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Abstract: In this paper we develop approximate Bayes estimators of the unknown parameters of the inverted Kumarswamy distribution
based on progressive type-II censoring samples. We consider the maximum likelihood and Bayesian estimations of the model with
gamma-informative prior distribution for the parameters, as well as the reliability function and reversed hazard rate function. We
applied, Lindley’s approximation (1980) and Markov Chain Monte Carlo (MCMC) methods. The Bayes estimators have been obtained
relative to both symmetric and asymmetric (linex and general entropy) loss functions. Finally, to assess the performance of the proposed
estimators, some numerical results with simulation study were reported.
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1 Introduction

During life tests and reliability studies, we consistently
observe the prevalence of censoring as a recurring
phenomenon. The experimenter might not be able to get
total data on disappointment times for every single test
unit. For instance, people in a clinical preliminary may
pull out from the examination, or the investigation be
ended for absence of assets. In a mechanical investigation,
units may break unintentionally. Much of the time, be that
as it may, the evacuation of units before disappointment is
preplanned in request to give investment funds regarding
time and cost related with testing. Progressive type-II
censoring scheme can be described as follows: Suppose n
units are placed on a life test and the experimenter
decides before hand the quantity m, the number of
failures to be observed. Now at the time of the first
failure, Ry of the remaining n — 1 surviving units are
randomly removed from the experiment. At the time of
the second failure, R, of the remaining n — Ry — 2 units
are randomly removed from the experiment. Finally, at
the time of the m—" failure, all the remaining surviving
units R,, =n—m—R; — ... — R,,,_| are removed from the

experiment. Therefore, a progressive type-1I censoring
scheme consists of m, and Rj,...,R,, such that
Ry + ...+ R,,, = n—m. The m failure times obtained from
a progressive Type-II censoring scheme will be denoted
by yi,..,ym. Based on the observed sample
y1 < y2 < ... < yp; from a progressive type-II censoring
scheme, Ry, ..., R, the likelihood function can be written
as

L <y) — ([T 00 11— F O, )
i=1

where;
C:n(n—R1—1)...(n—R1—Rz—...—Rm,l—m—l—]).

Al-Fattah et al. [2] obtained the inverted
Kumaraswamy distribution which have widely employed
in various natural phenomena for instance hydrological
data such as daily rainfall and daily stream-flow,
atmospheric temperatures and growth models like
epidemiology, and in the field of life testing and studies of
reliability measures in which the failure time of
component is observed to the nearest hours, days or
months. Recently many authors have studied the inverted
Kumaraswamy distribution; for example, Abu-Moussa
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and El-Din [1] presented on estimation and prediction for
the inverted Kumaraswamy distribution based on general
progressive censored samples. For more details [See
Kumaraswamy [6] , Jones [5], Golizadeh et al. [4],
Sindhu et al. [9] and Sharaf EL-Deen et al. [8]]. The
reverse hazard functions is represented the instantaneous
risk of a state change at time 7, given that the event did
occur either at time ¢ or a lesser value. In case of any
invisible failures present, hazard rate loses its usefulness,
since it cannot capture such failures. Thus, there is a need
to use another characteristic that known as reversed
hazard rate.

2 Maximum Likelihood Estimators (MLESs)

In this section, the MLEs of the unknown parameters,
reliability function and reversed hazard rate function
based on progressive type-II censored samples are
obtained. Assume the failure time distribution to be the
inverted kumaraswamy distribution with probability
density function (pdf)

Form ) =0k 14y T [1- 14y "
2)
y>0,1n, k>0

and the corresponding cumulative distribution function

(cdf) is given by

Fyn x)=[1-(1+»""" y>0,n,k>0. 3)

From (1), (2) and (3), the likelihood function is given
by
m

Ly, k) =C™ e [ (13~

i=1

(=)™ 1= (1= (143 )] "

=

X
i=1

The logarithm of the likelihood function may then be
written as

log (L) = ¢ =1og[C] +mlog[n] 4 m log[k]

~(n+1) ¥ (g1 + )

m (5)
+(k— 1)51 (log[1—(1+y)™"])

+§ (Ri log [1 ~(1-q +yi)*n)x}).

i=1

Calculating the first partial derivatives of (5) with
respect to 1, k and equating to zero, we obtain the
likelihood equation

m_y T (— 2 log 14y (14y) "
m i)::ll()g [T+y]+(—1+k) i)::l 1—(14y,) "

1 dog[LylRi(14+y) (1= (1)) T
El —(1=(1+y) 1)~ =0,

(6)
%+ Y log[1—(14+) "]
m 10g[17(1+yi)7n]Ri(1*(1+yi)7n)K

-X

=1 1= (1= )"

=0.

The solution of the non-linear equation (6) is 7, K.
The MLEs of the reliability function and reversed hazard
rate function are given as

K

R(r):17[17(1+t)*ﬂ L 1>0. %

H(@) =7 &1+~ {1 —(1 +t)’ﬁ}7l, t>0. (8)

3 Bayesian estimation

In this section, the Bayesian estimators of the unknown
parameters 17, Kk of the inverted Kumaraswamy
distribution is obtained. Also the reliability function and
reversed hazard rate function, based on progressive
type-II censoring samples, under symmetric (squared
error) and asymmetric (linex and general entropy) loss
functions. Lindley’s approximation and Markov Chain
Monte Carlo (MCMC) methods are obtained.

Assuming that 17 and K are independent random variables
with gamma informative prior distribution respectively
defined by

efémgl Vi

vi—1
T ", >0, (&, vi >0).

(C))

m(n; &, vi) =

e—gzkgzw

V2~ 0 0).
(vy) K , K>0, (&, va>0)

(10)
Then the joint prior distribution for 1 and « is defined by

m(k; &, v2) =

B e*@ln*Cchl"l o"
" K= =T ()

vi—1

271 a1

n

n>0 x>0, (&, vi, &, voa >0).

By using equations (4) and (11) we get the posterior
distribution of 1 and x as follows
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m

e C1m— §2r< Vi +m=1 vy t+m— IH(]JF}) (n+1) H(l (14y1)~ '7)'(7]{lf(lf(ljuyi)*")x]m
(na K|y) =
i(

i= i=1

(1-(14y) ")’H[lf(lf(lﬂn-)’")K]R")dndrc'

o (12)

e—gln—gzxnv] +m—1vp+m—1 H (14y;)~ (n+1) I
i=1

i=

Integration in equation (12) cannot be obtained in a closed form, so we solve it numerically. In the following
subsections we derive Bayesian estimators for the parameters 17, k, the reliability function and the reversed hazard rate
function under different loss functions.

3.1 Bayesian Estimators Under Square Error Loss Function

3.1.1 Bayesian estimator of the shape parameter n

et U*Cﬂnvl Fm—1 Vatm—1 H (1 _,_yl.)*('H')

K—1 _n xR
(1= (1+y)™M) [17(17(1+)’i) ") }

m
X

oo oo l
ﬁquE(n)=//n dndk.  (13)
00

-1
efgmfgzxnvﬁ»mfl K.v2+mfl ﬁ (1 +yl_)f(n+1)

* /m/oo m . Ri andx
00 | x[T(1—+y) ™M {1 —(1-Q +yz')7n)K} l

i=1

Provided that E (1) exists and is finite. This integration cannot be solved analytically, so we use Lindley’s Bayes
approximation for any function y of parameter ®, ® = (1, k); is defined by

1 1
E(V’(a))bj) ~ W(an)+§ZZ(Wrt+2Wer)Grl“FEZZZZLrtkaGrtGkW Vot k, w=172. (14)
rot rt kow

2
Where; 0(17, k) = log(n(n, «)), Q1 = 2205 g, — 220. K),I,,,M,%:M,W 2y(n, )

n K 3n2 )
_ Py(n.x) _ Pv(n.x) _ U _ _ Pl _ P _ ok
V2 = =55 Y2 = oo Ln = 53 L = gigg, Lo = a,(u Lin = 355, Lo = 55, Lz = g5

I
. . —Ly; —L
Lin = aga > and o, = (r,1)" element ; r, t = 1,2 in the matrix (L;: LZ) .

Substitution in equation (14), y = 1; the Bayesian estimator of the shape parameter 7] is given as

N 1
Nsg =N — 01011 — 02012+ 3 (L1110112+3L112611012 +Li2, (02201 +26122) +122701202).

3.1.2 Bayesian estimator of the shape parameter K

Substitution in equation (14), y = k; the Bayesian estimator of the parameter x is given as

A 1
Ksq = (K— 01012 — 0% + 3 (L111611612 +3L122612022 + L112 (022011 + 26122))) .
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3.1.3 Bayesian estimator of the reliability function R(r)

Substitution in equation (14), ¥ = R(¢); the Bayesian estimator of the reliability function R() is given as

1
R(t)+ Q1 (yion +V/2<712)+Q2(1I/1612+W2022)+§(ll/11011 + 212012 + ¥22022)
Ryg = 1 <L111 (GIIZWI +¥,2611612) + Li12 (3611y1012 + V2 (011022+26122)) )

2 \ +Li22 (w1 (20122 4 611612) +3¥202012) + Lons (622 ¥1 612 + Y2027%)

3.1.4 Bayesian estimator of the reversed hazard rate function H (z)

Substitution in equation (14), y = H (t) ; the Bayesian estimator of the hazard rate function H(z) is given by

1
H (1) 4+ Q1 (yi1011 + v2012) + 02 (V1012 + v2020) + 3 (y11011 +2y12012)
Hiq ™ 1 <L111 (61%W1 + ¥2611612) + Li12 (361191612 + Y2 (611622 +2012%) ) )

2 \+Li22 (w1 (20127 4 611012) 4+ 3¥2022012) + Lazz (022¥1 012 + ¥20227)

3.2 Bayesian Estimators Under Linear-Exponential Loss Function (LINEX)

3.2.1 Bayesian estimator of the shape parameter n

. 1 _
NLINEX = 5 log [E (¢PT)]

Provided that E (e P") exists and is finite. Substitution in equation (14), y = ¢~ P"; the Bayesian estimator of the
parameter 1 is given by

27
pe Ploy

e P —pe P10 011 — pe P10y01, + 5

. 1
ALivex ~ ——log

|
—5pe P (L1110112+3L112011012 +Lin (011022+26122) + 122701202)

3.2.2 Bayesian estimator of the shape parameter x

Substitution in equation (14), ¥ = e~ P*; the Bayesian estimator of the shape parameter k is given as

2 ,—pK
_ _ _ p-e 02
e PX—pe PXQ 01, —pe pKchfzz-l-iz
R 1
Krivex = ——log

- Epefpk (L111611612+ 3L122622612 + L112 (011022 + 20122) + Lzzzﬁzzz)

3.2.3 Bayesian estimator of the reliability function R(r)

Substitution in equation (14), y = e PR(); the Bayesian estimator of the reliability function R(t) is given by

1
] e PRO L 01 (w1011 + v2012) + 02 (W1 612 + Y2 020) + 3 (V11011 +2y12012 + ¥22022)

Runex =~ 7510g +1 Li11 (611°y1 + ¥2011012) + Li12 (36111612 + 2 (01102 + 20127) )
2\ +Li22 (w1 (20122 4+ 611612) +3¥2062012) + Lons (622 ¥1 612 + Y202,%)
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3.2.4 Bayesian estimator of the reversed hazard rate function H (r)

Substitution in equation (14), y = e PH (‘); the Bayesian estimator of the hazard rate function H(z) is given as

1
e PO L 01 (y1011 + v2012) + 02 (W1 612 + ¥2000) + 3 (Y1011 +2y12012 + ¥22022)

N 1
Hunex = —;log 1 (Lin (0117 Y1 + ¥2011012) + Li12 (361191612 + Y2 (011022 + 20127))
2 \+Li22 (w1 (2012 4 611012) 4+ 3¥2022012) + Lazz (622¥1 012 + ¥20227)

3.3 Bayesian Estimators Under General Entropy Loss Function

3.3.1 Bayesian estimator of the shape parameter n

-1
AGenropy = [E(n~7)] 7.
Provided that E (1~ 7) exists and is finite. Substitution in equation (14), y = 1179, the Bayesian estimator of the parameter
1 is given by
-1
(g+1)n 2o ‘
2

. N7 4qn 901011 +qn 7' Qa0 + 2
NGentropy =~
—59" “ Y (Ly11011% +3L112011 612 + Li22 (022011 +2012%) + L222612022)

3.3.2 Bayesian estimator of the shape parameter K

Substitution in equation (14), y = kK~ 7; the Bayesian estimator of the shape parameter x is given by

(g+ 1)k 120y a
2

. K+ gk 1710101+ gr 1 Qr0m +
KGentropy =~ 1
+§q,(q71 (L111611612+3L112 (011062 +26122) +3L122022012 +L2220222)

3.3.3 Bayesian estimator of the reliability function R(z)

Substitution in equation (14), y = R(r) ~7; the Bayesian estimator of the reliability function R(z) is given by

=
q

_ 1
(R(1))" 1+ Q1 (W1011 + v2012) + Q2 (W1 012 + Y2000) + 3 (V11011 + 2Y12012 + ¥22022)

RGentropy = 1 (L (611° W1 + ¥2011612) + Li12 (361191612 + ¥ (011622 +20157) )
2 \+Li22 (w1 (20122 4 011612) +3¥2022012) + Lazs (022¥1 612 + Y2022%)

3.3.4 Bayesian estimator of the reversed hazard rate function H (r)

Substitution in equation (14), y = H(t)~¢; the Bayesian estimator of the hazard rate function H () is given as

q

_ 1
(H(1)) 7+ Q1 (y1011 + ¥2012) + Q2 (Y1012 + Y2022) + 3 (V11011 + 2y12012 + Y22022)

Hentropy = 1 (L (o 121+ ya0n 012) + L2 (3611¥1 012 + Y2 (011022 +20122))
2\ +Li22 (w1 (20122 4 611612) +3¥2062012) + Loz (622¥1 612 + Y202,%)
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4 Simulation studies

To demonstrate the importance of the results obtained in the preceding sections, simulation studies are conducted. For
this purpose, by using Monte Carlo method, with fixed sample size n (the total items put in a life test), with constant
censoring scheme, where Ry = R, = R3 = ... = R, where m is the sample size of progressively censored from the
sample of size n.

The following algorithm is used to generate sample based on progressive type-II censoring scheme, based on any
continuous df F, see Balakrishnan and Aggarwala [3].

1.Generate m independent Uniform (0,1) observations Wy, ..., W,,.

28 S VA mn .
SetVi=W'" y,=(i+ Y Rj|fori=12,...m.
Jj=m—i+1

3.Ui =1 7Vme,1...Vm,i+], i= 1,2, S, m.

4.Set X; = F~1(U;), then X;, for i = 1,2,...,m, is the progressive type-II censoring scheme based on the df F.

5.We repeated steps 1,2,3 and 4 (10000) times, for different values of n and m.

l(.JOOOé\i l(.JEOO(éiie)z R
Estimation average = %, mean square error = ’:'IW, where, 0 is the parameter and 0 is the estimator.

All the computations are prepared by Mathematica 11.
Since the non-linear equations (6) are not solvable analytically, numerical methods can be used, as Newton Raphson

method with initial values closed to real values of the parameters.

Throughout this section we will use the following abbreviations:

1.ML : means that the estimate by using the (MLE),

2.Bs, : means that the estimate under squared error loss function,

3.By p—2: means that the estimate under linex loss function at p = 2,

4.B1x p—s: means that the estimate under linex loss function at p =5,

5.BGeg—3 : means that the estimate under general entropy loss function at g = 3,

6.BGe4—7 : means that the estimate under general entropy loss function at g = 7.

From tables 1, 2, 3 and 4, we observe that the MLE and Bayes estimates of the parameters 1], k, the reliability and the
reversed hazard rate functions are very good in terms of MSEs. As the number of items n and effective sample size m
increase, MSEs of all estimates decrease as expected and increase the accuracy of estimators. In general, the Bayesian
estimators have MSE's less than that of the MIE.

S Concluding remarks

In this paper, assuming a good lifetime model, we consider the problem of estimating the unknown parameters 1, K as
well as the reliability and reversed hazard rate functions, using progressive type-II censored samples. This censoring plan
has points of interest as far as decreasing test time. We derived MLE and Bayes estimators of the parameter 1, K the
reliability and the reversed hazard rate functions using gamma informative prior, under both symmetric (squared error)
and asymmetric ( general entropy and linex ) loss functions. These estimates cannot be obtained in closed form, but can
be computed numerically. It is clear that the proposed Bayes estimators perform very well for different n and m. As
expected, the Bayes estimators based on informative prior perform are much better than the estimators based on MLE in
terms of MSESs. The simulation also stresses the importance of linex and general entropy loss functions as asymmetric
loss functions, in the case studied.
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Table 1. Average values of the estimates and the corresponding MSEs, given in parentheses of the parameters 7, k, the reliability

function and the reversed hazard rate function when 1 =0.7, k =12, {1 =1, vi =2, { =2, v, = 4.
Biip=r [ Brp=s | BGeg=s | BGeg=1 [ Bsg [ ML [ m [
The average, MSEs of the estimators of parameter M
0.74138 0.73562 0.72330 0.70887 0.73371 0.71713 50 100
0.00117) | (0.00081) | (0.00026) | (0.00004) | (0.00071) | (0.00979)
0.76737 0.76835 0.73024 0.72221 0.75141 0.72486 25 50

(0.00364) (0.00373) (0.00054) (0.00023) (0.00196) (0.02153)
The average, MSEs of the estimators of parameter K

1.32198 1.37245 1.2539 1.2263 1.26085 1.23427 50 100
0.01207) | (0.03721) | (0.00174) | (0.00020) | (0.00006) | (0.02233)
1.40031 1.12779 1.25570 1.23664 1.26891 122818 25 50

(0.03641) (0.02140) (0.00192) (0.00060) (0.00005) (0.04018)
The average, MSEs of the estimators of relaibility function R(t=3)=0.43536

0.43310 0.42668 0.42869 0.41956 0.43442 0.43956 50 100
(0.00004) (0.00016) (0.00012) (0.00040) (0.00002) (0.00116)
0.42108 0.40866 0.41294 0.39708 0.42366 0.43421 25 50

(0.00034) (0.00095) (0.00071) (0.00180) (0.00025) (0.00280)
T he average, MSEs of the estimators of reversed hazard rate function H(t=3)=0.12813

0.13206 0.13129 0.13068 0.12873 0.13215 0.13008 50 100
(0.00006) | (0.00003) | (0.00005) | (0.00007) | (0.00007) | (0.00008)
0.13130 0.13159 0.12860 0.12675 0.13149 0.12812 25 50

(0.00003) (0.00004) (0.00007) (0.00002) (0.00004) (0.00004)

Table 2. Average values of the estimates and the corresponding MSEs, given in parentheses of the parameters 7, k, the reliability
function and the reversed hazard rate function when 1 =0.7, k=15, {; =1, vi =2, { =2, v, =4.

Brxp=2 | BLep=s | BGeg=3 | BGeg=7 | Bsg | ML [ m [ n
The average, MSEs of the estimators of parameter M

0.75275 0.72147 0.73750 0.69853 0.75753 0.73562 50 100
(0.00207) (0.00020) (0.00092) (0.00007) (0.00253) (0.00989)

0.76091 0.75498 0.73010 0.71703 0.77172 0.73353 25 50

(0.00291) (0.00228) (0.00053) (0.00011) (0.00419) (0.01630)
The average, MSEs of the estimators of parameter K

1.77866 1.08642 1.57415 1.51457 1.61664 1.56558 50 100
(0.07016) (0.00214) (0.00346) (0.00005) (0.00005) (0.03409)
2.3268 0.96036 1.5867 1.54754 1.67854 1.58579 25 50

(0.71099) (0.09194) (0.00511) (0.00109) (0.00004) (0.07138)
The average, MSEs of the estimators of relaibility function R(t=3)=0.51055

0.50397 0.50938 0.50054 0.50394 0.50519 0.50908 50 100
(0.00013) (0.00003) (0.00022) (0.00013) (0.00011) (0.00128)
0.50513 0.49602 0.49885 0.48654 0.50750 0.51391 25 50

(0.00011) (0.00038) (0.00028) (0.00083) (0.00006) (0.00247)
The average, MSEs of the estimators of reversed hazard rate function H(t=3)=0.16016

0.16472 0.16505 0.16294 0.16166 0.16488 0.16262 50 100
(0.00008) (0.00001) (0.00003) (0.00006) (0.00009) (0.00006)
0.16788 0.16816 0.16425 0.15596 0.16821 0.16443 25 50

(0.00003) | (0.00004) | (0.00002) | (0.00008) | (0.00004) | (0.00003)
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Table 3. Average values of the estimates and the corresponding MSEs, given in parentheses of the parameters 17, k, the reliability
function and the reversed hazard rate function when 1 =09, k =12, {1 =1, vi =2, { =2, v, = 4.

Bryp=2 | Brip—s | BGeg—3 | BGeg—1 | Bsq | ML | m | n
The average, MSEs of the estimators of parameter 1

0.96374 0.93341 0.94441 0.90890 0.96633 0.94035 50 100
(0.00297) (0.00059) (0.00124) (0.00001) (0.00325) (0.01567)

0.99701 0.92189 0.95800 0.88004 1.00548 0.95995 25 50

(0.00770) (0.00016) (0.00238) (0.00083) (0.00925) (0.03975)
The average, MSEs of the estimators of parameter K

1.29566 1.37622 1.2581 1.22871 1.27265 1.24206 50 100
(0.00696) | (0.02725) | (0.00210) | (0.00027) | (0.00007) | (0.02095)
1.35943 1.68111 127847 1.19889 131227 1.25972 25 50

(0.02185) (0.18061) (0.00439) (0.00017) (0.00003) (0.05447)
The average, MSEs of the estimators of relaibility function R(t=3)=0.33384

0.32268 0.32327 0.31612 0.31346 0.32411 0.33043 50 100
(0.00021) | (0.00019) | (0.00043) | (0.00055) | (0.00016) | (0.00121)
031216 0.31450 0.30048 0.30028 0.31496 0.32681 25 50

(0.00062) (0.00051) (0.00133) (0.00134) (0.00049) (0.00298)
The average, MSEs of the estimators of reversed hazard rate function H(t=3)=0.10877

0.10978 0.11036 0.10858 0.10816 0.10985 0.10916 50 100
(0.00006) | (0.00002) | (0.00003) | (0.00002) | (0.00002) | (0.00006)
0.10927 0.10969 0.10692 0.10567 0.10941 0.10822 25 50

(0.00003) (0.00003) (0.00002) (0.00001) (0.00002) (0.00006)

Table 4. Average values of the estimates and the corresponding MSEs, given in parentheses of the parameters 77, k, the reliability
function and the reversed hazard rate function when 1 =0.9, k=15, {; =1, vi =2, {, =2, v, =4.

Bryp=2 | Brip—s | BGeg—3 | BGeg—1 | Bsq | ML | m | n
The average, MSEs of the estimators of parameter 1N

0.95893 0.91475 0.94267 0.89346 0.97462 0.94319 50 100
(0.00247) (0.00003) (0.00112) (0.00024) (0.00427) (0.01734)

1.00307 0.92720 0.97195 0.89376 1.04754 0.98601 25 50

(0.00878) (0.00032) (0.00392) (0.00078) (0.01912) (0.03760)
The average, MSEs of the estimators of parameter K

1.67679 135712 1.56526 1.50056 1.61521 1.56024 50 100
0.02624) | (0.00231) | (0.00250) | (0.00021) | (0.00005) | (0.03801)
1.94485 1.20846 1.62662 148771 1.7546 1.64163 25 50

(0.20576) (0.03256) (0.01234) (0.00078) (0.00003) (0.09672)
The average, MSEs of the estimators of relaibility function R(t=3)=0.39817

0.38770 0.39236 0.38233 0.38407 0.38910 0.39435 50 100
(0.00020) (0.00009) (0.00038) (0.00032) (0.00016) (0.00168)
0.37791 0.37729 0.36780 0.36385 0.38069 0.38834 25 50

(0.00058) (0.00061) (0.00117) (0.00145) (0.00045) (0.00269)
The average, MSEs of the estimators of reversed hazard rate function H(t=3)=0.13597

0.13762 0.13801 0.13623 0.13544 0.13773 0.13672 50 100
(0.00008) (0.00004) (0.00002) (0.00003) (0.00001) (0.00002)
0.13923 0.13694 0.13647 0.13224 0.13944 0.13778 25 50

(0.00003) | (0.00001) | (0.00002) | (0.00002) | (0.00004) | (0.00003)
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