
Progr. Fract. Differ. Appl. 10, No. 4, 695-706 (2024) 695

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/100412

Solution of Conformable Volterra’s Population Growth

Model via Analytical and Numerical Approaches

Shatha Hasan∗

Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan

Received: 14 Dec. 2023, Revised: 22 Jan. 2024, Accepted: 5 Feb. 2024

Published online: 1 Oct. 2024

Abstract: In this paper, we aim to consider a conformable Volterra’s population growth model which is a nonlinear integro-differential

equation that represents population growth of a species in a closed system. We investigate an analytic solution in the form of rapidly

convergent fractional power series whose coefficients are obtained depending on minimizing the residual function that related to the

equation under study.

The approximate solution for the conformable Volterra’s population growth model is presented by plotting its curves for different

orders of the conformable derivative and for different values of the equation parameters. Numerical values for the residual function are

tabulated to prove the efficiency and accuracy of our proposed algorithm. Moreover, the method of successive substitution is carried

out to the same model in order to compare its results to those of the residual power series method, so we can show the validity and high

accuracy of the proposed technique.

Keywords: Volterra’s growth model, conformable derivative, fractional integro-differential equation, fractional residual power series,

successive substitution method.

1 Introduction

The study of population growth models attracted the attention of many scientist since long time ago because of the
limitation of resources. The first systematic description of population growth was by Malthus [1] who assumed that the
time path of a quantity P(τ) and its growth rate P′(τ) are proportional and got the differential equation (DE):

P′(τ) = µP(τ), (1)

where µ is a constant rate of growth. So, we obtain exponential growth P(τ) = p0eµτ , where p0 is the initial value of
the growth. This equation may be reasonable for a young country as Malthus stated in 1789. But Alphonse Quetelet
(1795-1874) didn’t agree with this exponential growth since it eventually leads to impossible values. He asked his student
Pierre-Francois Verhulst (1804-1849) to investigate in this problem. Verhulst [2] suggested to add a term that represents
the increasing resistance to growth and got the logistic equation

P′(τ) = µP(τ)−Ψ(P(τ)). (2)

Many experiments on this equations revealed that Ψ can be chosen so that the logistic equation become quadratic as

P′(τ) = µP(τ)−ρP2(τ), (3)

where µ represents the birth rate and ρ is the crowding coefficient [3].
Although logistic model in (3) has been successfully applied in many situations, it is still not enough to describe
accumulated toxicity. Consequently, an integral term was added to the logistic equation to indicate the “total
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metabolism” or total amount of toxins produced since time zero. So, the population growth can be modeled by the
nonlinear Volterra integro-differential equation (VIDE):

P′(τ) = µP(τ)−ρP2(τ)− γP(τ)

∫ τ

0
P(λ )dλ . (4)

Here, γ denotes relative size of the sensitivity to toxins and it specifies the manner in which the population thrives before
its decay [4]. Clearly, setting γ = 0, the quadratic logistic equation (3) appears. Moreover, the individual death rate is
corresponding to this integral, so the population death rate by virtue of toxicity must include a factor P.

On the other hand, throughout the last few decades, many scholars have focused their attention on fractional DEs and
fractional integro-differential equations (IDEs) due to their importance in the context of mathematical modeling in a
broad range of scientific domains such as in ecology [5], electrochemistry [6], biology [7], fluid mechanics [8], and many
other fields. However, there is no unique definition for fractional operators. One can find many different approaches for
fractional derivatives and fractional integrals. The most popular definitions are the Caputo derivative, Riemann-Liouville
integral and differential operators that enjoy some features [9]. Anyhow, both have singular kernel functions which reduces
their efficiency in modeling real-world problems. This disadvantage urged mathematicians to think of new fractional
derivatives. Among the recent fractional operators is a simple fractional derivative called “the conformable derivative”
[10] that depends on the basic limit definition of the derivative. It is characterized by its similarity with the classical
integer order derivative in most properties such as product and chain rules which attracted the interest of many researchers
who adopted it in their study of mathematical models. For example, tumor-immune system interaction was considered in
conformable model in [11], the conformable derivative was generalized and its physical and geometrical interpretations
were given which proved its potential in physics and engineering in [12]. In [13], a modified nonlinear conformable
Schrödinger equation was investigated. Moreover, the solution of a conformable two-compartment pharmacokinetic model
was discussed in [14].
In this study, we are interested with conformable Volterra’s population growth model (CVPGM) of the form

τ T σ
0 P(τ) = µP(τ)−ρP2(τ)− γP(τ)(Jσ

0 P)(τ). (5)

subject to the initial condition (IC)
P(0) = p0, p0 > 0, (6)

where τ T σ
0 and Jσ

0 in (5) represents the conformable derivative and integral of order 0 < σ ≤ 1, respectively. Notice that
we change the classical integral in (4) to conformable integral in (5) so that we keep the symmetry aspect. That is, both
derivative and integral have the same orders.
Now, if we introduce the non-dimensional variables into (5) and (6) as

t =
γτ

ρ
, w =

ρP

µ
,

then we get the non-dimensional CVPGM with non-dimensional parameter δ = γ
ρµ as

δ (tT
σ

0 w)(t) = w(t)−w2(t)−w(t)(Jσ
0 w)(t), (7)

subject to
w(0) = w0, w0 > 0. (8)

Generally, studying the exact dynamical behavior for nonlinear systems is not an easy task especially with attempt to
investigate the fractional effect of these systems. As a result, several powerful techniques have been modified to
approximate their solutions. Among these methods are the differential transform method [15], the reproducing kernel
Hilbert space method [16], Laplace Adam-Bashforth method [17], the variational iteration method and the Adomian
decomposition method [18], Jacobi elliptic equation method [19] and series method [20]. In 2013, Abu Arqub developed
a simple analytic technique to determine the coefficients of power series solutions for a class of fuzzy differential
equation [21]. It is known as the residual power series method (RPSM) and have been proved its efficiency in many
consequent researches. Some applications for this efficient approach are solving time-fractional Schrödinger equations in
[22], solving time fractional reaction–diffusion equations in [23], and obtaining approximate solution for the fractional
SIR epidemic model [24].
In this paper, we employ the RPSM for solving the nonlinear CVPGM in (7) and (8) then we apply the method of
successive substitution (SS) to demonstrate the validity and accuracy of our method. This paper is structured as follows.
In the following section, we give a quick review to some concepts of conformable derivative and fractional power series
(FPS) which are necessary for establishing our results. Section 3 is devoted to present a description of the RPSM when
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applied to CVPGM, while the method of SS is employed in Section 4. The proposed techniques are carried out to obtain
analytic and approximate solutions for different values of conformable orders through some graphical and numerical
results for the population growth and the residual functions in Section 5. Finally, this paper is ended by a summarized
conclusion.

2 Preliminaries

In this section, we provide definitions of conformable derivative and conformable integral with some of their
characteristics that will be used in the rest of the paper. Then we present the FPS concept with some related results.

Definition 1.[10] For a function w : (0,∞)→ ℜ, the conformable derivative of order 0 < σ ≤ 1 of w(t) at t > 0 is defined

by

tT
σ

0 w(t) = limh→0

w(t + ht1−σ)−w(t)

h
. (9)

If the conformable derivative of w of order σ exists, then we say that w is σ -differentiable. Moreover, if w is
σ -differentiable in some interval (0,ε), ε > 0 then we define (tT

σ
0 w)(0) = limt→0+ (tT

σ
0 w)(t) provided that

limt→0+(tT
σ

0 w)(t) exists.

Theorem 1.[10] Let σ ∈ (0,1] and w be σ−differentiable function at t > 0 then (tT
σ

0 w)(t) = t1−σ w(t), where w is

differentiable.

Definition 2.[10] For σ ∈ (ℵ,ℵ+ 1] and ℵ−differentiable function w at t where t > 0, the conformable derivative of w

of order σ is defined by

tT
σ

0 (w)(t) = limh→0

w(⌈σ⌉−1)(t + ht(⌈σ⌉−σ))−w(⌈σ⌉−1(t)

h
(10)

where ⌈σ⌉ is smallest integer such that ⌈σ⌉ ≥ σ .

Remark.Let σ ∈ (ℵ,ℵ+ 1] and w is (ℵ+ 1)−differentiable at t > 0. Then

tT
σ

0 (w)(t) = t(⌈σ⌉−σ)w⌈σ⌉(t).

Definition 3.[10] The conformable integral of order σ ∈ (0,1] of a function w : (0,∞)→ ℜ is given by

Jσ
0 (w)(t) =

∫ t

0

w(λ )

λ 1−σ
dλ

where the integral in the right hand side is the classical Riemann integral.

Theorem 2.[10]For any continuous function w in the domain of Jσ
0 , we have

tT
σ

0 Jσ
0 (w)(t) = w(t), t ≥ 0.

Definition 2 and consequently Theorem 2 were generalized in [25] for any fractional order σ > 0 as follows.

Definition 4.[25] For σ ∈ (ℵ− 1,ℵ],ℵ ∈ N, the conformable integral of order σ > 0 of w(t) : [a,∞)→ ℜ is

(Jσ
a w)(t) =

1

(ℵ− 1)!

∫ t

a

(t −λ )ℵ−1w(λ )

(λ − a)ℵ−σ
dλ , t > λ ≥ a ≥ 0. (11)

Theorem 3.[25] For σ ∈ (ℵ−1,ℵ],ℵ ∈N, the following properties are satisfied for an ℵ−times differentiable function

w(t) : [a,∞)→ ℜ.

1. tT
σ

a (Jσ
a w(t)) = w(t).

2. Jσ
a (tT

σ
a w(t)) = w(t)−∑ℵ−1

k=0
w(k)(a)(t−a)k

k!
.

Now, we give the definition of FPS about t = 0 that is basic in our current work.
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Definition 5.[26] The FPS about t = 0 has the form

∞

∑
k=0

aktkσ = a0 + a1tσ + a2t2σ + · · · , 0 ≤ ℵ− 1 < σ ≤ ℵ,ℵ ∈N, t ≥ 0. (12)

Theorem 4.[26] For the FPS ∑∞
k=0 Cktkσ , t ≥ 0, we have two cases:

Case1: If the FPS ∑∞
k=0 Cktkσ converges when t = β > 0, then it converges for 0 ≤ t < β .

Case 2: If the FPS ∑∞
k=0 Cktkσ diverges when t = β > 0, then it diverges for t > β .

Theorem 5.[26] For the FPS ∑∞
k=0 Cktkσ , t ≥ 0, there are only three possibilities:

1.The series converges only when t = 0
2.The series converges for all t ≥ 0
3.There is a number ϑ > 0 such that the series converges if 0 ≤ t < ϑ and diverges if t > ϑ .The number ϑ is called the

radius of convergence of the FPS.

Theorem 6.[27] Suppose that the FPS w(t) = ∑∞
k=0 Cktkσ has radius of convergence ϑ > 0 for all 0 ≤ t < ϑ . Then w(t)

is infinitely σ−differentiable over the interval [0,ϑ) with Ck =
((k)t T

σ
0 w)(0)

σ kk!
, where (k)

tT
σ

0 w = tT
σ

0 (tT
σ

0 (tT
σ

0 · · ·t T σ
0 (w)))

(k−times).

Theorem 7.[25]Let w(t) : [0,∞) → ℜ has infinite conformable derivatives (k)
tT

σ
0 w(t), k = 0,1,2, · · · for 0 < σ ≤ 1

over a neighborhood of zero and w(t) has the FPS form in (12) about t = 0 with radius of convergence ϑ > 0. If

|(ℵ+1)
tT

σ
0 w(t)| ≤ ξ for some ℵ ∈ N and ξ > 0, then ∀t ∈ (0,ϑ), the error term of the FRP has the form

|εσ
ℵ(t)| ≤

ξ

(ℵ+ 1)!σℵ+1
t(ℵ+1)σ

, (13)

where εσ
ℵ(t) = ∑∞

k=ℵ+1

ℵ
t T σ

0 w(0)

k!σ k tkσ .

Depending on the previous theorem, we may consider

wℵ(t) =
ℵ

∑
k=0

((k)tT
σ

0 w)(0)

σ kk!
tkσ

as an approximation of w(t) with truncation error εσ
ℵ(t) = ∑∞

k=ℵ+1

(ℵ)
t T

σ
0 w(0)

k!σ k tkσ and the upper bound of this truncated

error can be estimated as

|εσ
ℵ(t)| ≤ |

ξ ϑ (ℵ+1)σ

(ℵ+ 1)!σℵ+1
|

provided that

|(ℵ+1)
tT

σ
0 w(t)| ≤ ξ on [0,ϑ).

3 Fractional Residual Power Series Method for Solving CVPGM

In this section, we give a summarized description for fractional residual power series method (FRPSM) in order to obtain
analytic and approximate solutions for the CVPGM in (7) and (8). This will be done through replacing the unknown growth
function by its FPS expansion and minimizing the residual function that corresponds to the equation. This approach
is simply applied to investigate solutions of linear and nonlinear DEs and IDEs without linearization, perturbation, or
discretization. Unlike the classical power series approach, the FRPSM neither requires comparing the identical terms’
coefficients nor is a recursion relation needed as well. Besides that, the FRPSM calculates the power series’ coefficients
through a chain of equations. The FRPS approach provides the solution in terms of convergent FPS with easy exchangeable
components. It is considered as an efficient, viable and easy technique.
To apply FRPSM to solve the CVPGM in (7) and (8), we begin by assuming that the solution has a FPS in the form

w(t) =
∞

∑
i=0

Cit
iσ (14)
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Substituting the IC of (8) into (14), we get C0 = w0. So, the FPS solution can be rewritten as

w(t) = w0 +
∞

∑
i=1

Cit
iσ (15)

Now, the solution can be approximated by the ℵth-truncated series as follows

wℵ(t) = w0 +
ℵ

∑
i=1

Cit
iσ
. (16)

The main idea of the FRPSM is to define the residual function as follows

Residw(t) = δ (tT
σ

0 w)(t)−w(t)+w2(t)+w(t)(Jσ
0 w)(t). (17)

And the following ℵth-residual function

Residw,ℵ(t) = δ (tT
σ

0 wℵ)(t)−wℵ(t)+w2
ℵ(t)+wℵ(t)(J

σ
0 wℵ)(t). (18)

Clearly, Residw(t) = limℵ→∞Residw,ℵ(t) = 0 for t ≥ 0. Consequently, tT
σ

0 Residw(t) = 0 for t ≥ 0. And more generally,

(
( j)
t T σ

0 Residw)(0) = (
( j)
t T σ

0 Residw,ℵ)(0) = 0 for each j = 0,1,2, . . . ,ℵ− 1.

In fact, these formulas give us a simple technique to compute the coefficients of the FPS in (15) manually. More precisely,
we have the following equations

(
( j)
t T σ

0 Residw,ℵ)(0) = 0 for each j = 0,1,2, . . . ,ℵ− 1. (19)

to determine the values of coefficient Cℵ. Thus the analytic solution for the CVPGM has been completely constructed.
To see this, let us apply this technique for obtaining some coefficients. To determine the value of first unknown
coefficient, C1, we substitute ℵ = 1 in equations (16), (18) and (19) and get

w1(t) = w0 +C1tσ
,

Residw,1(t) = δ (tT
σ

0 w1)(t)−w1(t)+w2
1(t)+w1(t)

∫ t

0

w1(λ )

λ 1−σ
dλ ,

= δ (tT
σ

0 (w0 +C1tσ ))− (w0 +C1tσ )+ (w0 +C1tσ )2 +(w0 +C1tσ )
∫ t

0

(w0 +C1λ σ )

λ 1−σ
dλ

=−tσC1 + δσC1 + t2σC2
1 +

t3σC2
1

2σ
−w0 + 2tσC1w0 +

3t2σC1w0

2σ
+w2

0 +
tσ w2

0

σ
.

Now, at t = 0, Residw,1(0) = δσC1 +(−1+w0)w0 = 0 which produces

C1 =
w0 −w2

0

δσ
.

To find the value of second coefficient in the FPS, we substitute again in equations (16), (18) and (19)but with ℵ = 2 to
get second truncated series:

w2(t) = w0 +
w0 −w2

0

σδ
tσ +C2t2σ

and the second residual function will be

Residw,2(t) = δ (t T
σ

0 w2)(t)−w2(t)+w2
2(t)+w2(t)

∫ t

0

w2(λ )

λ 1−σ
dλ ,

=−t2σC2 + 2tσ δσC2 + t4σC2
2 +

t5σC2
2

3σ
−

tσ w0

σδ
+ 2t2σC2w0 +

5t4σC2w0

6δσ2
+

4t3σC2w0

3σ
+

2t3σC2w0

δσ
+

t3σ w2
0

2δ 2σ3

+
t2σ w2

0

δ 2σ2
+

3t2σ w2
0

2δσ2
+

tσ w2
0

σ
+

3tσ w2
0

δσ
−

5t4σC2w2
0

6δσ2
−

2t3σC2w2
0

δσ
−

t3σ w3
0

δ 2σ3
−

2t2σw3
0

δ 2σ2
−

3t2σ w3
0

2δσ2
−

2tσ w3
0

δσ
+

t3σ w4
0

2δ 2σ3

+
t2σ w4

0

δ 2σ2
.
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To use (T σ
0 Residw,2)(0) = 0, we first compute the conformable derivative of the second residual function as

(T σ
0 Residw,2)(t) = t1−σ (

d

dt
(−t2σC2 + 2tσδσC2 + t4σC2

2 +
t5σC2

2

3σ
−

tσ w0

σδ
+ 2t2σC2w0 +

5t4σC2w0

6δσ2
+

4t3σC2w0

3σ

+
2t3σC2w0

δσ
+

t3σ w2
0

2δ 2σ3
+

t2σ w2
0

δ 2σ2
+

3t2σ w2
0

2δσ2
+

tσ w2
0

σ
+

3tσ w2
0

δσ
−

5t4σC2w2
0

6δσ2
−

2t3σC2w2
0

δσ
−

t3σ w3
0

δ 2σ3

−
2t2σw3

0

δ 2σ2
−

3t2σ w3
0

2δσ2
−

2tσ w3
0

δσ
+

t3σ w4
0

2δ 2σ3
+

t2σ w4
0

δ 2σ2
))

=−2tσσC2 + 2δσ2C2 +
5

3
t4σC2

2 + 4t3σσC2
2 −

w0

δ
+ 4t2σC2w0 +

6t2σC2w0

δ
+

10t3σC2w0

3δσ
+ 4tσσC2w0

+w2
0 +

3w2
0

δ
+

3t2σw2
0

2δ 2σ2
+

2tσ w2
0

δ 2σ
+

3tσ w2
0

δσ
−

6t2σC2w2
0

δ
−

10t3σC2w2
0

3δσ
−

2w3
0

δ
−

3t2σ w3
0

δ 2σ2
−

4tσ w3
0

δ 2σ

−
3tσ w3

0

δσ
+

3t2σ w4
0

2δ 2σ2
+

2tσ w4
0

δ 2σ
.

Consequently,

(T σ
0 Residw,2)(0) = 2δσ2C2 +w2

0 +
3w2

0

δ
−

2w3
0

δ
= 0.

Hence,

C2 =
w0 − 3w2

0 − δw2
0 + 2w3

0

2δ 2σ2
.

Again, we can compute C3 through similar successive steps for ℵ = 3.

w3(t) = w0 +
w0 −w2

0

σδ
tσ +

w0 − 3w2
0 − δw2

0 + 2w3
0

2δ 2σ2
t2σ +C3t3σ

,

Residw,3(t) = δ (t T
σ

0 w3)(t)−w3(t)+w2
3(t)+w3(t)

∫ t

0

w3(λ )

λ 1−σ
dλ ,

(T σ
0 Residw,3)(t) =−t3σC3 + 3t2σδσC3 + t6σC2

3 +
t7σC2

3

4σ
−

t2σ w0

2δ 2σ2
+ 2t3σC3w0 +

7t6σC3w0

24δ 2σ3
+

t5σC3w0

δ 2σ2

+
3t5σC3w0

4δσ2
+

5t4σC3w0

4σ
+

2t4σC3w0

δσ
+

t5σ w2
0

12δ 4σ5
+

t4σ w2
0

4δ 4σ4
+

5t4σ w2
0

12δ 3σ4
+

t3σ w2
0

δ 3σ3
+

7t3σw2
0

6δ 2σ3

+
7t2σ w2

0

2δ 2σ2
+

2t2σ w2
0

δσ2
−

7t6σC3w2
0

8δ 2σ3
−

7t6σC3w2
0

24δσ3
−

3t5σC3w2
0

δ 2σ2
−

7t5σC3w2
0

4δσ2
−

2t4σC3w2
0

δσ

−
t5σ w3

0

2δ 4σ5
−

t5σ w3
0

6δ 3σ5
−

3t4σ w3
0

2δ 4σ4
−

13t4σw3
0

6δ 3σ4
−

5t4σw3
0

12δ 2σ4
−

4t3σ w3
0

δ 3σ3
−

4t3σw3
0

δ 2σ3
−

2t3σ w3
0

3δσ3

−
6t2σ w3

0

δ 2σ2
−

5t2σ w3
0

2δσ2
+

7t6σC3w3
0

12δ 2σ3
+

2t5σC3w3
0

δ 2σ2
+

13t5σw4
0

12δ 4σ5
+

t5σ w4
0

2δ 3σ5
+

t5σ w4
0

12δ 2σ5

+
13t4σ w4

0

4δ 4σ4
+

43t4σ w4
0

12δ 3σ4
+

2t4σ w4
0

3δ 2σ4
+

5t3σw4
0

δ 3σ3
+

17t3σw4
0

6δ 2σ3
+

3t2σ w4
0

δ 2σ2
−

t5σ w5
0

δ 4σ5
−

t5σ w5
0

3δ 3σ5

−
3t4σ w5

0

δ 4σ4
−

11t4σw5
0

6δ 3σ4
−

2t3σw5
0

δ 3σ3
+

t5σ w6
0

3δ 4σ5
+

t4σ w6
0

δ 4σ4
,
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(T 2σ
0 Residw,3)(t) =−6tσ σ2C3 + 6δσ3C3 +

21

2
t5σ σC2

3 + 30t4σσ2C2
3 −

w0

δ 2
+

20t3σC3w0

δ 2
+

15t3σC3w0

δ
+

35t4σC3w0

4δ 2σ

+ 15t2σσC3w0 +
24t2σσC3w0

δ
+ 12tσσ2C3w0 +

7w2
0

δ 2
+

4w2
0

δ
+

5t3σ w2
0

3δ 4σ3
+

3t2σ w2
0

δ 4σ2
+

5t2σ w2
0

δ 3σ2

+
6tσ w2

0

δ 3σ
+

7tσ w2
0

δ 2σ
−

60t3σC3w2
0

δ 2
−

35t3σC3w2
0

δ
−

105t4σC3w2
0

4δ 2σ
−

35t4σC3w2
0

4δσ
−

24t2σσC3w2
0

δ
−

12w3
0

δ 2

−
5w3

0

δ
−

10t3σ w3
0

δ 4σ3
−

10t3σ w3
0

3δ 3σ3
−

18t2σ w3
0

δ 4σ2
−

26t2σ w3
0

δ 3σ2
−

5t2σ w3
0

δ 2σ2
−

24tσw3
0

δ 3σ
−

24tσw3
0

δ 2σ
−

4tσ w3
0

δσ

+
40t3σC3w3

0

δ 2
+

35t4σC3w3
0

2δ 2σ
+

6w4
0

δ 2
+

65t3σ w4
0

3δ 4σ3
+

10t3σ w4
0

δ 3σ3
+

5t3σ w4
0

3δ 2σ3
+

39t2σw4
0

δ 4σ2
+

43t2σw4
0

δ 3σ2
+

8t2σw4
0

δ 2σ2

+
30tσ w4

0

δ 3σ
+

17tσ w4
0

δ 2σ
−

20t3σw5
0

δ 4σ3
−

20t3σw5
0

3δ 3σ3
−

36t2σw5
0

δ 4σ2
−

22t2σw5
0

δ 3σ2
−

12tσ w5
0

δ 3σ
+

20t3σw6
0

3δ 4σ3
+

12t2σw6
0

δ 4σ2
.

(T 2σ
0 Residw,3)(0) = 6δσ3C3 −

w0

δ 2
+

7w2
0

δ 2
+

4w2
0

δ
−

12w3
0

δ 2
−

5w3
0

δ
+

6w4
0

δ 2
.

Which leads to

C3 =
w0 − 7w2

0 − 4δw2
0 + 12w3

0 + 5δw3
0 − 6w4

0

6δ 3σ3
.

Repeating this process up to ℵ = 6, we get the following values:

C4 =
w0 − 15w2

0 − 11δw2
0 + 50w3

0 + 37δw3
0 + 4δ 2w3

0 − 60w4
0 − 27δw4

0 + 24w5
0

24δ 4σ4
,

C5 =
1

120δ 5σ5
(w0 − 31w2

0 − 26δw2
0 + 180w3

0+ 178δw3
0 + 34δ 2w3

0 − 390w4
0 − 319δw4

0

− 49δ 2w4
0 + 360w5

0 + 168δw5
0− 120w6

0),

C6 =
1

720δ 6σ6
(w0 − 63w2

0 − 57δw2
0 + 602w3

0+ 710δw3
0 + 180δ 2w3

0 − 2100w4
0− 2350δw4

0

− 654δ 2w4
0 − 34δ 3w4

0 + 3360w5
0+ 2896δw5

0+ 515δ 2w5
0 − 2520w6

0− 1200δw6
0+ 720w7

0).

This procedure can be repeated many times to get the required accuracy. Of course, higher accuracy can be achieved
by evaluating more components.
To summarize the basic idea of the FRPSM for solving CVPGM, we have the following algorithm.

Algorithm 1To get analytic and approximate solutions for the CVPGM in (7) and (8), do the following steps:
Step 1: Assume the solution has the FPS form:

w(t) =
∞

∑
i=0

Cit
iσ

Step 2:Use the IC in (8) to get the zeroth coefficient of the FPS. Hence, C0 = w0 and

w(t) = w0 +
∞

∑
i=1

Cit
iσ

Step 3: Define the truncated ℵ-th FPS as

wℵ(t) = w0 +
ℵ

∑
i=1

Cit
iσ

Step 4: Define the ℵth residual function as follows:

Residw,ℵ(t) = δtT
σ

0 wℵ(t)−wℵ(t)+w2
ℵ(t)+wℵ(t)(J

σ
0 wℵ)(t)

Step 5: In a successive manner, solve the equations:

((ℵ−1)
tT

σ
0 Residw,ℵ)(0) = 0 to obtain Cℵ.

Step 6: Repeat steps 3-5 to get the required accuracy for approximating the solution of the CVPGM.
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4 The Successive Substitutions Technique

This section summarizes the idea of a simple iterative scheme, namely, the SS method when it is applied to solve the
CVPGM in (7) and (8). As a starting step, we apply the conformable integral in Definition 4 to both sides of equation (7).
Hence, a Volterra integral equation (VIE) whose unknown is w(t) is produced as follows.

w(t) = w(0)+
1

δ

∫ t

0

w(ξ )

ξ 1−σ
(1−w(ξ )−

∫ η

0

w(η)

η1−σ
dη)dξ

As a second step, we use the IC in (8) as a zeroth approximation of the VIE and apply a SS technique as in the
following successive formulas.

w0(t) = w0 = w(0)

wm(t) = w0 +
1

δ

∫ t

0

wm−1(ξ )

ξ 1−σ
(1−wm−1(ξ )−

∫ η

0

wm−1(η)

η1−σ
dη)dξ , m = 1,2,3, · · ·

So, the first approximation is:

w1(t) = w0 −
tσ w0(−2σ +(tσ + 2σ)w0)

2δσ2
,

and the second approximation is:

w2(t) = w0 +
tσ w0

360δ 3σ6
(−360δ 2σ5(−1+w0)− 5t5σw3

0 − 6t4σσw2
0(−5+ 8w0)− 180tσδσ4(−1+(3+ δ − 2w0)w0)

− 15t3σσ2w0(3− 4(3+ δ )w0+ 9w2
0)− 60t2σσ3w0(2+ 4δ +w0(−4− 5δ + 2w0))).

Continuing this process, we obtain the exact solution as w(t) = limm→∞wm(t). A brief description for the SS
approach is given in the following algorithm.

Algorithm 2: To get an mth SS approximation wm(t) for the solution of the CVPGM in (7) and (8), do the following four
steps:
Step 1: Apply the conformable integral to both sides of the CVPGM in (7).
Step 2: Use the IC w0(t) = w(0) as the zeroth SS approximate solution of w(t).
Step 3: Obtain the m-approximate solution using the iterative formula:

wm(t) = w0 +
1

δ

∫ t

0

wm−1(ξ )

ξ 1−σ
(1−wm−1(ξ )−

∫ η

0

wm−1(η)

η1−σ
dη)dξ , m = 1,2,3, · · ·

Step 4: Repeat step 3 to get the required accuracy.

5 Numerical Results

In this section, we compute approximate values for the solutions of the growth model in (7) using both FRPSM (with
ℵ = 15) and the SS approach (with m = 5). We employ algorithms 1 and 2 for different values of the conformable
derivative and display some numerical values and graphical results for the population growth so we can see how the
results of the proposed techniques are in good agreement. In order to reveal the accuracy of our results, we carry out a
comparison between the values of the residual functions for different values of the fractional order σ and different values
of the parameter δ . Obviously, both techniques are convenient for controlling the convergence of the solution. The
graphical results show that the variety of choice of conformable orders leads to a variety in predicted curves for the
population growth. Computations in this section are performed using Mathematica software.

Assuming the IC in (8) is w0 = 0.4, Table 1 presents some numerical results of both methods when δ = 0.65 and
σ ∈ {0.9,0.8,0.7}.

Table 2 presents some values of the residual errors using the FRPSM with 15 iterations for δ ∈ {0.85,0.65} and
σ ∈ {0.9,0.8,0.7}, while residual errors are shown in Table 3 for the same values of δ and σ when applying the SS
approach with 5 iterations.
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Table 1: Approximate values of the population growth in closed system using FRPS and SS methods when δ = 0.65 and w0 = 0.4.

FRPSM SS Method

t σ = 0.9 σ = 0.8 σ = 0.7 σ = 0.9 σ = 0.8 σ = 0.7

0.0 0.4 0.4 0.4 0.4 0.4 0.4

0.1 0.449832 0.469079 0.495544 0.449832 0.469079 0.495544

0.2 0.488534 0.511925 0.539107 0.488534 0.511925 0.539107

0.3 0.519754 0.541855 0.563028 0.519754 0.541855 0.563027

0.4 0.543745 0.56131 0.573527 0.543745 0.561309 0.573504

0.5 0.560671 0.571878 0.574267 0.56067 0.571865 0.574133

0.6 0.570867 0.574953 0.567946 0.570857 0.574883 0.567402

0.7 0.57485 0.57186 0.556896 0.574799 0.571583 0.55509

0.8 0.573295 0.563928 0.543683 0.573102 0.563028 0.538438

0.9 0.567027 0.552681 0.532026 0.56641 0.550093 0.51827

1.0 0.557102 0.540267 0.528075 0.55533 0.533443 0.495081

Table 2: The 15−th residual errors |Residw,15(t)| by the FRPSM

δ = 0.85 δ = 0.65

t σ = 1 σ = 0.95 σ = 0.85 σ = 1 σ = 0.95 σ = 0.85

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 7.782×10−18 7.82×10−18 2.836×10−16 6.864×10−18 3.374×10−17 7.639×10−15

0.2 4.674×10−15 3.319×10−14 1.869×10−12 1.208×10−13 8.574×10−13 4.85×10−11

0.3 1.911×10−12 9.899×10−12 2.969×10−10 4.962×10−11 2.576×10−10 7.774×10−9

0.4 1.319×10−10 5.459×10−10 1.042×10−8 3.447×10−9 1.431×10−8 2.75×10−7

0.5 3.422×10−9 1.189×10−8 1.59×10−7 9.008×10−8 3.139×10−7 4.234×10−6

0.6 4.766×10−8 1.432×10−7 1.427×10−6 1.264×10−6 3.812×10−6 3.84×10−5

0.7 4.302×10−7 1.142×10−6 8.836×10−6 1.15×10−5 3.069×10−5 2.41×10−4

0.8 2.815×10−6 6.702×10−6 4.148×10−5 7.608×10−5 1.824×10−4 1.153×10−3

0.9 1.435×10−5 3.097×10−5 1.567×10−4 3.933×10−4 8.572×10−4 4.468×10−3

1.0 5.97×10−5 1.179×10−4 4.945×10−4 1.669×10−3 3.34×10−3 1.463×10−2

Table 3: The 5−th residual errors |Residw,5(t)| by SS approach

δ = 0.85 δ = 0.65

t σ = 1 σ = 0.95 σ = 0.85 σ = 1 σ = 0.95 σ = 0.85

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 4.508×10−10 5.223×10−10 1.577×10−10 8.46×10−10 7.866×10−10 4.557×10−10

0.2 4.131×10−10 7.297×10−10 8.517×10−10 1.172×10−9 1.103×10−9 1.163×10−8

0.3 8.632×10−10 3.443×10−9 2.932×10−8 1.185×10−8 3.897×10−8 5.833×10−8

0.4 2.155×10−8 3.135×10−8 4.215×10−7 9.914×10−8 4.955×10−8 5.066×10−6

0.5 7.320×10−8 4.953×10−7 6.357×10−6 1.611×10−6 5.734×10−6 4.940×10−5

0.6 2.152×10−6 5.812×10−6 3.644×10−5 1.916×10−5 4.562×10−5 2.392×10−4

0.7 1.443×10−5 3.080×10−5 1.361×10−4 1.03×10−4 2.051×10−4 8.019×10−4

0.8 6.020×10−5 1.121×10−4 3.918×10−4 3.788×10−4 6.706×10−4 2.123×10−3

0.9 1.905×10−4 3.22×10−4 9.421×10−4 1.093×10−4 1.772×10−3 4.755×10−3

1.0 4.994×10−4 7.823×10−4 1.984×10−3 2.654×10−4 4.01×10−3 9.403×10−3

The behavior of the solution curves for the approximate CVPGM (7) for δ ∈ {0.7,0.9,1,2} and σ ∈ {0.85,1} as
presented in Figure 1 when applying the FRPSM, and in Figure 2 when applying the SS method. Clearly, an increase in
the values of δ leads to a decrease in the exponential decay in both figures.

In Figure 3, the behavior of the solution curves for the conformable population growth model (7) for σ ∈ {0.9,0.8,0.7}
and δ = 0.85 is presented. The key finding of this graph is that when the conformable derivative order decreases, the
amplitude of w(t) decreases, whereas the exponential decay increases. Moreover, the curves of the approximate solutions
using FRPSM and SS method are in good agreement. In addition, to see the effect of the toxic term in the population
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Fig. 1: Approximate solutions for the CVPGM in (7) with σ = 1 (left) and σ = 0.85 (right) using the FRPSM.

Fig. 2: Approximate solutions for the CVPGM in (7) with σ = 1 (left) and σ = 0.85 (right) using the SS approach.

growth model, we apply the FRPSM to the conformable logistic model:

δtT
σ

0 w(t) = w(t)−w2(t), (20)

w(0) = 0.4,

with δ = 0.85. The growth curves in this case are shown in Figure 3. Comparing Figure 4 with Figure 3, one can simply
deduce that the existence of the toxic term in a closed system causes the population level to fall to zero in the long run
while it still increases exponentially if the toxic term is neglected.

Fig. 3: Approximate solutions for the CVPGM in (7) with δ = 0.85.
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Fig. 4: Approximate solutions for the conformable quadratic logistic model (20) with δ = 0.85.

6 Conclusion

In this paper, we carried out two simple and effective techniques to investigate the solution of a nonlinear conformable
VIDE that represents the population growth model in closed system. Numerical results were given to show the efficiency
and accuracy of the proposed approaches. Different values of the conformable orders were tested and it was clear that any
increase of the fractional parameter changes the behavior of the CVPGM curves. The existence of the toxic term in closed
system causes the population level to fall to zero on the contrary of the quadratic logistic model in which the population
increases by time. Finally, an increase in non-dimensional parameter δ leads to a decrease in the exponential decay of the
population growth.
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