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Abstract: In Ithis paper the solution of lakshmanan-Prosezain-Daniel equation (LPDE) are obtained using three methods kudryashov

method, (
G′(η)
G(η)

) expansion method and tanh expansion method. We use these methods to reduces the LPD equation to an ordinary

differential equation (ODE). All solutions are investegated by introduced figures in 2D and 3D. Dark, singular and bright optical soliton

solutions related with optical fibers are presented. We think that these solutions are very important in the field of optical fiber.These

methods provide us with mathematical equipments which can be used to solve nonlinear partial differential equation in mathematical

physics.
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1 Introduction

Soliton solutions of nonlinear partial differential
equations (NPDES) is very important which has a lot of
importance in many fields such as physics and
mathematics due to its complicated in most of physical
systems [1]. The (NPDES) such as Schrödinger
equation [2], lakshmanan-Prosezain-Daniel
equation [3, 7], Navier-Stokes equation [4], Korteweg-De
Vries equation [5] and Burgers’ equation [6] have been
discussed in recent year.
The lakshmanan-Prosezain-Daniel equation (LPDE) is
presented [3, 7] as this form:

bψxt + pψΩ |ψ |2 + iψt + aψxx = ρψxxxx +φψ2
x ψ∗+

σψ |ψx|2 + cψxx|ψ |2 +ϕψ2ψ∗
xx + δψ |ψ |4,

(1)

where ψ(x, t) the complex valued wave function, ψ∗(x, t)
its complex conjugate, x, t are space and time variables
respectively, p is constant, a shows group velocity of
dispersion, ρ depicts the fourth order dispersion, the
coefficient b is spatiotemporal dispersion (STD) of the
model, ϕ , φ , σ , c represented the perturbation factor with

nonlinear form of dispersion and δ depicts two-photon
absorption. Ω is real valued algebraic function and source
of non linearity. There are several methods solved
lakshmanan-Prosezain-Daniel equation such as the
modified auxiliary equation method [8], modified simple
equation method [9], Sine-Gordon expansion
method [10], trial equation method [11, 12], tanh

method [13], unified method [14], collective variable
method [15], improve tan((ψ ′(η)/2) expansion
technique [16].

In this work, we solve (1) using three different
methods:The Kudryashov method employed as one of the
techniques to obtain the solutions [17] [20], [21], [22].

Another method used in this study is the (
G′(η)
G(η) )

expansion method. This method relies on expanding the
solution of the equation in terms of the derivative of a
function divided by the function
itself [18] [23], [24], [25]. The third method employed the
tanh expansion method. This method utilizes hyperbolic
tangent functions to expand the solution of the
equation [19] [26], [27]. To visualize and analyze the
obtained solutions, We introduced figures in both
two-dimensional (2D) and three-dimensional (3D)
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formats. These figures depict the behavior and
characteristics of the solutions
The [LPDE] is a significant equation in the field of optical
fiber, and finding its solutions is a great importance.The
[LPDE] is considered an important types of Schrödinger
equation that has great deals in optical materials.
This paper is organized as: Section 2 the descriptions of
the methods are presented. In Section 3 present
application of the methods. The graphical illustration for
some solutions are introduced in Section 4. The
conclusion of our work is present in Section 5.

2 Descriptions of the methods

In this section, the steps of all methods are showing to
understand how to apply these methods on the proposed
equation. Consider the partial differential equation.

W =

(

ψ ,ψt ,ψx,ψtt ,ψxx, ...

)

, (2)

where: W represents a polynomial comprising the
unknown function ψ = ψ(x, t) as well as its different
partial derivatives.

By using the transformation

ξ = γ +β t +(−α)x, η = θ2 −νt + x,

ψ(x, t) = exp(iξ )u(η),
(3)

.
where: α,β ,ν,γ are arbitrary constants Substituting

from (3) into (2),then (2) becomes ordinary differential
equation as following:

S =

(

u′,u′′,u′′′, .........

)

, (4)

where: S is a polynomial in u(η) and its derivatives.

2.1 Kudryashov method

To use the Kudryashov method the following steps are
applied.

Step 1:According to the method, suppose the solution of (4):

u(η) =
N

∑
i=0

Ai(Q(η))i, (5)

where: Ai,0 ≤ i ≤ N are constants to be determined,
Ai 6= 0, and Q(η) satisfies the ordinary differential
equation as following

Q′(η) =
√

α2Q(η)2(1−ΩQ(η)2). (6)

Then (6) gives the following solution:

Q(η) =
4sexp(−αη)

Ω exp(−2αη)+ 4s2
. (7)

Step 2:By substituting from (5), (6) into (4) and collect all
terms have the same power of Q(η) together, then
taking all coefficients equal to zero. Thus, we get the
system of algebraic equations by WOLFRAM
MATHEMATIC 11.3.

Step 3:By using the mathematica program, we obtain the
exact solution of (4) by solving the system of
algebraic equations.

2.2 The
G′(η)
G(η) expansion method

The main steps of
G′(η)
G(η) expansion method are show as

following:

Step 1:The method offers a solution to equation (4) as follows:

u(η) =
N

∑
i=0

Bi

(

G′(η)
G(η)

)i

, (8)

where: Bi,0 ≤ i ≤ N, Bi 6= 0,G = G(η) satisfies the
ordinary differential equation

G′′(η)+λ G′(η)+ µG(η) = 0. (9)

Step 2:In (8) N is positive integral can be determined by the
homogeneous balance principle.

Step 3:There are three possible solutions of (9).
1:Hyperbolic function solutions, whenλ 2 − 4µ > 0.

G′(η)
G(η)

=−λ

2
+

1

2

√

λ 2 − 4µ

h1 sinh
(

1
2
η
√

λ 2 − 4µ
)

+ h2 cosh
(

1
2
η
√

λ 2 − 4µ
)

h2 sinh
(

1
2
η
√

λ 2 − 4µ
)

+ h1 cosh
(

1
2
η
√

λ 2 − 4µ
) .

(10)

2:Trigonometric function solutions, whenλ 2 − 4µ < 0.

G′(η)
G(η)

=−λ

2
+

1

2

√

4µ −λ 2

−h1 sin
(

1
2
η
√

4µ −λ 2
)

+ h2 cos
(

1
2
η
√

4µ −λ 2
)

h2 sin
(

1
2
η
√

4µ −λ 2
)

+ h1 cos
(

1
2
η
√

4µ −λ 2
) .

(11)

3:Rational function solutions, when λ 2 − 4µ = 0.

G′(η)
G(η)

=
h2

h1 + h2η
− λ

2
(12)

Step 4:Substituting from (8),(9) into (4), then collect all term

have the same power of
G′(η)
G(η) and equating all

coefficients to zero, then solving the system by
mathematica program to get the exact solution.
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2.3 The extended tanh function method

The main steps of tanh expasion method are show as
following:

Step 1:The solution of (4) by using extended tanh function
method is giving by:

u(η) =
N

∑
i=1

AiQ(η)i +
N

∑
i=1

BiQ(η)−i +A0, (13)

where: Q = Q(η) , satisfies the ordinary in the
following form:

Q′(η) = Q(η)2 +ω . (14)

Step 2:Applied the balance principle to determine the value of
N.

step 3:There are three solutions of (14)
If ω > 0, then

Q(η) =
√

ω tan
(

η
√

ω
)

, Q(η) =−
√

ω cot
(

η
√

ω
)

.
(15)

If ω < 0, then

Q(η) =−
√
−ω tanh

(

η
√
−ω

)

,

Q(η) =−
√
−ω coth

(

η
√
−ω

)

.
(16)

If ω = 0, then

Q(η) =
1

η
. (17)

Step 4:Substituting from(13) and (14) into (4), then collect
all coefficient have the same power of Q(η) and
equating them to zero. Then, we get a system of
algebraic equation, which can be solved by
WOLFRAM MATHEMATIC 11.3.

3 Applications of the methods

By inserting (3) into (1) and equating the real and
imaginary parts to zero,a real part is obtained as:

− u′′(η)(6α2ρ + a− bν)+ u(η)(α4ρ + aα2 −αbβ

+β +(σ + /0)u′(η)2)− u(η)3(α2(c−σ +ϕ +φ)+

pΩ)+ (c+ϕ)u(η)2u′′(η)+ρu(4)(η)+ δu(η)5 = 0,
(18)

and imaginary part giving by:

u′(η)(4α3ρ + 2aα − b(αν +β )− 2αu(η)2(c−ϕ +φ)+

ν)− 4αρu(3)(η) = 0.
(19)

From equation (18), (19) the coefficients of linearly
independent functions equal zero, as following:

c+ϕ = 0. (20)

σ +φ = 0. (21)

c−ϕ +φ = 0. (22)

ρ = 0. (23)

4α3ρ +2aα −αbν −bβ +ν = 0, ν =
bβ − 2aα

1−αb
. (24)

Also substituting

Ω(u) = su+ du2. (25)

We substitute from equation (20)- (23) into (18),(19), we
get the single equation its solution are determined by the
parabolic law nonlinearity in the form of equation (25),
then we get the following equation:

(a− bν)u′′(η)+ u(η)(−aα2 +αbβ −β )+

u(η)3(s− 4α2c)+ (d− δ )u(η)5 = 0.
(26)

By substituting

u(η) =
√

y(η),ν =
bβ − 2aα

1−αb
. (27)

into (26), then becomes

− 4y(η)2(aα2 −αbβ +β )

+ 4y(η)3(s− 4α2c)+ 4(d− δ )y(η)4+

y′(η)2(aαb+ a−β b2)

αb− 1
− 2y(η)y′′(η)(aαb+ a−β b2)

αb− 1
.

(28)

Balancing y4 with yy′′ in (28) we get the following relation

⇒ 4N = N + 2+N ⇒ N = 1. (29)

3.1 Solution of The kurdyashove method

From (5) and (29) then, we can write the solution of (28)
as the following form:

y(η) = A0 +A1Q(η), (30)

By substituting equation (30) into equation (28) and
equating the coefficients of each power of Q(η) to zero,
we obtain the ensuing system of equations:

−4aα2A2
0 + 4αA2

0bβ − 4A2
0β − 16α2A3

0c

+4A4
0d − 4A4

0δ + 4A3
0s = 0,

−8aα2A0A1 −
2aα3A0A1b

αb− 1
− 2aα2A0A1

αb− 1
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+
2α2A0A1b2β

αb− 1
+ 8αA0A1bβ−

8A0A1β − 48α2A2
0A1c+ 16A3

0A1d

−16A3
0A1δ + 12A2

0A1s = 0,

−4aα2A2
1 −

aα3A2
1b

αb− 1
− aα2A2

1

αb− 1
+

α2A2
1b2β

αb− 1
+ 4αA2

1bβ−

4A2
1β −48α2A0A2

1c+24A2
0A2

1d−24A2
0A2

1δ +12A0A2
1s= 0,

4aα3A0A1bΩ

αb− 1
+

4aα2A0A1Ω

αb− 1
− 4α2A0A1b2β Ω

αb− 1
−

16α2A3
1c+ 16A0A3

1d− 16A0A3
1δ + 4A3

1s = 0,

3aα3A2
1bΩ

αb− 1
+

3aα2A2
1Ω

αb− 1
− 3α2A2

1b2β Ω

αb− 1

+4A4
1d− 4A4

1δ = 0.

Solve the previous system, we get the following sets of
solutions:
Set 1:

A0 = 0,

A1 =∓
√

3

√

5ab2s2Ω −16ab
√

cs3/2Ω +16acsΩ
√

25b4ds2 −25b4δ s2 −96b2cds+96b2cδ s+256c2d−256c2δ
,

β =
− 25ab3s5/2√

c
+50ab2s2 +16ab

√
cs3/2 −96acs

2
(

25b4s2 −96b2cs+256c2
) ,

α =−
√

s

2
√

c
.

(31)

Set 2:

A0 = 0,

A1 =±
√

3

√

5ab2s2Ω +16ab
√

cs3/2Ω +16acsΩ
√

25b4ds2 −25b4δ s2 −96b2cds+96b2cδ s+256c2d−256c2δ
,

β =

25ab3s5/2√
c

+50ab2s2 −16ab
√

cs3/2 −96acs

2
(

25b4s2 −96b2cs+256c2
) ,

α =

√
s

2
√

c
.

(32)

By substituting from (31), (32) into (30) with (27),(7) and
(3) we get the following solutions

ψ1,2,3,4(x, t) = exp(iξ )

√

A1(4sexp(−αη))

Ω exp(−2αη)+ 4s2
+A0.

(33)
where

ξ = γ +β t +(−α)x, η = θ2 −νt + x. (34)

3.2 Solution of
G′(η)
G(η) expansion method

From (8) and (29) then, the solution of (28) is giving by:

y(η) =
B1G′(η)

G(η)
+B0. (35)

Substituting (35) into (28) and equating all terms of power
G′(η)
G(η) to zero, we get the next system:

−2aB1B0λ µ

αb− 1
− 2aαbB1B0λ µ

αb− 1
+

aB2
1µ2

αb− 1
+

aαbB2
1µ2

αb− 1
−

4aα2B2
0+

2b2β B1B0λ µ

αb− 1
− b2β B2

1µ2

αb− 1
+4αbβ B2

0−4β B2
0−

16α2B3
0c+ 4B4

0d− 4B4
0δ + 4B3

0s = 0,

−2aB1B0λ 2

αb− 1
− 2aαbB1B0λ 2

αb− 1
− 4aB1B0µ

αb− 1
− 4aαbB1B0µ

αb− 1
−

8aα2B1B0 +
2b2β B1B0λ 2

αb− 1
+

4b2β B1B0µ

αb− 1
+ 8αbβ B1B0−

8β B1B0 − 48α2B1B2
0c+ 16B1B3

0d

−16B1B3
0δ + 12B1B2

0s = 0,

−aαbB2
1λ 2

αb− 1
− aB2

1λ 2

αb− 1
− 6aαbB0B1λ

αb− 1
− 6aB0B1λ

αb− 1
−

2aαbB2
1µ

αb− 1
− 2aB2

1µ

αb− 1
− 4aα2B2

1

+
β b2B2

1λ 2

αb− 1
+

6β b2B0B1λ

αb− 1
+

2β b2B2
1µ

αb− 1
+ 4αβ bB2

1− 4β B2
1 − 48α2B0B2

1c

+24B2
0B2

1d− 24B2
0B2

1δ + 12B0B2
1s = 0,

− 4aB2
1λ

αb− 1
− 4aαbB2

1λ

αb− 1
− 4aB0B1

αb− 1

−4aαbB0B1

αb− 1
+

4b2β B2
1λ

αb− 1
+

4b2β B0B1

αb− 1
−16α2B3

1c+16B0B3
1d−16B0B3

1δ +4B3
1s = 0,

− 3aB2
1

αb− 1
− 3aαbB2

1

αb− 1
+

3b2β B2
1

αb− 1
+ 4B4

1d − 4B4
1δ = 0.

By solve the previous system, then we have the following
cases of solutions:
Case 1:

B0 =
1

2
B1

(

λ −
√

λ 2 − 4µ
)

,

a =−B1

(

s− 4α2c
)(

b2
(

4α2 +λ 2 − 4µ
)

− 8αb+ 4
)

4
√

λ 2 − 4µ
,

β =−B1

(

s− 4α2c
)(

−4α2 + 4α3b+αb
(

λ 2 − 4µ
)

+λ 2 − 4µ
)

4
√

λ 2 − 4µ
,

d =
3
(

s− 4α2c
)

4B1

√

λ 2 − 4µ
+ δ .

(36)
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Case 2:

B0 =
1

2
B1

(

√

λ 2 − 4µ +λ
)

,

a =
B1

(

s− 4α2c
)(

b2
(

4α2 +λ 2 − 4µ
)

− 8αb+ 4
)

4
√

λ 2 − 4µ
,

β =
B1

(

s− 4α2c
)(

−4α2 + 4α3b+αb
(

λ 2 − 4µ
)

+λ 2 − 4µ
)

4
√

λ 2 − 4µ
,

d = δ − 3
(

s− 4α2c
)

4B1

√

λ 2 − 4µ
.

(37)
Using (3),(10), (11), (27),(35), (36), (37), then get the next
solutions.
Hyperbolic function solutions, whenλ 2 − 4µ > 0

ψ5,6(x, t) = exp(iξ )
√

√

√

√B1(

√

λ 2 −4µ(h1 sinh( 1
2 η

√

λ 2 −4µ)+h2 cosh( 1
2 η

√

λ 2 −4µ))

2(h2 sinh 1
2 η

√

λ 2 −4µ +h1 cosh( 1
2 η

√

λ 2 −4µ))
− λ

2
)+B0.

(38)

Trigonometric function solutions, whenλ 2 − 4µ < 0

ψ7,8(x, t) = exp(iξ )
√

√

√

√B1(

√

4µ −λ 2(−h1 sin( 1
2 η

√

4µ −λ 2)+h2 cos( 1
2 η

√

4µ −λ 2))

2(h2 sin( 1
2 η

√

4µ −λ 2)+h1 cos( 1
2 η

√

4µ −λ 2))
− λ

2
)+B0.

(39)

where

ξ = γ +β t +(−α)x, η = θ2 −νt + x. (40)

3.3 solution of tanh expansion method

From (13) and (29), thus the solution (28) takes the form:

y(η) = A1Q(η)+A0 +
B1

Q(η)
. (41)

Substituting (41) into (28), we get the following
system:

−4aα2A2
0 +

aA2
1ω2

αb− 1
+

aαA2
1bω2

αb− 1
− 12aA1B1ω

αb− 1
−

12aαA1bB1ω

αb− 1
− 8aα2A1B1 +

aB2
1

αb− 1
+

aαbB2
1

αb− 1
−

A2
1b2β ω2

αb− 1
+

12A1b2β B1ω

αb− 1
+ 4αA2

0bβ

+8αA1bβ B1 − 4A2
0β−

8A1β B1 − 96α2A1A0B1c+ 48A1A2
0B1d− 48A1A2

0B1δ+

24A2
1B2

1d− 24A2
1B2

1δ + 24A1A0B1s− 16α2A3
0c+

4A4
0d − 4A4

0δ + 4A3
0s− b2β B2

1

αb− 1
= 0,

−4aA0A1

αb− 1
− 4aαA0A1b

αb− 1
+

4A0A1b2β

αb− 1

−16α2A3
1c+ 16A0A3

1d−

16A0A3
1δ + 4A3

1s = 0,

3aA2
1

αb− 1
− 3aαA2

1b

αb− 1
+

3A2
1b2β

αb− 1
+ 4A4

1d− 4A4
1δ = 0,

−8aα2A1A0−
4aA1A0ω

αb− 1
− 4aαA1A0bω

αb− 1
+

4A1A0b2β ω

αb− 1
+

8αA1A0bβ − 8A1A0β − 48α2A2
1B1c+ 48A2

1A0B1d−

48A2
1A0B1δ + 12A2

1B1s− 48α2A1A2
0c+

16A1A3
0d − 16A1A3

0δ + 12A1A2
0s = 0,

−4aα2A2
1 −

2aA2
1ω

αb− 1
− 2aαA2

1bω

αb− 1

−6aA1B1

αb− 1
− 6aαA1bB1

αb− 1
+

2A2
1b2β ω

αb− 1
+

6A1b2β B1

αb− 1
+ 4αA2

1bβ − 4A2
1β+

16A3
1B1d− 16A3

1B1δ − 48α2A0A2
1c+ 24A2

0A2
1d−

24A2
0A2

1δ + 12A0A2
1s = 0,

−4aA0B1ω

αb− 1
− 4aαA0bB1ω

αb− 1
−8aα2A0B1+

4A0b2β B1ω

αb− 1
+

8αA0bβ B1 − 8A0β B1 − 48α2A2
0B1c− 48α2A1B2

1c+

16A3
0B1d − 16A3

0B1δ + 48A1A0B2
1d − 48A1A0B2

1δ+

12A2
0B1s+ 12A1B2

1s = 0,

−4aA0B1ω2

αb− 1
− 4aαA0bB1ω2

αb− 1
+

4A0b2β B1ω2

αb− 1
+

16A0B3
1d − 16A0B3

1δ − 16α2B3
1c+ 4B3

1s = 0,

−6aA1B1ω2

αb− 1
− 6aαA1bB1ω2

αb− 1
− 2aB2

1ω

αb− 1
− 2aαbB2

1ω

αb− 1
−

4aα2B2
1 +

6A1b2β B1ω2

αb− 1
− 48α2A0B2

1c+ 16A1B3
1d

−16A1B3
1δ + 24A2

0B2
1d − 24A2

0B2
1δ + 12A0B2

1s

+
2b2β B2

1ω

αb− 1
+ 4αbβ B2

1− 4β B2
1 = 0,

−3aB2
1ω2

αb− 1
− 3aαbB2

1ω2

αb− 1
+

3b2β B2
1ω2

αb− 1
+4B4

1d−4B4
1δ = 0.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


196 T. Adel et al.: Optical soliton solutions for Lakshmanan-Prosezain-Daniel...

Solve the above system by mathematica then, the
subsequent sets of solutions are obtained as:
set 1:

A1 =± 2a
√

ω
√

((αb− 1)2− b2ω)2
(

−(s− 4α2c)2
)

,

A0 =− 2aω

((αb− 1)2− b2ω)(s− 4α2c)
,B1 = 0,

β =
aα2(αb− 1)− aω(αb+ 1)

(αb− 1)2 − b2ω
,

δ = d− 3
(

(αb− 1)2− b2ω
)(

s− 4α2c
)2

16aω
.

(42)

set 2:

A1 = 0,A0 =− 2aω

((αb− 1)2 − b2ω)(s− 4α2c)
,

B1 =∓ 2aω3/2

√

((αb− 1)2− b2ω)2
(

−(s− 4α2c)2
)

,

β =
aα2(αb− 1)− aω(αb+ 1)

(αb− 1)2 − b2ω
,

δ = d− 3
(

(αb− 1)2− b2ω
)(

s− 4α2c
)2

16aω
.

(43)

set 3 :

A1 =∓

4

√

a2ω(5b4ω2+11b2ω(αb−1)2+2(αb−1)4)
4b2ω−(αb−1)2

√

(

−20b6ω3 −39b4ω2(αb−1)2 +3b2ω(αb−1)4 +2(αb−1)6
)(

s−4α2c
)2

,

A0 =− 8aω
(

(αb−1)2 −4b2ω
)(

s−4α2c
) ,

B1 =±

4ω
√

a2ω(5b4ω2+11b2ω(αb−1)2+2(αb−1)4)
4b2ω−(αb−1)2

√

(

−20b6ω3 −39b4ω2(αb−1)2 +3b2ω(αb−1)4 +2(αb−1)6
)(

s−4α2c
)2

,

β =
aα2(αb−1)−4aω(αb+1)

(αb−1)2 −4b2ω
,

δ = d− 3
(

(αb−1)2 −4b2ω
)(

s−4α2c
)2

64aω
.

(44)

set 4:

A1 =±

4

√

a2ω(−4b4ω2−7b2ω(αb−1)2+2(αb−1)4)
5b2ω+(αb−1)2

√

(

−20b6ω3 −39b4ω2(αb−1)2 +3b2ω(αb−1)4 +2(αb−1)6
)(

s−4α2c
)2

,

A0 =
8aω

(

5b2ω +(αb−1)2
)(

s−4α2c
) ,

B1 =±

4ω
√

a2ω(−4b4ω2−7b2ω(αb−1)2+2(αb−1)4)
5b2ω+(αb−1)2

√

(

−20b6ω3 −39b4ω2(αb−1)2 +3b2ω(αb−1)4 +2(αb−1)6
)(

s−4α2c
)2

,

β =
aα2(αb−1)+5aω(αb+1)

5b2ω +(αb−1)2
,

δ =
3
(

5b2ω +(αb−1)2
)(

s−4α2c
)2

64aω
+d.

(45)

By using (42)-(45) into (41) with (27), (15), (16) and (3)
we get the following solution of (1):
If ω < 0 then, we have

ψ9−16(x, t) = exp(iξ )
√

A1

(

−
√
−ω tanh

(

η
√
−ω

))

+A0 −
B1√

−ω tanh
(

η
√
−ω

) .

(46)

ψ17−24(x, t) = exp(iξ )
√

A1

(

−
√
−ω coth

(

η
√
−ω

))

+A0 −
B1√−ω coth
(

η
√−ω

) .

(47)
If ω > 0, then

ψ25−32(x, t) = exp(iξ )
√

A1

(√
ω tan

(

η
√

ω
))

+A0 +
B1√

ω tan
(

η
√

ω
) .

(48)

ψ33−40(x, t) = exp(iξ )
√

A1

(

−
√

ω cot
(

η
√

ω
))

+A0 −
B1√

ω cot
(

η
√

ω
)

(49)

where

ξ = γ +β t +(−α)x, η = θ2−νt + x. (50)

4 Graphical illustrating

In this section, we introduce some figures in the
two-dimensional and three dimensional about some the
solution of LPDE by three method : kurdyashove method,

(
G′(η)
G(η) ) expansion method and tanh expansion method

and show what is the typices of soliton solution. In figure
1, we plot the graph of set 1 (31) with ψ1(x, t) (33) by
using kudryashov method at constants
a = 0.2,b = 0.1,c = 0.1,γ = 0.3,δ = 0.2,d = 0.1,θ2 =
0.1,s = 0.1,Ω = 0.2, we use kudryashov method in
figure 2 with constant γ = 0.2,a = 0.7,b = 0.3,c =
0.2,δ = 0.2,d = 0.1,θ2 = 0.1,s = 0.1,Ω = 0.2 , we plot
the graph in figure 3,4 of set 2 (32) with ψ3(x, t) (33) and
set 2 (32) with ψ4(x, t) (33) use kudryashov method with
constants γ = 0.2,a = 0.7,b = 0.3,c = 0.2,δ = 0.2,d =
0.1,θ2 = 0.1,s = 0.1,Ω = 0.2 and a = 0.1,b = 0.2,c =
0.1,γ = 0.3,δ = 0.2,d = 0.1,θ2 = 0.1,s = 0.1,Ω = 0.1.

respectively. Use (G′(η)
G(η) ) expanded method, we plot the

graph in Case (1) (36) figure 5 with ψ5(x, t) (38) at
constants γ = 0.1,a = 0.32,α = 0.2,b = 0.2,B1 =
0.4,c = 0.2,d = 0.1,δ = 0.2,h1 = 0.3,h2 = 0.1,θ2 =
0.1,λ = 0.5,µ = 0.01,s = 0.3, the optical soliton
solution of Case (2) (37) with ψ6(x, t) (38) in figure 6 at
constants a = 0.4,α = 0.2,b = 0.4,B1 = 0.4,c = 0.2,γ =
0.3,d = 0.1,δ = 0.4,h1 = 0.3,h2 = 0.1,θ2 = 0.1,λ =
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0.5,µ = 0.01,s = 0.3, in figure 7,8, we use (
G′(η)
G(η) )

expansion method of Case (1) (36) with ψ7(x, t) (39) and
Case (2) (37) with ψ8(x, t) (39) at constants
a = 0.1,α = 0.2,b = 0.1,B1 = 0.2,c = 0.2,γ = 0.5,d =
0.1,δ = 0.4,h1 = 0.3,h2 = 0.1,θ2 = 0.1,λ =
0.0005,µ = 0.01,s = 0.1 and a = −0.1,α = 0.1,b =
0.1,B1 = 0.4,c = 0.1,γ = 0.1,d = 0.1,δ = 0.2,h1 =
0.4,h2 = 0.1,θ2 = 0.1,λ = 0.0005,µ = 0.01,s = 0.1.
respectively. Also show the soliton solutions of tanh

expansion method in figure 9 of set 1 (42) with ψ9(x, t) at
constants a = 1,α = 0.1,b = 1,γ = 0,c = 0.2,d =
0.5,θ2 = 0,s = 0.3,ω = −0.9, The optical soliton
solutions of set 1 (42) with ψ10(x, t) (46) by using tanh

expanded method with constants a = 1,α = 0.1,b =
1,γ = 0,c = 0.2,d = 0.5,θ2 = 0,s = 0.3,ω = −0.9 in
figure 10. We plot figure 11, 12 by tanh expanded method
set 1 (42) with ψ26(x, t) (48) and set 2 (42) with ψ26(x, t)
(48) at constants ω = 0.001,a = 0.1,α = 0.6,b =
0.7,γ = −2,c = 0.5,d = 0.2,θ2 = −1,s = 0.2 and
ω = 0.001,a = 0.1,α = 0.6,b = 0.7,γ =−2,c = 0.5,d =
0.2,θ2 =−1,s = 0.2 respectively.

Fig. 1: Optical rational soliton solution of set 1 (31) with ψ1(x, t)
(33) using kudryashov method with constants a = 0.2,b =
0.1,c = 0.1,γ = 0.3,δ = 0.2,d = 0.1,θ2 = 0.1,s = 0.1,Ω = 0.2.

Fig. 2: Optical rational soliton solution of set 1 (31) with ψ2(x, t)
(33) using kudryashov method with constants a = 0.2,b =
0.1,c = 0.8,δ = 1,θ2 = 0.3,ν = 0.1,s = 0.1,σ = 0.2,Ω=0.1.

Fig. 3: Optical rational soliton solution of set 2 (32) with ψ3(x, t)
(33) using kudryashov method plots with constants γ = 0.2,a =
0.7,b = 0.3,c = 0.2,δ = 0.2,d = 0.1,θ2 = 0.1,s = 0.1,Ω = 0.2.

Fig. 4: Optical rational soliton solution of set 2 (32) with ψ4(x, t)
(33) using kudryashov method plots with constants a = 0.1,b =
0.2,c= 0.1,γ = 0.3,δ = 0.2,d = 0.1,θ2= 0.1,s = 0.1,Ω = 0.1.

Fig. 5: Optical bright-singular soliton solution of Case (1) (36)

with ψ5(x, t) (38) using(
G′(η)
G(η) ) expanded method with constants

γ = 0.1,a= 0.32,α = 0.2,b= 0.2,B1 = 0.4,c= 0.2,d = 0.1,δ =
0.2,h1 = 0.3,h2 = 0.1,θ2 = 0.1,λ = 0.5,µ = 0.01,s = 0.3.
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Fig. 6: Optical bright-singular soliton solution of Case (2) (37)

with ψ6(x, t) (38) using (
G′(η)
G(η) ) expanded method with constants

a = 0.4,α = 0.2,b = 0.4,B1 = 0.4,c = 0.2,γ = 0.3,d = 0.1,δ =
0.4,h1 = 0.3,h2 = 0.1,θ2 = 0.1,λ = 0.5,µ = 0.01,s = 0.3.

Fig. 7: Optical bright-singular soliton solution of Case (1) (36)

with ψ7(x, t) (39) using(G′(η)
G(η)

) expanded method with constants

a = 0.1,α = 0.2,b = 0.1,B1 = 0.2,c = 0.2,γ = 0.5,d = 0.1,δ =
0.4,h1 = 0.3,h2 = 0.1,θ2 = 0.1,λ = 0.0005,µ = 0.01,s = 0.1.

Fig. 8: Optical bright-singular soliton solution of Case (2) (37)

with with ψ8(x, t) (39) using(
G′(η)
G(η) ) expanded method with

constants a= 0.1,α = 0.1,b= 0.1,B1 = 0.4,c= 0.1,γ = 0.1,d =
0.1,δ = 0.2,h1 = 0.4,h2 = 0.1,θ2 = 0.1,λ = 0.0005,µ =
0.01,s = 0.1.

Fig. 9: Optical bright soliton solution of set 1 (42) with ψ9(x, t)
(46) by using tanh expanded method with constants a = 1,α =
0.1,b = 1,γ = 0,c = 0.2,d = 0.5,θ2 = 0,s = 0.3,ω =−0.9.

Fig. 10: Optical bright soliton solution of set 1 (42) with ψ10(x, t)
(46) by using tanh expanded method with constants a = 1,α =
0.1,b = 1,γ = 0,c = 0.2,d = 0.5,θ2 = 0,s = 0.3,ω =−0.9.

Fig. 11: Optical dark soliton solution of set 1 (42) with ψ25(x, t)
(48) by using tanh expanded method with constants ω =
0.001,a = 0.1,α = 0.6,b = 0.7,γ = −2,c = 0.5,d = 0.2,θ2 =
−1,s = 0.2.

5 Conclusion

In conclusion, this paper presented an effective and
simple methods to solve the
Lakshmanan-Porsezian-Daniel equation (LPDE) by using
three analytical method, namely the Kudryashov method,
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Fig. 12: Optical dark soliton solutions of set 1 (42) with ψ26(x, t)
(48) by using tanh expanded method with constants ω =
0.001,a = 0.1,α = 0.6,b = 0.7,γ = −2,c = 0.5,d = 0.2,θ2 =
−1,s = 0.2.

the (G′(η)
G(η)

) expanded method, and the tanh expanded

method. The solutions derived through these methods
were further illustrated through figures presented in both
2D and 3D format. Types of solutions dark , bright and
singular are shown. The solutions of [LPDE] play great
role in field of mathematics and physics, as they
contribute to our understanding of various physical
phenomena governed by the LPDE. Finding solutions of
[LPDE] considered very benefit in the field of optical
fiber.
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