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Abstract: In the current investigation, we obtain the numerical solution of MHD Micropolar Casson fluid flow over linearly stretching
sheet with heat source / sink effect in porous medium. Through the implementation of appropriate similarity transformations, the
governing partial differential equations are converted into nonlinear ordinary differential equations. These equations are subsequently
numerically solved via the utilization of MATLAB software, resulting in the derivation of numerical solutions for the aforementioned
transformed nonlinear ordinary differential equations. The obtained numerical answer velocity of fluid, temperature and micro-rotation
are presented in graphical form, wherein the impact of numerous relevant factors, for instance the Casson fluid parameter, porosity
parameter, magnetic parameter, micro-inertia density parameter, micro-coupling parameter, heat generation parameter, etc., on the
micro-rotation, velocity and temperature profiles are thoroughly analyzed and spoke about. The graphical depictions of the resulting
data are expounded upon in detail.

Keywords: Micropolar fluid; Casson fluid; Magnetohydrodynamic; Porous medium; linearly stretching sheet.

1 Introduction

Micropolar fluids refer to fluids that contain
microstructures. These fluids consist of rigid particles that
are oriented at random and drowned in a sticky medium.
The applications of micropolar fluids are vast and include
polymers, foodstuffs, blood, alloys and liquid metal,
plasma as well as drilling for gas and oil. Such fluids are
characterized by non-symmetric stress tensors.
Eringen [1, 2] provided explanations from theory for
micropolar fluids and identified the impact of micro
motion of fluid elements. He offered a rational and
important summary of the standard Navier–Stokes model,
which covers many more phenomena in compared to the
classical model, theory and applications. Furthermore, his
generalization had a good structure and wasn’t unduly
complicated. According to Borrelli et al. [3], micropolar
fluids have a variety of uses in the pharmaceutical,

chemical, engineering, and food industries.
Alkasasbeh [4] numerical solved the nonlinear partial
differential equation for MHD flow of micropolar Casson
fluid through a circular object that is horizontal and
investigated the impacts of different parameters based on
flow characteristics and heat transfer coefficients.
Pramanik [5] has conducted extensive research on the
phenomenon of heat flow during suctioning or blowing at
surfaces. Saidulu and Venkata Lakshmi [6] have
adequately investigated the subject of heat transmission
with slip effects of Casson. Shu [7] obtained new
fundamental solutions for micropolar fluids, which are
useful for solving microscale flow problems involving
rheologically complex fluids. Passos et al. [8] numerically
studied the direction a Casson liquid through a
flow-disturbing rib in a rectangular µ−channel and
investigated non-Newtonian behavior’s impact on fluid
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flow properties. In their study, Hegab and Liu [9]
employed a mathematical model grounded on the
micropolar fluid theory to scrutinize the flow
characteristics in micro orifices. Their findings evinced
that the micropolar fluid theory affords a superior
close-up of the observed escalation friction in micro
channel flows. Mitarai et al. [10] demonstrated that the
utilization of a micropolar fluid model effectively
characterizes collisional granular flows on an incline.
This approach offers a hydrodynamical framework that is
well-suited for granular systems. Mohana Ramana et
al. [11] conducted comprehensive numerical analysis of
the steady MHD stagnation point flow of a Casson fluid
through a stretching sheet by a heat source and chemical
reaction. The authors took into account various slip
boundary conditions and viscous dissolution phenomena
to better comprehend the problem at hand. An
examination of the radiation effects of MHD Casson fluid
flow through an exponentially extending sheet that was
imbedded in a porous medium was done by Reddy et
al. [12]. The study also analyzed the role of slip effects
and heat source/sink. Asifa et al. [13] conducted an
investigation into the unsteady flow of Casson fluid in a
porous medium, subjected to thermal radiation, magnetic
field, and heat source/sink, between two heated walls.
Saif Ur Rehman et al. [14] conducted a study in which
they analyzed the effect of buoyancy parameters and
radiation on the phenomenon of MHD micropolar nano
fluid flow beyond a stretching /shrinking surface. Dey et
al. [15] investigated the transfer of mass and energy on a
porous surface using magnetohydrodynamic fluid.
Saidulu and Reddy [16] performed research into the
effects of dissipation on heat and mass transportation by
analyzing the micropolar flow on a stretchable surface,
which is comparable in nature. Their final statement
implies that the growth in magnitude of the Eckert
number results in an upsurge in the temperature curve,
whereas the concentration curve declines as the Schmidt
number increases. Nandeppanavar et al. [17] conducted
an investigation on the characteristics of unsteady On an
elongating medium, the Casson fluid flows with a focus
on examining the heat transfer phenomena through
dissipation of viscosity. The utilization of thermal
radiation has been widely recognized in numerous
technological and industrial applications, including, but
not limited to, natural gas, solar systems, nuclear reactors,
gas turbine plants, energy production, astronomical
processes, and communication satellites. Thermal
radiation is an essential component of the energy
conversion process, and its effects are radiated from both
the working fluid and the heated wall. Its significance in
the process of flow and heat transfer is critical,
particularly in the development various energy conversion
devices that operate at higher temperatures. Siegel and
Howell [18] introduced a thermal radiation-based system
that is driven by the interplay between the working fluid
and the wall’s emission properties. Salahuddin and
Awais [19] conducted a study to investigate the impact of

thermal radiation on the flow analysis of non-Newtonian
fluid on a sensory surface. Their research revealed that the
temperature curve is heightened by thermal radiation.
Additionally, a significant investigation was carried out
by Jalili et al. [20] with the objective of analyzing the
thermal implications of nanofluid flow within the
interplate region.

The discipline of magnetohydrodynamics (MHD) is
concerned with investigation of the behavior of
electrically conductive solutions when a magnetic field is
present, a phenomenon which holds important
significance in various manufacturing and technical
applications, including but not limited to MHD
generators, nuclear reactor design, and flow meters.
Through a myriad of innovative research endeavors, it has
been established that the application of a magnetic field
has a profound influence on the transport and heat transfer
properties of typical electrically conductive flows. The
study of magnetohydrodynamics bears noteworthy
implications, such as the utilization of liquid sodium for
cooling nuclear power plants and the adoption of
measuring induction pressure, which relies on fluid
potential differences perpendicular to motion and the
magnetic field, among other factors as suggested by
Ganesan and Palani [21]. In relation to heat transfer in a
magnetohydrodynamic stagnation point flow of the Cross
fluid model towards a stretched surface, Hayat et al. [22]
performed a research project of numerical simulation. An
analysis on the dynamic and thermal boundary layers was
carried out by Djebali et al. [23] in their study. The
implementation of similarity solutions was used to
investigate the subsequent development of these layers
with a vertical flat plate. Warke et al. [24] conducted a
thorough examination of the mathematical analysis
pertaining to the stagnation point flow of radiative
magnetomicropolar liquid that is observed passing
through a stretching sheet. Swain et al. [25] investigated
consequences of utilizing hybrid nanoparticles composed
of multi-walled carbon nanotubes (MWCNT) and iron
oxide (Fe3O4) on an exponentially porous shrinking sheet
that exhibits chemical reaction and slip boundaries. Iqbal
et al. [26] undertook an examination of the ramifications
considering a magnetic field that is inclined on a
stretching layer of micropolar-Casson fluid, while
simultaneously considering the influences of viscous
dissipation. The matter of micropolar-Casson fluid flow
through a stretching surface was addressed by Kasim et
al. [27] who were able to obtain a numerical solution. In
the interim, Shah et al. [28] conducted an investigation on
the effectiveness of heat transfer in an electrically
conductive MHD flow of a Casson ferrofluid over a
stretching sheet. The study by Alkasasbeh et al. [29]
focused on the analysis of steady two-dimensional
laminar magnetohydrodynamic (MHD) natural
convection flow through a solid sphere that is immersed
in a micropolar-Casson fluid in suspension. The study
conducted by Jusoh et al. [30] investigated the problem of
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mixed convection related to the Casson micropolar fluid
over a surface that is either stretching or shrinking.

2 Mathematical model
In a porous media with permeability K, we consider the
steady flow of a micropolar Casson fluid in two
dimensions over a horizontal linear stretching sheet. A
uniform transverse magnetic field B0 is present, and this
causes the fluid to conduct electricity. The induced
magnetic field is negligible. Consider external flow is
ue(x) = ax and the velocity of the stretching sheet is
uw(x) = cx, where a, c are positive constant and x is the
coordinate considered together the stretching sheet. We
assumed that both Tw and T∞ are the melting and free
stream temperature of the fluid respectively, where
Tw > T∞ The modeling of the problem shown in figure 1

Fig. 1

The rheological equation describing the behavior of
the Casson fluid is formulated as follows.

Ti j =

 2
(

µB +
Py√
2π

)
ei j, π > πc

2
(

µB +
Py√
2πc

)
ei j, π > πc

(1)

Where µB plastic dynamic viscosity, π = ei jei j and ei j is
the (i, j)th component of deformation rate, π denotes
deformation rate, πc is a critical value of non Newtoniam
model, Py is the yield stress of fluid. The equations that
determine the system’s behavior are derived under the
aforementioned assumptions.

∂u
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+
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= 0 (2)
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+ v
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(
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∂u
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u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 − 1

ρCp

∂qr

∂y
+

Q
ρCp

(T −T∞) (5)

Consider the boundary conditions pertaining to equations
(2), (3), (4) and (5) as follows.

u =uw(x) = cx,T = Tw,N = 0, at y = 0
u →ue(x) = ax,T → T∞, as y → ∞

(6)

Here α the thermal diffusivity of the fluid, β Casson fluid
parameter, (u,v) =velocity components along axes, K
permeability of the medium, k thermal conductivity, σ

electrical conductivity of fluid, ρ the density of fluid qr
Radiative heat flux, κ micropolar fluid constant and Cp
the specific heat at constant pressure.
Under the Rosseland approximation [31], the flux of
Radiative heat may be expressed.

qr =−4σ∗

3k∗
∂T 4

∂y
(7)

Where σ∗ is the Stefan-Boltzman constant and k∗ is the
mean absorption coefficient further, we presume that the
temperature difference within the stream is such that T 4 is
uttered as a linear function of temperature. Hence
expanding T 4 in Taylor series about T∞ and neglecting
higher order terms, we obtain

T 4 ∼= 4T 3
∞T −3T 3

∞

Similarity variables

η =y
√

a
v
, ψ =

√
avx f (η),

N =a
√

a
v

xg(η), θ(η) =
T −T∞

Tw −T∞

,

(8)

Where ψ denotes the stream function, its definition is such
that u = ∂ψ

∂y and v =− ∂ψ

∂x are automatically in compliance
with the continuity Equation (1). Through the utilization
of this definition, we are able to acquire

u = ax f ′(η),v =−
√

av f (η) (9)

Substitute Equations (8) & (9) into Equations (2), (3), (4)
and (5), the transformed equations are(

1+
1
β

)
f ′′′(η)+ f (η) f ′′(η)− f ′(η)2

− (M+Ω) f ′(η)+A1g′(η) = 0 (10)

λ0g′′(η)+ f (η)g′(η)− f ′(η)g(η)−
A1B

(
2g(η)+ f ′′(η)

)
= 0 (11)
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f (η)θ ′(η)+

(
R+

1
Pr

)
θ
′′(η)+∆θ(η) = 0 (12)

The boundary conditions that correspond to similarity
variables are presented herein.

f ′(0) = ε, θ(0) = 0, g(0) = 0 at y = 0 (13)

f ′(∞)→ 1, θ(∞)→ 1, g(∞)→ 0 at y → ∞ (14)

A1 =
K
vρ
, M = σB2

o
aρ

, λo =
γ

vρ
, B = v

a ,

Ω = v
aK , Pr =

v
α
, ∆ = Q

aρCp
, R = 16σ∗T 3

∞

3K∗K

Where the primes denotes differentiation with respect to
η , M = σB2

o
aρ

magnetic parameter, R = 16σ∗T 3
∞

3K∗K radiation
parameter, Ω = v

aK permeability parameter, Pr = v
α

Prandtl number, ∆ = Q
aρCp

heat generation parameter,

ε = c/a stretching parameter, λo = γ

vρ
spin gradient

viscosity parameter, B = v
a mico-inertia density

parameter, A1 = K
vρ

micro-coupling parameter and β

Casson fluid parameter.
The two fundamental physical quantities under
consideration are the skin friction coefficient denoted by
C f and the local Nussselt number denoted by Nux.

C f =
τw

ρu2
e
,Nux =

xqw

k (T∞ −Tw)
, (15)

Where τw = µ

(
1+ 1

β

)(
∂u
∂y

)
y=0

is surface shear stress, µ

is dynamic viscosity of fluid, and qw = −k
(

∂T
∂y

)
y=0

+ qr

is surface heat flux.
By means of the equation (9), one can determine the skin
friction coefficient.

C f =
τw

ρu2
e

⇒ Re1/2
x C f =

(
1+

1
β

)
f ′′(0), (16)

And the Nusselt number is

Nux =
xqw

k (T∞ −Tw)
⇒ Re−1/2

x Nux =−(1+R)θ ′(0), (17)

Where Rex =
uex
v represent the local Reynolds number.

3 Solution algorithm

In order to address the boundary value problems (10)-(12)
which are accompanied by boundary conditions
articulated in (13) and (14), we employed the bvp4c
function, a pre-existing solver, within the MATLAB
software package. The basis of the algorithm is
established on a methodology that involves reducing the
nonlinear ordinary differential equations (10)-(12) in
conjunction with the boundary conditions (13) and (14)

via a process of diminution, resulting in a system of first
order nonlinear differential equations as presented below.

f =y1, f ′ = y2, f ′′ = y3,

g =y4, g′ = y5, θ = y6, θ
′ = y7

(18)

By means of similarity transformation, equations (10),
(11), and (12) can be reduced to first-order ordinary
differential equations.

y′1 = f ′ = y2 (19)

y′2 = f ′′ = y3 (20)

y′3 =
1(

1+ 1
β

) [
y2

2 − y1y2 +(M+Ω)y2 −A1y5
]

(21)

y4 = g (22)

y′3 = g′ = y5 (23)

y′5 =
1
λ0

[y2y4 − y1y5 +A1B(2y4 + y3)] (24)

y6 = θ (25)

y′6 = θ
′ = y7 (26)

y′7 =− 1(
R+ 1

Pr

) [y1y7 +∆y6] (27)

The boundary conditions yield

y2(0) = ε,y4(0) = 0,y6(0) = 0 at y = 0 (28)

y2(η)→ 1,y4(η)→ 0,y6(η)→ 1 at η = ∞ (29)

The nonlinear differential equations (19)-(27) together
with the boundary equations (28) and (29) described
above have been resolved through the utilization of the
embedded function bvp4c in the MATLAB software.

4 Results and Discussions

The Equations (10), (11), and (12), following their
transformation, were subjected to numerical solutions
through the bvp4c routine in MATLAB, along with due
consideration of the boundary conditions (13) and (14).
The results thus obtained were subsequently analyzed and
presented in the form of graphs, which demonstrate the
behavior of non-dimensional parameters such as
β ,M,Ω ,λθ ,∆ ,R,Pr,A1, and B, in relation to the
simulated fluid velocity, along with temperature and
micro rotation profiles. These graphs are vividly depicted
in Figures 2-4.

© 2024 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 1, 183-190 (2024) / www.naturalspublishing.com/Journals.asp 187

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f′(
η)

 

 

M=1.0

M=1.5

M=1.8

β=1, Ω=0.2, A
1
=0.5, λ

0
=1, B=0.5, ∆=1, R=1,

Pr=1

(a)

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f′(
η)

 

 

Ω=0.3

Ω=0.5

Ω=0.9

β=1, M=1, A
1
=0.5, λ

0
=1, B=0.5, ∆=1, R=1,

Pr=1

(b)

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f′(
η)

 

 

β=1.0

β=1.5

β=2.0

M=1, Ω=0.2, A
1
=0.5, λ

0
=1, B=0.5, ∆=1, R=1,Pr=1	

(c)

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f′(
η)

 

 

A
1
=0.5

A
1
=1.5

A
1
=2.0

M=1, Ω=0.2, β=1, λ
0
=1, B=0.5, ∆=1, R=1,Pr=1	

(d)

Fig. 2: Simulated velocity profile under the effect of the
model parameters: (a) for various values of M, (b)for
various values of permeability parameter, (c), for various
values of β and (d) for varying values of micro-coupling
parameter.

Figure 2(a) represents the effect of the M the velocity
profile. On increasing the value of magnetic field
parameter the velocity shows the decreasing behavior.

Figure 2(b) is the plot of various values of
permeability parameter on velocity of the fluid. It’s
discovered that the velocity away from the stretching
sheet is decreasing parabolically given a range of values
permeability parameter.

Figure 2(c) show that the effect of Casson fluid
parameter on simulated velocity. It raises the value of
Casson fluid parameter then micropolar Casson fluid
velocity down fall.

Figure 2(d) depict the impact of micro-coupling
parameter on micropolar Casson fluid velocity. This plot
clear that increases the value of micro-coupling parameter
and the value of micropolar Casson fluid velocity
decreases.

Table 1: Effects of various parameters on C f

β M Ω A1 λ0 B ∆ R Pr f ′′(0) M
1.2 1 0.2 0.5 1 0.5 1 1 1 -0.5697 -1.0445
1.4 1 0.2 0.5 1 0.5 1 1 1 -0.5948 -1.0197
1.6 1 0.2 0.5 1 0.5 1 1 1 -0.6152 -0.9997
1 1.1 0.2 0.5 1 0.5 1 1 1 -0.5501 -1.1002
1 1.5 0.2 0.5 1 0.5 1 1 1 -0.5969 -1.1938
1 1.9 0.2 0.5 1 0.5 1 1 1 -0.6404 -1.2808
1 1 0.3 0.5 1 0.5 1 1 1 -0.5501 -1.1002
1 1 0.5 0.5 1 0.5 1 1 1 -0.5740 -1.1480
1 1 0.7 0.5 1 0.5 1 1 1 -0.5969 -1.1938
1 1 0.2 0.7 1 0.5 1 1 1 -0.5368 -1.0736
1 1 0.2 0.9 1 0.5 1 1 1 -0.5355 -1.0710
1 1 0.2 1.1 1 0.5 1 1 1 -0.5337 -1.0674
1 1 0.2 0.5 1.1 0.5 1 1 1 -0.5379 -1.0758
1 1 0.2 0.5 1.4 0.5 1 1 1 -0.5384 -1.0768
1 1 0.2 0.5 1.9 0.5 1 1 1 -0.5388 -1.0776
1 1 0.2 0.5 1 1.1 1 1 1 -0.5376 -1.0752
1 1 0.2 0.5 1 1.5 1 1 1 -0.5372 -1.0744
1 1 0.2 0.5 1 1.9 1 1 1 -0.5368 -1.0736
1 1 0.2 0.5 1 0.5 1.2 1 1 -0.5815 -1.1630
1 1 0.2 0.5 1 0.5 1.5 1 1 -0.6344 -1.2688
1 1 0.2 0.5 1 0.5 1.8 1 1 -0.6772 -1.3544
1 1 0.2 0.5 1 0.5 1 1.1 1 -0.5320 -1.0640
1 1 0.2 0.5 1 0.5 1 1.4 1 -0.5122 -1.0244
1 1 0.2 0.5 1 0.5 1 1.7 1 -0.4883 -0.9766
1 1 0.2 0.5 1 0.5 1 1 1.1 -0.5425 -1.0850
1 1 0.2 0.5 1 0.5 1 1 1.5 -0.5534 -1.1068
1 1 0.2 0.5 1 0.5 1 1 1.9 -0.5583 -1.5583

M = Re1/2
x C f =

(
1+ 1

β

)
f ′′(0)

Figure 3(a) portrays that the impact of λ0 on
Micro-rotation profile. On raising the value of spin
gradient viscosity parameter, microelements seem to
settle down up to η = 1.788, and beyond η = 1.788 they
started rising.

Figure 3(b) portrays that the impact of micro-coupling
parameter on micro-rotation profile. On raising the value
of micro-coupling parameter, microelements seem to settle
upward to η = 1.273, and beyond η = 1.273 they started
downward.

Figure 3(c) shows that the effect of B on
micro-rotation profile. On raising the value of
micro-inertia density parameter, microelements seem to
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Fig. 3: Micro-rotation under the effect of the model
parameters, (a) for various values of λ0, (b) for varying
values of A1 , and (c) for various values of B.

settle upward to η = 1.242, and beyond η = 1.242 they
started downward.

Figure 4(a) define clearly increase the value Prandtl
number, the temperature profile decrease downward.
Figure 4(b) As may be observed, the temperature profile
increase, while fluid radiation parameter increases
parabolic. Figure 4(c) as may be observed, ∆ increases,
temperature profile of the sheet decreases.

Table 1 illustrates the varying parameters’ effects
including the β ,Ω ,λ0,∆ ,R,Pr,M,A1, and B, on the skin
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Fig. 4: Effect of model parameters on temperature profile,
(a) Effect of Pr, (b) Effect of R, and (c) Effect of ∆ .

friction coefficient. Specifically, Table 1 demonstrates that
a raise in the β ,B, and R leads to a corresponding increase
in the skin friction coefficient. Conversely, a raise in
values of theM,Ω ,λ0,∆ ,B, and Pr results in a decrease in
the skin friction coefficient.

We observe that table 2 effects of different parameters
like s λ0,M,Ω ,β ,A1,B,R,∆ and Pr on Nax. We noticed
that increases the value M,Ω ,β ,A1,B and R respectably,
also decreases the value of Nax. There is no effect of spin
gradient parameter on Nusselt number. We investigate
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increases the value of ∆ and Pr, the Nusselt numbers also
increase.

Table 2: Effect of different values β , M, Ω , A1, λ0, B, ∆ , R and Pr on
Nax

β M Ω A1 λ0 B ∆ R Pr f ′′(0) N
1.0 1 0.2 0.5 1 0.5 1 1 1 0.2670 -0.5340
1.2 1 0.2 0.5 1 0.5 1 1 1 0.2692 -0.5384
1.6 1 0.2 0.5 1 0.5 1 1 1 0.2709 -0.5418
1 1.1 0.2 0.5 1 0.5 1 1 1 0.2679 -0.5358
1 1.5 0.2 0.5 1 0.5 1 1 1 0.2714 -0.5428
1 1.9 0.2 0.5 1 0.5 1 1 1 0.2745 -0.5490
1 1 0.3 0.5 1 0.5 1 1 1 0.2679 -0.5358
1 1 0.5 0.5 1 0.5 1 1 1 0.2706 -0.5412
1 1 0.9 0.5 1 0.5 1 1 1 0.2730 -0.5460
1 1 0.2 0.6 1 0.5 1 1 1 0.2671 -0.5342
1 1 0.2 0.9 1 0.5 1 1 1 0.2677 -0.5354
1 1 0.2 1.5 1 0.5 1 1 1 0.2694 -0.5388
1 1 0.2 0.5 1.1 0.5 1 1 1 0.2669 -0.5338
1 1 0.2 0.5 1.3 0.5 1 1 1 0.2669 -0.5338
1 1 0.2 0.5 1.5 0.5 1 1 1 0.2669 -0.5338
1 1 0.2 0.5 1 1.1 1 1 1 0.2670 -0.5340
1 1 0.2 0.5 1 1.4 1 1 1 0.2671 -0.5342
1 1 0.2 0.5 1 1.7 1 1 1 0.2672 -0.5344
1 1 0.2 0.5 1 0.5 1.1 1 1 0.2435 -0.4870
1 1 0.2 0.5 1 0.5 1.4 1 1 0.1891 -0.3782
1 1 0.2 0.5 1 0.5 1.8 1 1 0.1403 -0.2806
1 1 0.2 0.5 1 0.5 1 1.2 1 0.2969 -0.6532
1 1 0.2 0.5 1 0.5 1 1.6 1 0.3524 -0.7752
1 1 0.2 0.5 1 0.5 1 1.9 1 0.3905 -0.8591
1 1 0.2 0.5 1 0.5 1 1 1.2 0.2408 -0.4816
1 1 0.2 0.5 1 0.5 1 1 1.5 0.2135 -0.4270
1 1 0.2 0.5 1 0.5 1 1 1.8 0.1948 -0.3896

N = Re−1/2
x Nax =−(1+R)θ ′(0)

5 Conclusions

– The simulative velocity of the sheet decreases when
boost up the values of permeability parameter,
magnetic parameter, Casson fluid parameter and
micro-coupling parameter respectively.

– The parameters like Prandtl number and heat
generation parameter have posited effect on
temperature profile and found same effect of radiation
parameter on temperature profile.

– On raising the value of spin gradient viscosity
parameter, microelements seem to settle down up to
η = 1.788, and beyond η = 1.788 they started rising.

– On raising the value of micro-coupling parameter,
microelements seem to settle upward to η = 1.273,
and beyond η = 1.273 they started downward.

– On raising the value of micro-inertia density
parameter, microelements seem to settle upward to
η = 1.242, and beyond η = 1.242 they started
downward.

– Nusselt number shows directly proportional to ∆ ,Pr
and inversely proportional to β , M, Ω , A1, B, and R

– Skin friction shows same effect to β , A1, R, and
opposite effect to ∆ , Pr, M, Ω , B, and λ0.

Conflict of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgment

TThis study is supported via funding from Prince Sattam
bin Abdulaziz University project number
(PSAU/2023/R/1444. The authors are thankful to the
Deanship of Scientific Research at University of Bisha for
supporting this work through the Fast-Track Research
Support Program.

References

[1] A. C. Eringen, Simple microfluids, International Journal of
Engineering Science 2(2) (1964) 205–217.

[2] A. C. Eringen, Theory of micropolar fluids, Journal of
mathematics and Mechanics (1966) 1–18.

[3] A. Borrelli, G. Giantesio and M. C. Patria, An exact solution
for the 3d mhd stagnation-point flow of a micropolar
fluid, Communications in Nonlinear Science and Numerical
Simulation 20(1) (2015) 121–135.

[4] H. Alkasasbeh, Numerical solution on heat transfer
magnetohydrodynamic flow of micropolar casson fluid
over a horizontal circular cylinder with thermal radiation,
Frontiers in Heat and Mass Transfer (FHMT) 10 (2018).

[5] S. Pramanik, Casson fluid flow and heat transfer past
an exponentially porous stretching surface in presence
of thermal radiation, Ain shams engineering journal 5(1)
(2014) 205–212.

[6] N. Saidulu and A. V. Lakshmi, Mhd flow of casson fluid
with slip effects over an exponentially porous stretching
sheet in presence of thermal radiation, viscous dissipation
and heat source/sink, American Research J. of Mathematics
2(1) (2016) 1–15.

[7] J.-J. Shu, On micropolar fluid flow, HEFAT 2011 (2011).
[8] A. D. Passos, V.-A. Chatzieleftheriou, A. A. Mouza and

S. V. Paras, Casson fluid flow in a microchannel containing
a flow disturbing rib, Chemical Engineering Science 148
(2016) 229–237.

[9] H. E. Hegab and G. Liu, Fluid flow modeling of micro-
orifices using micropolar fluid theory, in Microfluidic
Devices and Systems III, 4177, SPIE2000, pp. 257–267.

[10] N. Mitarai, H. Hayakawa and H. Nakanishi, Collisional
granular flow as a micropolar fluid, Physical review letters
88(17) (2002) p. 174301.

[11] R. M. Ramana, K. V. Raju and J. G. Kumar, Multiple
slips and heat source effects on mhd stagnation point flow
of casson fluid over a stretching sheet in the presence of
chemical reaction, Materials Today: Proceedings 49 (2022)
2306–2315.

[12] S. J. Reddy, P. Valsamy and D. S. Reddy, Radiation and
heat source/sink effects on mhd casson fluid flow over a
stretching sheet with slip conditions, J. Math. Comput. Sci.
11(5) (2021) 6541–6556.

© 2024 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


190 P. Kumar et al.: Numerical solution of MHD Micropolar Casson fluid flow over Porous...

[13] P. Kumam, Z. Shah, W. Watthayu, T. Anwar et al., Radiative
mhd unsteady casson fluid flow with heat source/sink
through a vertical channel suspended in porous medium
subject to generalized boundary conditions, Physica Scripta
96(7) (2021) p. 075213.

[14] S. U. Rehman, A. Mariam, A. Ullah, M. I. Asjad,
M. Y. Bajuri, B. A. Pansera and A. Ahmadian, Numerical
computation of buoyancy and radiation effects on mhd
micropolar nanofluid flow over a stretching/shrinking sheet
with heat source, Case Studies in Thermal Engineering 25
(2021) p. 100867.

[15] D. Dey, O. Makinde and R. Borah, Analysis of dual
solutions in mhd fluid flow with heat and mass transfer
past an exponentially shrinking/stretching surface in a
porous medium, International Journal of Applied and
Computational Mathematics 8(2) (2022) p. 66.

[16] B. Saidulu and K. S. Reddy, Evaluation of combined heat
and mass transfer in hydromagnetic micropolar flow along
a stretching sheet when viscous dissipation and chemical
reaction is present, Partial Differential Equations in Applied
Mathematics 7 (2023) p. 100467.

[17] M. M. Nandeppanavar, R. Nagaraj and M. C. Kemparaju,
Unsteady mhd stream of casson fluid over an elongating
surface in the presence of thermal radiation and viscous
dissipation, Heat Transfer 51(6) (2022) 5159–5177.
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