types of problems, however, are not related to the
problems (4) and (5) since the nature of ε in the problems
(4) and (5) is very different from that studied in [18, 19].

That said, our work does not try to explore the
characteristics of the proposed algorithm but rather to
numerically verify some theoretical results obtained in
Section 2. In addition, as far as we know, there is no
previous bibliography related to numerical behavior of
the problems (4) and (5).

First, we need to approximate the time derivative. We
consider an equally spaced partition for the time interval
[0,1] with n+1-elements and denote by tk a representative
element of this partition given by tk = t0 + kh, with k ∈

{0, . . . ,n}, where t0 = 0, tn = 1 and h =
tn − t0

n
. We denote

for uk
ε , 0 ≤ ε ≤ ε0, the value of the numerical solution of

(8) at the time t = tk. Then, using a Backward Difference
Form, we can write the equation (8) as

uk+1
ε − uk

ε

h
+Auk+1

ε = Fε(u
k+1
ε ), 0 ≤ ε ≤ ε0, (15)

where u0
ε = uε(0) = ϕ0.

Next, we need to discretize the spatial domain Ω . To
do this, we are going to create a m-elements circular mesh
for Ω using the functions provided by the FEniCS Python
package. Then, we are going to approximate the test
function v ∈ H1(Ω) over this mesh by a function space
consisting in Lagrange polynomials of order 2. Such
approximation will be denoted by ṽ. For more
information about the FEniCS documentation, see [20].

With these steps, we can write the variational discrete
form of the problem (15) with 0 < ε ≤ ε0, or the Finite
Element Method Form for the problem (4), by

uk+1
ε −uk

ε

h
+a

(
uk+1

ε , ṽ
)
=

〈
Fε(u

k+1
ε ), ṽ

〉
, 0 < ε ≤ ε0, (16)

and the variational discrete form of the problem (15) with
ε = 0, or the Finite Element Method Form for the problem
(5), by

uk+1
0 − uk

0

h
+ a

(
uk+1

0 , ṽ

)
=
〈

F0(u
k+1
0 ), ṽ

〉
, ε = 0. (17)

Taking n = 3, m = 45 and h =
1

3
. For each point

(tk,x j,y j) ∈ [0,1]×Ω , with k ∈ {0,1,2,3} and
j ∈ {0,1, . . . ,44}, and 0 ≤ ε ≤ ε0, let us denote by
uε(tk,x j,y j) = uk

jε
the numerical solution of the problems

(16) and (17) at the time t = tk. Denoting by κ the “inner
boundary” of ωε with a tolerance of 10−40, we use a finite
element scheme and proceed to analyze the behavior of
the zeros of the equation (16) and how they behave with
respect to the zeros of the equation (17), as ε goes to zero.
For more information about the discretization of time
dependent PDEs, see [21].

In the case of the equation (17), we execute a Newton
solution scheme for a diffusion equation and
nonhomogeneous Newmann type boundary conditions,
with u0

j 0
= 0.3 as seed value and absolute tolerance of

10−1, thus we obtain the following heat map given in
Figure 3.

Fig. 3: Heat map for the limit equation (17).

Choosing, arbitrarily, the following values for
ε ∈ {0.1,0.01,0.001,0.0001} ⊂ (0,ε0], we execute a
Newton solution scheme for the equation (16), with
u0

j 0
= 0.3 and an aboslute tolerance of 10−1, thus we

obtain the following results given in Table 1.
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Table 1: Evolution of the error for the equation (16), as ε goes to

zero.

ε
∥∥∥uk

jε
−uk

j0

∥∥∥
H1(Ω)

0.1 1.50

0.01 1.74

0.001 0.37

0.0001 0.37

As we can see in Table 1, when ε is sufficiently small,
the error made in the approximation remains constant
around 0.37. Taking a tolerance of 10−1 for the error, our
stopping criterion is satisfied. Thus, we can observe that,
as ε goes to zero, the solutions of the problem (16)
converge in H1(Ω) to the solution of the problem (17).
We can see this graphically by considering the differents
heat maps generated for the problem (16), as ε goes to
zero. For example, the Figure 4 illustrates the heat maps
for ε equals to 0.1, 0.01, 0.001 and 0.0001, respectively.

Fig. 4: Evolution of the heat map for the equation (16), as ε goes

to zero.

Note that the use of the numerical scheme (15)
constitutes a numerical verification of some results
obtained in Section 2 and work [12], thanks to the work
[8], where the concentration technique was developed. In
addition, the numerical behavior of the solutions of
nonlinear parabolic problems with terms concentrating on
the boundary already opens a brand new way of analyzing
and verifying the dynamics of such problems since, up to
now, no work had been done, to the best of our
knowledge, using this approach.

With this in mind and noting that the problem (4)
represents a problem based on a Logistic Model, this
approach opens the possibility of studying population
dynamics and how the problem (5) is based on the
Helmoltz equation, then also this approach, together with
the technique of concentrated integrals, would allow the
use of these results to study various electromagnetic
phenomena modeled through such an equation.
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