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Abstract: In this paper, we investigate the stability and Hopf bifurcation of fractional-order Nicholson equation with two different

delays r1,r2 > 0: Dα y(t) = −µy(t − r1) + ρy(t − r2)e
−γy(t−r2), t > 0. We obtain stability regions by analyzing the characteristic

equation of the linearized model around the equilibrium points. We evaluate the effects of ρ and µ on the equilibrium point, which

influence the model’s stability and Hopf bifurcation. By choosing µ , ρ , fractional order α and time delays as a bifurcation parameters,

the delay bifurcation curve for the emergence of the Hopf bifurcation is determined. Finally, numerical simulations are presented to

illustrate the efficiency and validity of our results.
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1 Introduction

Fractional calculus is becoming more important fields
because of its applications in science and engineering [1,
2,3,4,5,6,7]. Delay differential equations (DDEs) are
differential equations in which the derivative of a function
at each given time depends on the solution at a previous
time. DDEs have been used for analysis and forecasting
in a wide range of life sciences fields, especially control
systems, epidemiology, population dynamics, neutral
networks, and physiology [3,8,9,10,11,12,13,14]. DDEs
with two or more delays have attracted more interest
recently [15,16]. The fractional delay differential
equation (FDDE) has been used for several years in a
number of fields, including economics, chaos, physics,
control theory, agriculture, chemistry, neural networks,
and bioengineering [5,17,18,19,20,21,22,23].

Fractional-delay differential equations have been
studied by many researchers [24,25,26,27,28]. E. Ahmed
et al. [26] studied the stability analysis of fractional-order
predator-prey and rabies models and proved the existence,
uniqueness of the solutions of the two models. El-Sayed
et al. [27] analysed the existence and uniqueness of
fractional-order logistic equations with two different

delays. In 1980, Gurrney et al. [29] proposed the
nonlinear differential equation of the form

Ṅ(t) = −δ + pN(t − τ)e−aN(t−τ) to describe the
population dynamics of Nicholson’s blowflies. Where
N(t) is the size of population at time t, p is the maximum

per capita daily egg production rate, 1
a

is the size at which
the population reproduces at its maximum rate, δ is the
pair capita adult death rate and τ is the generation time.
El-Sayed et al. [30] studied the stability of the
equilibrium point of the fractional-order Nicholson
equation. Faria and Henrique [31] analysed a Nicholson
equation with multiple pairs of the varying delays and
nonlinear terms given by mixed monotone functions. L.
Yuying and J. Wei [32] investigated bifurcation analysis
in the delayed Nichloson blowflies equation with delayed
harvest. S. Panigrahi and S. Chand [33] used a
fractional-order model with a time delay to discuss red
blood cell survival in animals. Many researchers have
proposed different types of fractional order time delay
biological models and studied it [34,35].

In this paper, we analyse the stability and Hopf
bifurcation of fractional-order Nicholson equation with
two different delays using the critical curves method [11]:
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Dα y(t) =−µy(t − r1)+ρy(t − r2)e
−γy(t−r2), where Dα is

a Caputo fractional derivative of order 0 < α ≤ 1 and r1,
r2 > 0. In Sec. 2, we obtained the stability analysis in two
cases: r1 = r2 = r and r1 6= r2. The numerical simulations
are presented in Sec. 3.

Definition 1.1. The Riemann-Liouville fractional integral
operator of order α ∈ R+ of the function f (t), t > a is
defined by

Iα
a f (t) = 1

Γ (α)

∫ t
a(t − τ)α−1 f (τ)dτ.

and the Caputo fractional derivative for α > 0 of f (t), t > a

is defined by

Dα
a f (t) = In−α Dn f (t).

where D = d
dt

, Γ (.) is the Gamma function and
n− 1 < α ≤ n, n ∈ N.

For properties of fractional calculus see [1,36,37,38].

2 Main Problem and Dynamic Analysis

A fractional-order Nicholson equation with two different
delays r1, r2 > 0 is

Dα y(t) =−µy(t−r1)+ρy(t−r2)e
−γy(t−r2), t ≥ 0, (1)

y(t) = φ(t), −τ ≤ t ≤ 0. (2)

where µ , ρ and γ are positive constant. Dα is a Caputo
fractional derivative of order 0 < α ≤ 1, the initial
condition φ(t) is continuous on [−τ,0] and
τ = max{r1,r2}.

The model (1) have two equilibrium points

y∗1 = 0, (3)

and

y∗2 =−
log
( µ

ρ

)

γ > 0, if ρ > µ . (4)

The stability analysis and Hopf bifurcation of the
model (1) will be evaluated.

2.1 Case 1: Dynamic analysis for one delay

Let r1 = r2 = r and f (y(t − r)) = y(t − r)e−γy(t−r). Eq. (1)
becomes

Dα y(t) =−µy(t − r)+ρ f (y(t − r)), (5)

and an equilibrium point y∗ of Eq. (5) satisfy

−µy∗+ρ f (y∗) = 0. (6)

Linearization about equilibrium

Let ε = y − y∗ be a small perturbation from an
equilibrium point, yr = y(t − r) and εr = ε(t − r). Then
Eq. (5) becomes

Dαε =−µ(εr + y∗)+ρ f (εr + y∗) . (7)

Then using Taylor’s expansion, we get

Dα ε =−µεr +ρ f ′(y∗)εr , (8)

Using Laplace transform Eq. (8) yields a characteristic
equation

λ α +
[

µ −ρ f ′(y∗)
]

e−λ r = 0. (9)

Stability condition

An equilibrium point y∗ is asymptotically stable if all
the roots λi of the characteristic equation (9) satisfy

Re(λi)< 0. (10)

When r = 0, the condition (10) is

ρ f ′(y∗)− µ < 0. (11)

Now, let r > 0 and λ = u+ iv, u,v ∈ R. A change in
stability can occur only when the value of λ crosses the
imaginary axis at λ = iv and the characteristic equation
becomes

(iv)α +
[

µ −ρ f ′(y∗)
]

e−ivr = 0. (12)

Separating real and imaginary parts of the Eq. (12), we
obtain

vα cos
(

απ
2

)

=−
[

µ −ρ f ′(y∗)
]

cos(vr), (13)

vαsin
(

απ
2

)

=
[

µ −ρ f ′(y∗)
]

sin(vr). (14)

Squaring and adding Eqs. (13) and (14), we get

v2α =
(

µ −ρ f ′(y∗)
)2
, (15)

From Eq. (13), we get

r = 1
v

(

2nπ ± arccos

(

vα cos
(

απ
2

)

ρ f ′(y∗)−µ

))

,n = 0,1, · · · . (16)

Critical curves

The critical curves can be obtained by substituting
from Eq. (15) in (16)

r1(n) =

2nπ+arccos





(µ−ρ f ′(y∗))cos

(

απ
2

)

ρ f ′(y∗)−µ





(µ−ρ f ′(y∗))
1
α

, n = 0,1, · · · .

(17)
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r2(n) =

2nπ−arccos





(µ−ρ f ′(y∗))cos
(

απ
2

)

ρ f ′(y∗)−µ





(µ−ρ f ′(y∗))
1
α

. n = 1,2, · · · .

(18)

Theorem 2.1. There is only one stability region for y∗

located between r = 0 and the closest critical curve r1(0).

Proof. Differentiating the characteristic equation (9) with
respect to r (r > 0), we get

dλ
dr

=− λ α+1

αλ α−1+rλ α (19)

On critical curves (17) and (18),

du
dr

= Re
(

dλ
dr

)

|λ=iv=− z1z3+z2z4

z2
3+z2

4

, (20)

where

z1 = vα+1cos

(

(α+1)π
2

)

,

z2 = vα+1sin
(

(α+1)π
2

)

,

z3 = αvα−1cos
(

(α−1)π
2

)

+ rvαcos
(

απ
2

)

,

and

z4 =
(

αvα−1sin

(

(α−1)π
2

)

+ rvαsin
(

απ
2

)

)

,

−(z1z3 + z2z4) = αv2α > 0. (21)

Then

Re
(

dλ
dτ

)

|λ=iv> 0.

This implies that there does not exist any eigenvalue
with negative real part across the critical curves (17) and
(18). On the other hand, the equilibrium point y∗ is
asymptotically stable for r = 0. Thus, there is only one
stability region enclosed by r = 0 and the critical curve
r1(0), closest to it.

2.1.1 Stability for y∗1 = 0

From Eqs. (17) and (18), the critical curves for y∗1 = 0 are

r1(n) =
2nπ+π(1−α/2)

(µ−ρ)
1
α

, n = 0,1, · · · . (22)

and

r2(n) =
2nπ−π(1−α/2)

(µ−ρ)
1
α

. n = 1,2, · · · . (23)

We find that the critical curves are sensitive with the
fractional order α , ρ and µ . See Fig. 1.

(a) ρ = 0.1, µ = 1.

(b) ρ = 0.5, µ = 1.

(c) ρ = 0.7, µ = 1.

(d) α = 0.75, ρ = 0.1.

(e) α = 0.85, ρ = 0.1.
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(f) α = 0.95, ρ = 0.1.

(g) µ = 0.7, α = 0.95.

(h) µ = 1, α = 0.95.

(i) µ = 1.5, α = 0.95.

Fig. 1: Critical curves of Eqs. (22) and (23).

Theorem 2.2. If ρ < µ , then equilibrium point y∗1 = 0 of
Eq. (5) has only stability region located between r = 0 and

r1(0) =
π(1−α/2)

(µ−ρ)
1
α

.

See Figs. 2-4. We observe that the stability regions are
sensitive with the fractional order α , µ , ρ and time delay.
Stability regions with respect to µ , ρ , α and time delay
are given in Figs. 2-4 and critical surfaces in Fig. 5. Fig. 3
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(b) α = 0.85.
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(c) α = 0.95.
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Fig. 2: Stability regions with respect to (µ,r1) when α varies

from 0.75 to 0.95 and ρ = 0.1.

shows that stability domain increases as the value of ρ
increases. Figs. 2 and 4 show that the stability domain
increases as the values of α and µ decrease.
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Fig. 3: Stability regions with respect to (α,r1) when ρ varies

from 0.1 to 0.7 and µ = 1.

2.1.2 Stability for y∗2 =−
log
( µ

ρ

)

γ

From Eqs. (17) and (18), the critical curves for

y∗2 =−
log

( µ
ρ

)

γ are

r1(n) =
2nπ+π(1−α/2)

(

−µlog
( µ

ρ

))

1
α

, n = 0,1, · · · . (24)
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Fig. 4: Stability regions with respect to (ρ,r1) when µ varies

from 0.7 to 1.5 and α = 0.95.

and

r2(n) =
2nπ−π(1−α/2)

(

−µlog
( µ

ρ

))

1
α

. n = 1,2, · · · . (25)

We find that the critical curves are sensitive with the
fractional order α , ρ and µ . See Fig. 6.
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Fig. 5: Critical surfaces.

Theorem 2.3. The equilibrium point y∗2 =−
log
( µ

ρ

)

γ of Eq.

(5) has only stability region located between r = 0 and

r1(0) =
π(1−α/2)

(

−µlog

( µ
ρ

))

1
α

.

See Figs. 7-9.

We observe that the stability regions are sensitive with
the fractional order α , µ , ρ and time delay. Stability
regions with respect to µ , ρ , α and time delay are given
in Figs. 7-9 and critical surfaces in Figs. 10. Figs. 7 and 8
show that the stability domain increases as the values of
α and ρ decrease. Fig. 9 shows that the stability domain
increases as the values of µ increase.

(a) ρ = 0.7, µ = 0.5.

(b) ρ = 1, µ = 0.5.

(c) ρ = 2, µ = 0.5.

(d) α = 0.65, ρ = 0.9.

(e) α = 0.75, ρ = 0.9.
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(f) α = 0.95, ρ = 0.9.

(g) µ = 0.5, α = 0.95.

(h) µ = 0.8, α = 0.95.

(i) µ = 0.9, α = 0.95.

Fig. 6: Critical curves of Eqs. (24) and (25).

2.2 Case 2: Dynamic analysis for two different

delays r1 6= r2

As in Sec.(2.1), we linearized Eq. (1) and get the
characteristic equation of the form

λ α =−µe−λ r1 +ρe−λ r2 (1− γy∗)e−γy∗ . (26)

At λ = iv, the characteristic equation becomes

(iv)α =−µe−ivr1 +ρe−γy∗ (1− γy∗)e−ivr2 . (27)
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Fig. 7: Stability regions with respect to (µ,r1) when α varies

from 0.65 to 0.95 and ρ = 0.9.

Simplifying, we get

vα cos
(

απ
2

)

+ µcos(vr1) = ρe−γy∗ (1− γy∗)cos(vr2),
(28)

vα sin
(

απ
2

)

− µsin(vr1) =−ρe−γy∗ (1− γy∗)sin(vr2).
(29)
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Fig. 8: Stability regions with respect to (α,r1) when ρ varies

from 0.7 to 2 and µ = 0.5.

Squaring and adding Eqs. (28) and (29), we get

v2α + µ2 + 2µvαcos
(

απ
2
+ vr1

)

= ρ2(1− γy∗)2e−2γy∗

(30)
From Eq. (30), we get the critical curves

r1 =
1
v

(

−απ
2
+ arccos

(

v2α−ρ2e−2γy∗ (1−γy∗)2+µ2

−2µvα

))

,

(31)
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Fig. 9: Stability regions with respect to (ρ,r1) when µ varies

from 0.5 to 0.9 and α = 0.95.

and

r2 =
1
v

(

−απ
2
+ arccos

(

v2α+ρ2(1−γy∗)2e−2γy∗−µ2

2vα ρe−γy∗ (1−γy∗)

))

.

(32)
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Fig. 10: Critical surfaces.

Fig. 11 shows that as the values of α become smaller,
the stability domain becomes larger. Critical surfaces of
Eqs. (31) and (32) are given in Fig. 12.

3 Numerical Simulations

An Adams-type predictor-corrector method has been
introduced and investigated further in [26], [41,42,43,44,
45,46]. In this section, we use an Adams-type
predictor-corrector method for the numerical solution of
the fractional integral equation.

The main problem is equivalent to the fractional
integral equation

y(t) = y(0)+ Iα
[

−µy(t − r1)+ρy(t − r2)e
−γy(t−r2)

]

.

(33)
and then apply the PECE (Predict, Evaluate, Correct,
Evaluate) method.

(a) α = 0.75.

(b) α = 0.85.

(c) α = 0.95.

� 4 6 8 10
r�
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8

10

r1

�=0.75

�=0.85

�=0.95

(d)

Fig. 11: Stability regions with respect to (r2,r1) when α varies

from 0.75 to 0.95, µ = 0.5, ρ = 0.9 and γ = 0.5.

3.1 Case 1: r1 = r2 = r

Fig. 13 for r = 3, α = 0.95, ρ = 0.1 and different µ . Fig.
14 for r = 6, µ = 0.5, ρ = 0.1 and different α . Fig. 15 for
α = 0.95, γ = 0.5, ρ = 0.9, µ = 0.5 and different r. Fig.
16 for r = 8, γ = 0.5, ρ = 0.9, µ = 0.5 and different α .
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Fig. 12: Critical surfaces of Eqs. (31) and (32) when α varies

from 0.75 to 0.95 and γ = 0.5.

3.2 Case 2: r1 6= r2

Fig. 17 for γ = 0.5, µ = 0.5, ρ = 0.9 and α = 0.95.

0 100 200 300 400 500 600 700 800 900 1000

t

-1.5

-1

-0.5

0

0.5

1

y(
t)

(a) µ = 0.65.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y(t)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y(
t-

)

(b) µ = 0.65.

0 100 200 300 400 500 600 700 800 900 1000

t

-1.5

-1

-0.5

0

0.5

1

y(
t)

(c) µ = 0.75.

-1.5 -1 -0.5 0 0.5 1

y(t)

-1.5

-1

-0.5

0

0.5

1

y(
t-

)

(d) µ = 0.75.

0 100 200 300 400 500 600 700 800 900 1000

t

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y(
t)

(e) µ = 0.91.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

y(t)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y(
t-

)

(f) µ = 0.91.

Fig. 13: r = 3, α = 0.95, ρ = 0.1 and µ varies from 0.65 to 0.91.
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(b) α = 0.75.
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(d) α = 0.85.
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(f) α = 0.95.

Fig. 14: r = 6, µ = 0.5, ρ = 0.1 and α varies from 0.75 to 0.95.

4 Conclusions

In this paper, we have studied the dynamic analysis of a
fractional-order Nicholson equation with two different
delays. We discussed the stability and Hopf bifurcation
for one delay (r1 = r2 = r) and two different delays
(r1 6= r2). According to the Theorems 2.2 and 2.3, we
obtained the stability regions and critical curves for the
equilibrium points y∗1 and y∗2. We found that stability
regions and critical curves are sensitive to the fractional
order α , ρ , µ and time delay. Where we used µ , ρ ,
fractional order α and time delays as a bifurcation
parameters. Also we obtained the critical surfaces for
different ρ , µ , and fractional order α . We determined the
parametric expressions of r1 and r2 and the stability
regions between them for different fractional order α .
Our results are confirmed by numerical simulations.
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Fig. 15: α = 0.95, γ = 0.5, ρ = 0.9 and µ = 0.5.
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Fig. 16: r = 8, γ = 0.5, ρ = 0.9 and µ = 0.5.
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Fig. 17: γ = 0.5, µ = 0.5, ρ = 0.9 and α = 0.95.
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