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1 Introduction

In connection with the development of quantum
information and quantum calculations, interest in the
research of correlation matrices and their properties has
risen

For detailed research of its properties, it is necessary
to determine their explicit form at first. For this, it is
needed to solve equations, describing the behavior of a
quantum system of many interaction particles both in
equilibrium and in non-equilibrium states. The fact that
real physical quantum systems of interactive particles are
in motion attracts interest in determining quantum
correlation matrices, and solving kinetic equations
describing the investigated system. As it is known from
quantum physics, the dynamics of such a system is
described by the equation of Liouville [1]. Unfortunately,
the solution of equation of Liouville does not give
information about the real physical process, which is
described in Boltzmann and Vlasov equations. The most
reasonable tool connecting the Liouville equation with
Boltzmann and Vlasov equations is a chain of kinetic
equations of Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) [2].

Quantum analog of classical BBGKY, describing
dynamics of a quantum system of particles is a chain of
quantum kinetic equations of BBGKY [3], [4]. It is a
complicated system of interconnected integral-differential

equations of density matrices of particles, that depends on
interaction type of interaction potential between particles.

The present paper solves the Cauchy problem for the
BBGKY chain for quantum kinetic equations, describing
the dynamics of the quantum system of particles
interacting with each other by the delta function potential.
A chain of quantum kinetic equations for correlation
matrices is defined based on the BBGKY chain for
density matrices. Solution of the chain of equations for
correlation matrices is defined using solutions of the
Cauchy problem for the chain of quantum kinetic
equations BBGKY for density matrices [5], [6], [7], [8],
[9].

2 Formulation of the Problem

We consider the hierarchy
Bogolubov-Born-Green-Kirkwood-Yvon (BBGKY) of
quantum kinetic equations, which describes the evolution
of a system of identical particles with mass m and charge
q interacting via delta function potential δ (|xi − x j|) [10],
which depends on the distance between particles |xi − x j|
in the length L for a one-dimensional case. We assume
that the charge q is a real constant. In the present paper,
the Cauchy problem is formulated for a quantum system
of a finite number of particles contained in the length L.
For this case, BBGKY has form [3], [4]:
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i
∂ρL

s (t,x1, ...,xs;x′1, ...,x
′
s)

∂ t
= [HL

s ,ρ
L
s ](t,x1, ...,xs;x′1, ...,x

′
s)

+
N

L

(

1−
s

N

)

Trxs+1 ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|)ρ

L
s+1(t,x1, ...,xs,xs+1;x′1, ...,x

′
s,xs+1),

(1)
with the initial condition

ρL
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ρL

s (0,x1, ...,xs;x′1, ...,x
′
s).
(2)

In the problem given by equation (1) and (2) xi gives the
position of ith particle in the 1-dimensional space R. In (1)
ℏ = 1 is the Planck constant and [, ] denotes the Poisson
bracket.

The reduced statistical operator of s particles is
ρL

s (x1, ..,xs;x′1, ..,x
′
s) related to the positive symmetric

density matrix D of N particles by

ρL
s (x1, .,xs;x′1, .,x

′
s) =

LsTrxs+1,.,xN
DL

N(x1, .,xs,xs+1, .,xN ;x′1, .,x
′
s,xs+1, .,xN),

where s ∈ N, N is the number of particles, and L the length
of the system of particles. The trace is defined in terms of
the kernel ρL(x,x′) by the formula

TrxρL =

∫

L
ρL(x,x)dx.

The Hamiltonian of system is defined as

HL
s (x1, ...,xs) = ∑

1≤i≤s

(

−
1

2m
△xi

+uL(xi)

)

+

+ ∑
1≤i< j≤s

φi, j(|xi − x j|),

where △i is the Laplacian

△i =
∂ 2

∂ (x1
i )

2
+

∂ 2

∂ (x2
i )

2
+

∂ 2

∂ (x3
i )

2
,

φi, j(|xi − x j|) = δ (|xi − x j|) and uL(x) is an external field

which keeps the system in the region L: uL(x) = 0 if x ∈ L

and uL(x) =+∞ if x /∈ L. Here φi, j(|xi − x j|) is symmetric.

3 Solution of the Cauchy Problem for the

BBGKY Hierarchy of Quantum Kinetic

Equations with delta function potential

To obtain the solution of the Cauchy problem defined by
(1) and (2) we use a semigroup method [5], [6], [7].

Let Ls
2(L) be the Hilbert space of functions

ψL
s (x1, ...,xs), xi ∈ R(L), and BL

s be the Banach space

of positive-definite, self-adjoint nuclear operators
ρL

s (x1, ...,xs;x′1, ...,x
′
s) on Ls

2(L)

(ρL
s ψL

s )(x1, ...,xs) =
∫

L
ρL

s (x1, ...,xs;x′1, ...,x
′
s)×

×ψL
s (x

′
1, ...,x

′
s)dx′1...dx′s,

with norm

|ρL
s |1 = sup ∑

1≤i≤∞

|(ρL
s ψs

i , ψ̃
s
i )|,

where the upper bound is taken over all orthonormal
systems of finite, twice differentiable functions with
compact support {ψs

i } in Ls
2(L), s ≥ 1. We’ll suppose that

the operators ρL
s and HL

s act in the space Ls
2(L) with zero

boundary conditions.
Let BL be the Banach space of sequences of nuclear

operators

ρL = {ρL
0 ,ρ

L
1 (x1;x′1), ...,ρ

L
s (x1, ...,xs;x′1, ...,x

′
s), ...},

where ρL
0 are complex numbers,

∣
∣ρL

0

∣
∣
1
=
∣
∣ρL

0

∣
∣ and

ρL
s ⊂ BL

s ,

ρL
s (x1, ...,xs;x′1, ...,x

′
s) = 0, when s > s0,

where s0 is finite and the norm is

|ρL|1 =
∞

∑
s=0

|ρL
s |1.

According [10] Bethe ansatz

ψ(x1, . . . ,xs) = ∑
P

a(P)Pexp

(

i
s

∑
i=1

kPi
xi

)

satisfies

(−
s

∑
i=1

△xi
+ ∑

1≤i< j≤s

δ (|xi − x j|))ψ(x1, . . . ,xs) =

Eψ(x1, . . . ,xs) (3)

in

0 < x1,x2, ...,xs < L. (4)

In (3) eigenvalue E = ∑s
i=1 k2

i , where the summation is
performed over all permutations P of the numbers {k} =
k1, . . . ,ks and a(P) is a certain coefficient depending on P:

a(Q) =−a(P)exp(iθi, j),

where θi, j = θ (ki − k j), θ (r) = −2arctan(r/c) and when
r is a real value and −π ≤ θ (r) ≤ π . Here all the k′s are
real, distinct. Next, we adhere to the condition (4).

Let B̃L
s be a dense set of “good” elements of BL

s of
type BL

s ∩ D(HL
s )
⊗

D(HL
s ), where D(HL

s ) is the domain
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of the operator HL
s [11] and

⊗
denote the algebraic tensor

product.

We introduce the operators

(Ω LρL)s(x1, ..,xs;x′1, ..,x
′
s) =

=
N

L
(1−

s

N
)
∫

L
∑

i

ρL
s+1(x1, ..,xs,xs+1;x′1, ..,x

′
s,xs+1)×

g1
i (xs+1)g̃

1
i (xs+1)dxs+1, (5)

UL(t)ρL
s (x1, ..,xs;x′1, ..,x

′
s) =

(eΩ(L)e−iHLte−Ω(L)ρLeiHLt)s(x1, ..,xs;x′1, ..,x
′
s).

In (5) g1
i (xs+1) is a complete orthonormal system of

vectors in the one-particle space L2(L).
Let

(H̃
L
ρL)s(x1, ..,xs;x′1, ..,x

′
s)= [HL

s ,ρ
L
s ](x1, ..,xs;x′1, ..,x

′
s)+

N

L
(1−

s

N
)Trxs+1 ∑

1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρ

L
s+1(x1, ..,xs+1;x′1, ..,xs+1).

Theorem. If potential δ (|xi − x j|) is delta function

potential, the operator UL(t) generates a strongly

continuous semigroup of bounded operators on BL, whose

generators coincide with the operator − iH̃
L

on B̃L

everywhere dense in BL.

Proof.According to the general theory of groups of
bounded strongly continuous operators, there always
exists an infinitesimal generator of the group UL(t) given

by the formula limt−→0
UL(t)ρL−ρL

t
in the sense of

convergence in norm in the space BL for ρL that belong to
a certain set D(H̃ L) everywhere dense in BL [12].
Therefore, since UL(t) is a strongly continuous

semigroup on BL with generator −iH̃
L

on the right-hand
side of the BBGKY hierarchy of quantum kinetic
equations on B̃L

s which is dense in BL
s [5], [6] the abstract

Cauchy problem (1)-(2) has the unique solution

ρL
s (t,x1, ...,xs;x′1, ...,x

′
s) = (UL(t)ρL)s(x1, ...,xs;x′1, ...,x

′
s)

= (eΩ(L)e−iHLte−Ω(L)ρLeiHLt)s(x1, ...,xs;x′1, ...,x
′
s) (6)

for each ρL
s (x1, ...,xs;x′1, ...,x

′
s) ⊂ B̃L

s . For the initial data

ρL
s belonging to a certain subset of BL

s (to the domain of

definition of D(− iH̃ L)), which is everywhere dense in
BL

s , (6) is strong solution of Cauchy problem (1)-(2).

This proves the Theorem.

4 Derivation of Hierarchy of Kinetic

Equations for Correlation Matrices with

delta function potential and its Solution

Introducing the notation

(
H

LρL
)

s
(t,x1, ...,xs;x′1, ...,x

′
s) =

=
[
HL

s ,ρ
L
s

]
(t,x1, ...,xs;x′1, ...,x

′
s);

(

D
L
xs+1

ρL
)

s
(x1, · · · ,xs;x′1, · · · ,x

′
s) =

= ρL
s+1

(
x1, · · ·xs,xs+1;x′1, · · · ,x

′
s,xs+1

)
;

(A L
xs+1

ρL)s(t,x1, ...,xs;x′1, ...,x
′
s) =

=
N

L
(1−

s

N
) ∑

1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρ

L
s (t,x1, ...,xs;x′1, ...,x

′
s);

ρL(t) = {ρL
1 (t,x1;x′1), ...,ρ

L
s (t,x1, ...,xs : x′1, ...,x

′
s), ...},

(7)

s = 1,2, · · · ,

we can cast (1) and (2) in the form

i
∂

∂ t
ρL

s (t,x1, ...,xs;x′1, ...,x
′
s) =

(
H

LρL
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)

+

∫

L

(

A
L
xs+1

D
L
xs+1

ρL
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

ρL
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ρL

s (x1, ...,xs;x′1, ...,x
′
s).

For sequences (7) this problem can formulated as

i
∂

∂ t
ρL(t) =

(
H

LρL
)
(t)+

∫

L
A

L
x D

L
x ρL(t)dx, (8)

ρL(t)|t=0 = ρL(0). (9)

Proposition For sequence of correlation matrices

ϕ = {ϕ0,ϕ1(x1;x′1), ...,ϕs(x1, ...,xs;x′1, ...,x
′
s), ...},

the hierarchy of kinetic equations has the form:

i
∂

∂ t
ϕ(t)=H ϕ(t)+

1

2
W (ϕ(t),ϕ(t))+

∫

L
A xDxϕ(t)dx+

+

∫

L
(A xϕ⋆Dxϕ)(t)dx, (10)

ϕ(t)|t=0 = ϕ(0). (11)
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In (8) relation between density matrices and
correlation matrices [13],[14] is:

ρ(t)=Γ ϕ(t)= I+ϕ(t)+
ϕ(t)⋆ϕ(t)

2!
+ · · ·

(⋆ϕ(t))s

s!
+ · · · ,

where:
(ϕ ⋆ϕ)(X) = ∑

YCX

ϕ(Y )ϕ(X \Y ),

I ⋆ϕ = ϕ , (⋆ϕ)s = ϕ ⋆ϕ ⋆ · · ·⋆ϕ
︸ ︷︷ ︸

s times;

X = (x1, · · · ,xs;x′1, · · · ,x
′
s),

Y = (x1, · · · ,xs;x′1, · · · ,x
′
s′), s′ ∈ s, s = 1,2, · · · ;

W (ϕ ,ϕ) (X) = ∑
YCX

U (Y ;X \Y )ϕ(Y )ϕ (X \Y) ,

(U ϕ)(X) =

[

∑
1≤i< j≤s

φ(xi − x j),ϕ

]

(X).

The prove of the proposition is analogically to [14],
[15], [16].

The problems (8), (9) for the system of s particles in
volume V have the form:

i
∂

∂ t
ϕL

s (t,x1, ...,xs;x′1, ...,x
′
s)=H

LϕL
s (t,x1, ...,xs;x′1, ...,x

′
s)+

+
1

2
W

L
(
ϕL,ϕL

)

s
(t,x1, ...,xs;x′1, ...,x

′
s)+

+

∫

L
A

L
xs+1

D
L
xs+1

ϕL
s (t,x1, ...,xs;x′1, ...,x

′
s)dxs+1+

+

∫

L

(

A
L
xs+1

ϕL⋆D
L
xs+1

ϕL
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

(12)

ϕL
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ϕL

s (0,x1, ...,xs;x′1, ...,x
′
s).

To determine the solution to equation (12) we use the
relation [17]:

Γ eΩ ϕ = eΩΓ ϕ . (13)

You can verify this by series expansion on the right

Ω k(⋆ϕ)m (Ω k

k!
) (⋆ϕ)m

m!
and the left side of the relation (13)

∑
l≥0

1

l!
(⋆ ∑

n≥0

Ω n

n!
ϕ l = ∑

l≥0

1

l!
∑

n1≥0,...,nl≥0

Ω n1ϕ ⋆ ... ⋆Ω nlϕ

n1!...nl!
,

1

m
∑

n1+...+nm=k

Ω n1ϕ ⋆ ... ⋆Ω nmϕ

n1!...nm!

and considering

Ω(ϕ ⋆ψ) = ψ ⋆Ωϕ +ϕ ⋆Ωψ

in both parts (13).
Using (13), you can rewrite the formula (6) as:

U ′L(t)ϕL
s (0,x1, ...,xs;x′1, ...,x

′
s) =

= Γ exp(Ω L)Γ −1[exp(iHLt)Γ (exp(−Ω L)Γ −1Γ×

×ϕs(0,x1, ...,xs;x′1, ...,x
′
s))exp(−iHLt)].

Using (13) in (6) and Γ −1Γ ϕ(t) = ϕ(t) we obtain:

ρL
s (t,x1, ...,xs;x′1, ...,x

′
s) = Γ ϕL

s (t,x1, ...,xs;x′1, ...,x
′
s) =

= Γ exp(Ω L)Γ −1[exp(iHLt)Γ (exp(−Ω L)Γ −1×

×Γ ϕL
s (0,x1, ...,xs;x′1, ...,x

′
s)exp(−iHLt)] =

= Γ exp(Ω L)Γ −1[exp(iHLt)Γ (exp(−Ω L)×

×ϕL
s (0,x1, ...,xs;x′1, ...,x

′
s)exp(−iHLt)]. (14)

Acting to (14) by Γ −1 we receive:

ϕL
s (t,x1, ...,xs;x′1, ...,x

′
s) =

=U ′L(t)ϕL
s (0,x1, ...,xs;x′1, ...,x

′
s) =

= exp(Ω L)Γ −1[exp(iHLt)Γ (exp(−Ω L)×

×ϕs(0,x1, ...,xs;x′1, ...,x
′
s)exp(−iHLt)]. (15)

The generator of the semigroup U ′Λ (t) coincides with

−i(H L +
1

2
W

L+
∫

L
A

L
xs+1

D
L
xs+1

dxs+1+

+

∫

L
A

L
xs+1

⋆D
L
xs+1

dxs+1),

on the set.
So, (15) the unique solution of the Cauchy hierarchy

of kinetics equations for correlation matrices with delta
function potential (10),(11).
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