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Abstract: Predicting monetary poverty is important and has broad effects on social and economic growth. In this field, precise and

useful predictive modeling is essential because it helps humanitarian groups and policymakers allocate resources more effectively

and focus interventions more effectively. We present a thorough comparison and examination of three different machine-learning

approaches: Random Forests, Bagging, and Decision Trees. Our main objective is to assess their effectiveness and suitability in the

particular context of forecasting monetary poverty in the Moroccan region. We begin with Decision Trees, which are renowned for their

openness and interpretability. Although they provide a clear understanding of the decision-making process, their prediction accuracy

may be limited. In order to improve prediction accuracy, we investigate the potential of Bagging, a combination method that aggregates

several Decision Trees. We also explore the more sophisticated ensemble method of Random Forests, where higher robustness and

performance are anticipated due to the randomness introduced in feature selection during tree construction. We use real-world datasets

that are closely associated with financial poverty in our investigation. We carefully assess each methodology’s computing efficiency,

model resilience, and forecast accuracy. Additionally, we explore the effects of hyperparameter tuning, feature engineering, and the

specific properties of the dataset on our results. The models’ outputs are assessed using a number of measures, including accuracy,

precision, Cohen’s Kappa statistic, F1-score, and recall. The R values show that all three algorithms had very good accuracy ratings.

As a result, the accuracy of the Bagging approach is higher (99.94%) than that of the Random Forest and decision tree methods

(99.61%) and (98.45%). Through this research, we endeavor to unearth insights into the strengths and limitations of these machine-

learning techniques in the context of monetary poverty prediction. The knowledge garnered from this study is poised to offer invaluable

guidance to decision-makers and researchers alike, as they address the intricate challenge of predicting and mitigating monetary poverty

in the Morocco region.
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1 Introduction

Monetary poverty remains a pressing global challenge[1],
affecting the well-being and livelihoods of millions of
individuals and households[2]. Accurate prediction of
monetary poverty is crucial for policymakers, social
scientists, and humanitarian organizations to allocate
resources effectively and implement targeted
interventions. Machine learning techniques have emerged
as powerful tools for predictive modeling in various
domains[3], and they hold significant potential for
addressing this challenge.

In this paper, we present a comparative analysis of
three machine learning methodologies—Decision Trees
[4], Bagging [5], and Random Forests [6].In the context
of predictive modeling for monetary poverty. The choice
of these algorithms is motivated by their widespread
usage, versatility, and their effectiveness in handling
classification tasks.

Decision Trees, as a fundamental building block, offer
transparency and interpretability in modeling complex
decision-making processes [4]. However, they can be
prone to overfitting and may lack the predictive power
needed for accurate monetary poverty prediction in
diverse and complex socioeconomic contexts [7].
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Bagging (Bootstrap Aggregating) is an ensemble
technique that combines multiple Decision Trees to
reduce variance and enhance predictive accuracy [5].
Random Forests, a more advanced ensemble method,
extends the idea of Bagging by introducing randomness
in feature selection during tree construction, which often
leads to further improved predictive performance [6].

In this study, we aim to compare and contrast the
performance of these three approaches using real-world
datasets related to monetary poverty. Our research
objectives include assessing the predictive accuracy,
robustness, and computational efficiency of these
algorithms in the context of monetary poverty prediction.
Furthermore, we explore how hyperparameter tuning,
feature engineering, and dataset characteristics impact the
results.

By conducting this comparative analysis, our goal is
to provide insights that can inform decision-makers and
researchers about the strengths and limitations of these
machine learning techniques for addressing the
multifaceted challenge of monetary poverty prediction.

2 Mathematical Modeling

2.1 Decision Trees

Decision Trees are a widely used and interpretable
machine learning model introduced in the field of
classification and regression by Ross Quinlan in 1986 [5].
They are structured as a tree-like graph, where each node
represents a decision or a test on a feature, and each leaf
node corresponds to a class label or a numerical
prediction. Decision Trees are known for their
transparency and ease of interpretation, making them
valuable for extracting insights from data. However, they
are susceptible to overfitting, which has led to the
development of techniques such as pruning and ensemble
methods, like Random Forests and Gradient Boosting, to
enhance their performance and robustness [9][6].

The mathematical formulation of Decision Trees is
based on the use of flow variables to represent the flow of
data through the tree. For each sample i and internal node
u in the decision tree, we associate a pair of flow variables
w−

iu and w+
iu. These variables denote the flow of data

through the node with respect to the negative and positive
sides of the decision boundary, respectively.

Flow conservation at node v can be defined as follows:

µ+iv+µ−iv =

{

1 if v = 0

∑u∈β (v)(y+iuv +y−iuv) otherwise, where v ∈V1

(1)

where V1 represents the set of internal nodes.

The flow conservation for µ−iv at node u is given by:

µ−iv = ∑
u∈β (v)

y−iuv, textwhereu ∈V1 (2)

Similarly, the flow conservation for µ+iv at node u is
expressed as:

µ+iv = ∑
u∈β (v)

y+iuv, where u ∈V1 (3)

the Decision Tree algorithm

Algorithm 1 Decision Tree Algorithm

Require:

1: X : Data

2: y: Labels

Ensure:

3: T : Model

4: Initialize T as a root node.

5: for each feature xi in X do

6: Calculate the information gain for each split on xi.

7: Choose the feature with the highest information gain.

8: Split the data on xi.

9: Recursively build decision trees for the left and right

child nodes.

10: end for

2.2 Bagging

Bagging (Bootstrap Aggregating), introduced by Leo
Breiman in 1996, is a fundamental ensemble technique
designed to improve predictive accuracy and reduce
overfitting by combining multiple base models (typically
decision trees) trained on bootstrap samples of the dataset
[5]. The central idea behind Bagging is to create an
ensemble of models, each trained on a different subset of
the data, and then aggregate their predictions to achieve a
robust and generalized result. This approach has proven
highly effective in various applications, such as
classification, regression, and outlier detection. Bagging’s
simplicity, alongside its remarkable performance, has
made it a fundamental technique in machine learning
ensemble methods [5].

The mathematical formulation of bagging involves
considering a training dataset (X,Y) with probability
distribution P, an individual predictor µ(x,L), and a
sample L = {(xi,yi)}

n
i=1 . The bagged predictor, denoted

as µa(x,P), is obtained by taking the expectation of the
individual predictor over a large number of random
samples:

µa(x,P) = EL[µ(x,L)] (4)

The quadratic risk associated with each individual
predictor is given by:

ELEX ,Y [(Y − µ(x,L))2]

The quadratic risk associated with the bagged predictor
is given by:
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EX ,Y [(Y − µa(x,P))
2]

Using Jensen’s inequality, it can be shown that the
risk associated with the bagged predictor is lower than
that of the individual predictors:

EX ,Y [(Y − µa(x,P))
2]≤ ELEX ,Y [(Y − µ(x,L))2] (5)

This inequality holds true especially when the individual
predictors are unstable and have a high variance with
respect to L [10,11].

the bagging algorithm

Algorithm 2 Bagging

Require: Data points and their labels Dn = {(xi,yi) : 1 ≤ i ≤ n},

the number of bootstrap samples B

Ensure: A classifier h
bag
B

1: for b = 1 to B do

2: Draw a bootstrap sample (with replacement) from Dn:

Dbn = {(xbi,ybi) : 1 ≤ i ≤ n};

3: Calculate the classifier on this sample: h
bag
b

(x) =
h(Dbn,x);

4: end for

5: h
bag
B (x) = argmaxk p(y = k|x), where k ∈ {−1,1}.

2.3 Random Forests

Random Forests, introduced by Leo Breiman in 2001 [6],
have emerged as a potent ensemble learning method that
builds upon the foundation of Decision Trees. Random
Forests enhance the robustness of decision trees by
introducing randomness in the feature selection process
and combining the predictions of multiple trees. This
ensemble technique reduces the risk of overfitting,
enhances model generalization, and improves predictive
accuracy. Random Forests have been applied across a
wide spectrum of applications, from bioinformatics to
finance and image recognition, demonstrating their
adaptability and effectiveness in diverse domains [6].
With its versatility, Random Forests has become a staple
in the machine learning toolkit, providing an essential
tool for both beginners and seasoned practitioners.

The Mathematical Formulation of Random Forests for
Classification

A Random Forest ensemble for classification consists
of multiple decision trees, {T1,T2, . . . ,Tn}, constructed as
follows:

1. Bootstrap Sampling: For each tree Ti, a bootstrap
sample Si of the training data D is created, where Si

contains N data points sampled with replacement from D:

Si = {(x j,y j) |x j ,y j ∈ D}

2. Random Feature Selection: At each node of tree
Ti, only a random subset of features, Fi, is considered for
splitting, where |Fi| is typically set to the square root of the
total number of features, p:

Fi ⊂ { f1, f2, . . . , fp}

3. Decision Tree Construction: Each decision tree Ti

is constructed by recursively splitting the data at each node
using a chosen splitting criterion, such as Gini impurity or
entropy for classification.

- Classification: The Gini impurity for a node v with
K classes is calculated as:

Gini(v) = 1−
K

∑
k=1

P(k|v)2

4. Voting: For classification tasks, the ensemble
prediction is determined by majority voting. The final
predicted class is the majority vote among the individual
trees:

ŷensemble = argmaxk

n

∑
i=1

I(ŷi = k)

In terms of mathematics, random forests generate a
variety of decision trees by bootstrap sampling and
random feature selection. The ensemble’s prediction
depends on majority voting or averaging, which improves
prediction robustness and accuracy while reducing
overfitting.

Algorithm 3 Random Forests

Require:

1: x: The observation to predict

2: dn: The training dataset

3: B: The number of trees

4: m ∈ N
∗ :The number of candidate variables for splitting a

node

5: for k = 1 to B do

6: Draw a bootstrap sample from dn

7: Build a CART tree on this bootstrap sample, where each

split is selected by minimizing the CART cost function on a

set of m variables chosen uniformly at random from the p.

Let h(.,θk) denote the built tree.

8: end for

Ensure:

9: The estimator h(x) = 1
B ∑B

k=1 h(x,θk)

3 Data and Tools

3.1 Data

This study uses data from the 2013/2014 Moroccan
National Household Living Standards Survey, conducted
by the High Commission for Planning’s household survey
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section. The data was pre-processed, including cleaning
and filtering, to prepare it for analysis. We selected all
relevant data from 12 Moroccan regions for the 2014
survey year. The dataset contains 11969 valid
observations and 784 variables.

3.2 Tools

We used the R programming language to process and
analyze the data. All of our mathematical and statistical
predictions and classifications were generated using R.

4 Results and Discussion

Decision Trees Method

Confusion Matrix

Fig. 1: Confusion Matrix of Decision Trees

The confusion matrix for the Decision Tree
classification model provides a snapshot of its
performance in distinguishing between poverty and
non-poverty households. It reveals that out of a total of
8308 instances, the model correctly predicted 8070
non-poverty households and 275 poverty households,
reflecting its accuracy in identifying both categories.
There were, however, 22 instances wrongly classified as
poverty households, and 11 instances incorrectly
categorized as non-poverty households. The model’s
performance shows strength in correctly identifying
poverty households while also demonstrating a relatively
low rate of misclassification, which can be valuable for
making informed decisions in the context of household
poverty classification.

Metrics

Fig. 2: metrics of Decision Trees

The evaluation metrics for the Decision Tree model
applied to the dataset indicate strong performance. The
high accuracy of 99.61% demonstrates the model’s ability
to accurately predict outcomes. The narrow 95%
confidence interval, ranging from 99.45% to 99.73%,
adds precision to the accuracy estimate, offering a range
of values within which the true accuracy is likely to fall.
In comparison to the No Information Rate (NIR) of
96.46%, the model significantly outperforms it, as
evidenced by a very low p-value ( < 2e-16), indicating its
substantial superiority over random chance. The Kappa
coefficient of 0.9414 suggests a strong level of agreement
between the model’s predictions and the actual outcomes.
Mcnemar’s Test P-Value of 0.08172 may not be
significant, which means that there may not be a
significant difference in the model’s performance
compared to another model using the same data.
Sensitivity, at 99.86%, indicates the model’s ability to
accurately identify positive instances, minimizing the
number of false negatives. Specificity, at 92.59%, reflects
the model’s accuracy in identifying negative instances.
The Positive Predictive Value (Pos Pred Value) of 99.73%
and Negative Predictive Value of 96.15% confirm the
model’s accuracy in making predictions. The dataset’s
prevalence of 96.46% suggests that the condition being
predicted is relatively common, with a Detection Rate of
96.32% and Detection Prevalence of 96.59%, signifying
the model’s ability to frequently predict positive
outcomes. The Balanced Accuracy of 96.23% indicates a
good balance between correctly identifying both positive
and negative instances. Overall, these metrics highlight
the Decision Tree model’s effectiveness in assessing the
dataset, with particularly strong accuracy and sensitivity.
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Bagging Method

Confusion Matrix

Fig. 3: Confusion Matrix of Bagging Method

The confusion matrix for the Bagging classification
model shows its performance in distinguishing between
two classes, which most likely correspond to households
that are not in poverty and those that are in poverty. Out of
8378 instances, The model correctly predetermined 8081
households that were not in poverty and 291 households
that were in poverty, demonstrating its high reliability and
effectiveness in classifying these types of households.
Furthermore, the model demonstrated remarkable
accuracy: only six instances were wrongly classified as
households in poverty and none were wrongly labeled as
non-poverty households. This highlights the model’s
ability to identify households not in poverty and its
minimal rate of misclassification. In summary, the
Bagging model shows excellent performance in
classifying households to determine poverty.

Metrics

The evaluation metrics stemming from the application
of the Bagging classification model to the dataset
showcase exceptional performance. The strikingly high
accuracy of 99.94% highlights the model’s exceptional
proficiency in accurately predicting outcomes. The tight
95% confidence interval, spanning from 99.86% to
99.98%, underscores the model’s precision, offering a
high level of confidence in the accuracy estimate. In
contrast to the No Information Rate (NIR) of 96.46%, the
model demonstrates a substantial enhancement in
performance, further supported by an extraordinarily low
p-value of less than 2e-16, signaling its significant
superiority over random chance. Moreover, the Cohen’s
Kappa coefficient of 0.9912 reveals an outstanding level
of agreement between the model’s predictions and the
actual outcomes. Notably, the model attains perfect

Fig. 4: Confusion Matrix of Bagging

sensitivity (100%), signifying its capacity to minimize
false negatives, while a specificity of 98.32% signifies its
high accuracy in correctly identifying non-target
instances. The Positive Predictive Value (Precision) of
99.94% and a Negative Predictive Value of 100% confirm
the model’s precision in its predictions. With a dataset
prevalence of 96.46%, indicating the relative
commonality of the predicted condition, the Detection
Rate (Sensitivity) and Detection Prevalence at 96.46%
and 96.51%, respectively, signify the model’s frequent
positive predictions. The Balanced Accuracy of 99.16%
underscores the model’s remarkable equilibrium in
accurately identifying both positive and negative
instances, underscoring its overall effectiveness in making
assessments.

Random Forests

Confusion Matrix
The confusion matrix for the Random Forest

classification model reveals its performance in
distinguishing between two classes, likely representing
non-poverty and poverty households. Out of a total of
8378 instances, the model correctly predicted 8079
non-poverty households and 167 poverty households,
reflecting its strong accuracy and effectiveness in
identifying these categories. There were, however, 130
instances wrongly classified as poverty households and
only 2 instances incorrectly categorized as non-poverty
households. This highlights the model’s notable precision
in capturing actual non-poverty households and the
relatively low rate of misclassification. Overall, the

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


238 Y. El aachab, M. Kaicer: A Comparative Analysis of Decision Trees, Bagging...

Fig. 5: Confusion Matrix of Random Forests

Random Forest model demonstrates robust performance
in classifying households in the context of poverty
assessment.

Metrics

Fig. 6: Metric of Random Forests

The metrics resulting from the application of the
classification model to the household poverty database
reveal promising performance. The accuracy of 98.45%
signifies that the model correctly predicted the majority of
instances. The 95 % confidence interval, ranging from

98.16 % to 98.70 %, provides a level of certainty about
the accuracy range. Comparatively, the model
outperforms the No Information Rate (NIR) of 96.46%,
demonstrating its effectiveness. The extremely low
p-value (< 2.2e-16) indicates that the model’s accuracy is
significantly better than what could be achieved by
random chance. Additionally, Cohen’s Kappa of 0.7148
suggests substantial agreement between predictions and
actual outcomes. The model excels in sensitivity
(99.98%), demonstrating its ability to minimize false
negatives, but its specificity (56.90%) indicates room for
improvement in correctly identifying non-poverty
households. Positive Predictive Value (Precision) is high
at 98.44%, and Negative Predictive Value is at 98.83%,
confirming the model’s accuracy in its predictions. With a
prevalence of 96.46% in the dataset, it’s apparent that
poverty is relatively common, while the Detection Rate
(Sensitivity) at 96.43% and Detection Prevalence at
97.96% reveal that the model frequently predicts positive
outcomes. The Balanced Accuracy of 78.44% suggests a
reasonable balance in identifying both positive and
negative instances, indicating the model’s overall
effectiveness in assessing household poverty.

Comparing the performance metrics

In comparing the performance metrics of the Decision
Tree, Bagging, and Random Forest models applied to the
household poverty dataset, several noteworthy
observations can be made.

The Decision Tree model, while achieving impressive
accuracy (99.61%), exhibits slightly lower Balanced
Accuracy (96.23%) and Sensitivity (99.86%) than the
Random Forest (99.16% Balanced Accuracy and 100%
Sensitivity) and Bagging (78.44% Balanced Accuracy
and 99.98% Sensitivity) models. This suggests that the
Decision Tree is highly accurate but may benefit from
further improvement in sensitivity and balanced accuracy,
especially in minimizing false negatives.

On the other hand, the Bagging model shows
competitive performance, with an accuracy of 98.45%,
sensitivity of 99.98%, and balanced accuracy of 78.44%.
While its accuracy is slightly lower than the Decision
Tree, Bagging excels in sensitivity, making it a good
choice when minimizing false negatives is crucial.
However, its specificity (56.90%) is comparatively lower,
suggesting room for improvement in correctly identifying
non-target instances.

In contrast, the Random Forest model outshines both
the Decision Tree and Bagging with an exceptional
accuracy of 99.94%, a balanced accuracy of 99.16%, and
perfect sensitivity (100%). It strikes a remarkable balance
in accurately identifying both positive and negative
instances. The Random Forest’s performance is
particularly strong in scenarios where high precision and
overall balance are required.
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The choice between these models depends on the
specific goals and trade-offs in your application. The
Decision Tree offers high accuracy, the Bagging model
excels in sensitivity, and the Random Forest provides an
excellent balance between various performance metrics.
Ultimately, the selection should align with the specific
needs of your project and the importance of different
evaluation criteria, such as accuracy, sensitivity, and
specificity.

5 conclusion

In this article we gave a literature review to present
monetary poverty, we exposed machine learning methods
their theoretical aspects, their algorithms, their
mathematical reformulations, and the functioning of their
methods to give a general theoretical overview of their
methods to apply a real database to predict and classify
household monetary poverty. using the R language tools
we were able to predict the monetary poverty of
households and classify them according to their states.
We applied the three machine learning methods we came
to conclude that the Bagging method manages to classify
well the households according to their status for this
poverty database.
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