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Abstract: Visceral leishmaniasis, a severe health disorder, is attributed to the microscopic parasite Leishmania. The parasitic illness

possesses the capacity to pose a significant risk to human life and exhibits a variable prevalence across people worldwide. Using time

series prediction techniques for VL might offer valuable insights to aid public health professionals in strategizing and implementing

effective measures for VL prevention. This study presents a comparative analysis of time series forecasting techniques, specifically

focusing on two methods: SARIMA and LSTM recurrent neural networks. Forecast performance evaluation involves utilizing monthly

VL data acquired from district health offices from January 2000 to December 2021. An assessment of the model’s performance is

conducted to ascertain its efficacy. According to the evaluation conducted using three metrics, namely mean average precision (MAP),

root mean square (RMS), and mean absolute error (MA), the findings indicate that the LSTM model outperforms the SARIMA model

in terms of forecasting monthly conditions. The discovery implies that the LSTM approach may be better suited for predicting VL

incidents and has the potential to contribute to the formulation of efficient preventive measures. Furthermore, it is suggested that future

studies should investigate the possibility of integrating SARIMA and LSTM techniques to improve VL forecasts’ precision.

Keywords: Prediction; LSTM; SARIMA; VL pandemic

1 Introduction

Visceral Leishmaniasis (VL), commonly called
Kala-Azar, is a grave health condition caused by a
microscopic organism called Leishmania. This parasitic
infection can potentially be life-threatening and affects
many individuals globally, ranging from 2 to 4000 cases.
The transmission of this disease occurs through the bite of
the phlebotomine female sandfly, a tiny insect
approximately one-third the size of a mosquito. The
transmission of the parasite occurs through biting, which
enables promastigotes to enter macrophages and other
mononuclear phagocytic cells beneath the skin. This
process plays a crucial role in the parasite’s lifecycle and
its ability to establish infection within the host.
Leishmania, a parasitic infection, can have detrimental
effects on the cells of its host, particularly impacting vital
organs such as the liver, spleen, bone marrow, and lymph
nodes. Common symptoms of this condition may include
persistent and irregular fever, cough, decreased appetite,
diarrhoea, vomiting, jaundice, swelling, nosebleeds, and
anaemia. Individuals who test positive for VL (Visceral

Leishmaniasis) encounter a range of symptoms within 3
to 6 months after being infected. PKDL, or post-kala-azar
dermal leishmaniasis, is a skin condition characterized by
maculopapular or nodular rashes. It is essential to be
aware that this condition can potentially contribute to the
spread of the underlying disease [1,2,3,4]. Sudan is
among the six nations endemic to visceral VL, accounting
for 90% of global VL cases. Sudan has the highest
reported prevalence of post-kala-azar dermal
leishmaniasis (PKDL) worldwide [3]. Zijlstra et al. [1]
reported the findings of population-based investigations,
which revealed an annual incidence rate of 38 cases per
1000 individuals and a case fatality rate of up to 20.5%.

The nation has encountered several epidemics throughout
the preceding two decades. From the western bank of the
White Nile to the shared border between Sudan and
Ethiopia, the illness is endemic throughout a sizable
geographic area. The geographical scope of this region
encompasses the southern territories of the Central and
Eastern provinces. Instances have been documented in
Darfur, a region located in western Sudan, and in the
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Nuba Mountains area in Kordofan [4,5,6,7,8,9,10,11].
Related Work Epidemiological research has extensively
used ARIMA and LSTM models to predict illness
incidence, analyze trends, and understand disease
dynamics. The following are instances of previous papers
that have used these models: Y et al. [12] employed
LSTM and ARIMA models to predict COVID-19 data in
Germany. They evaluated the effectiveness of these
models against conventional prediction methods, such as
multiple linear regression models. Zhao D et al. [13]
employed ARIMA, GM (1,1), and LSTM models to
forecast mainland China TB cases and compare their
performance. The LSTM model was determined to be the
most effective model for predicting TB cases. Shaman
and Karspeck [14] employed ARIMA models to predict
the frequencies of influenza-like illness (ILI). The
ARIMA model can forecast future outbreaks by
evaluating previous ILI rates, assisting in prompt public
health interventions. The study by Muhammad Riaz et al.
[15] focuses on predicting the number of malaria cases in
Pakistan using statistical models. From 2011 to 2022,
data was gathered from the Ministry of Health in Rahim
Yar Khan. The Holt-Winter multiplicative model
demonstrated superior performance compared to the
ARIMA and SARIMA models, exhibiting the lowest
values for RMSE, MAPE, and MAE. The forecasted data
indicated that there would be a minimum of 586.75 cases
in June 2022 and a maximum of 1281.93 cases in October
2022. The findings indicate that the government of
Pakistan should strengthen its immunization efforts to
decrease the incidence of malaria. Chimmula and Zhang
[16] presented a deep learning approach using long
short-term memory (LSTM) networks to predict the
COVID-19 outbreak in Canada and globally. The study
found that the possible ending point for the outbreak was
around June 2020. The researchers also compared
Canada’s transmission rates with those of Italy and the
USA and presented predictions for successive days until
March 31, 2020. Watad, A. et al.[17] utilized LSTM to
forecast vector-borne illnesses, specifically the West Nile
virus. These models facilitate comprehension of the
dissemination patterns and enable the implementation of
preventive measures. Seasonal considerations play a
significant role in influencing the occurrence of VL. The
SARIMA model is a widely used methodology in time
series analysis to identify trends and make forecasts based
on seasonal data. This approach demonstrates superior
precision in forecasting seasonal time series data. The
SARIMA model has been effectively utilized in several
domains over the last thirty years; nevertheless, it
includes specific limitations. The applicability of the
SARIMA model is limited to linear time series data
models, as it cannot effectively handle nonlinear patterns.
A novel methodology for deep learning algorithms has
been proposed, specifically designed to address the
challenges posed by non-linearity and complexity in the
context of time series prediction tasks. LSTM is a deep
learning technique that enables the processing of

significantly longer temporal sequences. Several
empirical studies have demonstrated that LSTM models
perform better than conventional algorithms like the
SARIMA model. The present study aims to discuss the
contribution of the research findings in the following
manner:

1.The study enhances our understanding of the
mechanisms underlying the transmission of visceral
leishmaniasis. The importance of this issue is
especially apparent in regions such as Gadaref State,
Sudan, where the disease is highly prevalent.

2.This study compares the SARIMA and LSTM
models’ ability to predict visceral leishmaniasis data.
The purpose of this investigation is to gain an
understanding of the relative effectiveness of both
approaches in accurately capturing inherent patterns
and trends within the dataset.

3.This investigation employs suitable error
measurements, namely MAP (mean absolute
percentage error), RMS (root mean square error), and
MA (mean absolute error), to assess the effectiveness
of the models. This approach guarantees a thorough
evaluation of their precision and dependability,
enabling a full comparison.

4.This study can potentially improve the methodology
of time-series analysis in epidemiology. Specifically,
it aims to investigate the application of LSTM, a
neural network technique, for predicting illness
patterns. This approach could potentially have wider
implications for predicting trends in various diseases.
By demonstrating the effectiveness of data-driven
methodologies in accurately predicting the spread of
diseases, this research significantly contributes to the
broader field of healthcare analytics.

The current article is structured as follows: Section 2
describes the data utilized and outlines the suggested
materials and methods. Section 3 provides a
comprehensive overview of the study’s data and the
recommended approach. In conclusion, Section 4 of this
study offers a comprehensive summary of the research
findings and an analysis of the limitations inherent in the
presented models. Additionally, this section outlines
potential avenues for future research and exploration.

2 Materials and Methods

2.1 VL data

According to data provided by the officials of the Health
Information Center, Ministry of Health, Gadaref State,
Sudan, we have obtained the monthly number of visceral
leishmaniasis cases recorded for the State of El Gadaref,
Eastern Sudan, spanning from January 2020 to December
2021. The comprehensive dataset utilized in this research
comprised a total of 25 months.
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2.2 Auto regressive integrated moving average

(ARIMA)

The ARIMA model, a well-established technique for
time-series prediction, is a comprehensive framework that
integrates the autoregressive (AR) and moving average
(MA) processes [18,19,20,21,22]. The ARIMA (p,d,q)
model is suitable for predicting future values of stationary
time series data. The parameters of the model, denoted as
(p,d,q), may be precisely characterized as follows: the
auto-regression (AR) term (p) and the moving average
(MA) term (q). ARIMA models are constructed by
integrating two components of the models through the
utilization of differencing terms (dorI). The
autoregressive (AR) term refers to regressing a particular
variable against its past values to predict the variable of
interest. The MA term in forecasting utilizes the error
terms from a previous time step to predict the value of a
variable at a subsequent time step. The equation denoted
as Equation (1) provides a generalization of the pth-order
autoregressive (AR) model and the qth-order moving
average (MA) model.

ψt = δ +φ1ψt−1 +φ2ψt−2 + · · ·+φpψt−p,

+θ1εt−1 +θ2εt−2 + · · ·+θqεt−q.
(1)

Here ψt and εt refer to the actual value of a time series
and the random error (white noise) at time t, respectively.
Moreover, δ ,ψi and θ j are a constant and the coefficients
of the AR and MA parts, respectively. In this context, δ is
intercept, ψt represents the true value of a time series at a
given time t, whereas εt represents the random error,
often known as white noise, at the same time t.

Furthermore, φi and θi are fixed values representing the
coefficients of the autoregressive (AR) and moving
average (MA) components, respectively.

Seasonal ARIMA Model The SARIMA [(p,d,q)]
model is an expanded iteration of the ARIMA model,
specifically designed to accommodate time series data
that exhibit seasonal patterns. The SARIMA model
incorporates three new superparameters, namely P,D, and
Q, and an additional seasonal periodic parameter s,

building upon the ARIMA model. The components of
SARIMA, denoted as P,D,Q, and s, correspond to
seasonal autoregression, seasonal integration, seasonal
moving average, and seasonal period length, respectively,
as given by Equation (2) [22,23].

φP(β
m)φP(β )(1−β m)s(1−β )dψt = θQ(β

m)θq(β )εt .

(2)
The non-seasonal autoregressive polynomial, denoted as
φP, represents the non-stationary time series and the
Gaussian white noise process. On the other hand, the

non-seasonal Moving average polynomial, denoted as θq,,
is employed for the same purpose. The seasonal
difference term, S,, is discussed in reference [24].

2.3 LSTM Networks for Modeling Time Series

The LSTM is a variant of the recurrent neural network
(RNN) that can learn and capture relationships of varying
durations, including both short-term and long-term
contexts. The technique is employed to address the issue
of the bursting or disappearing gradient phenomenon
encountered in deep recurrent neural networks. LSTM
was first introduced by S. Hochreiter and J. Schmidhuber
[25]. The Long Short-Term Memory (LSTM) architecture
incorporates a distinctive memory cell that enables it to
selectively store or discard information over a duration,
rendering it highly proficient in activities that need the
acquisition and preservation of crucial patterns or
sequences. The LSTM’s efficacy in managing extended
dependencies has rendered it a widely favoured option
across many domains, including but not limited to speech
recognition, natural language processing, and time series
analysis.

The architectural structure of a Long Short-Term
Memory (LSTM) model consists of three distinct gates,
namely the forget gate, input gate, and output gate, as
described in reference [26].

The forget gate denoted as ω , determines the exact
information to be removed or erased from the memory
cells, also known as the cell state. Gates commonly
employ a sigmoid activation function as their activation
mechanism, yielding an output bounded within the range
of 0 to 1. If the output is equal to 1, it may be inferred that
all information will be preserved without any loss or
alteration. If the value is zero, all the data will be
disregarded. The above information is provided by
Equation (3).

Yt = ρ(πλ Pt−1 +πλ Xt). (3)

In the given context, the symbol “πλ ” represents the
weight of the forget gate. The symbol “Pt−1” represents
the previous state or the state at time t. The symbol “Xt”
signifies the input at time t − 1. Lastly, the symbol “s”
represents the sigmoid activation function.

The input gate Vt identifies the information
incorporated into the cell state (St). This procedure is
divided into two separate steps. During the initial stage of
the procedure, the calculation of the candidate value Y ,
which can be subsequently included in the cell states, is
performed. In the procedure’s second stage, the activation
values Vt of the input and gates are calculated. The input
gate weight is denoted as πv , while the cell state weight is
denoted as πs. The two procedures are designated as
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follows:

Vt = σ(πvPt−1 +πvXt),

φ = tanh(πsPt−1 +πsXt).

The updated cell states (si) are computed by
leveraging the outputs of the preceding computational
steps. The formula can be decomposed into its constituent
components in the following manner:

St = GtSt−1 +Vt ∗φ ,

mt = σ(πtPt−1 +πmXt),

nt = mt ∗ tanh(St).

The memory cell undergoes input gate and forget gate
operations before generating an output gate, represented
as mt . This gate determines specific regions within the
memory cell for output, ultimately generating the
outcome. The computational process involves
element-wise multiplication of the current memory cell
state with a sigmoid activation function. The output gates
have two implemented gates, enhancing system
functionality and efficiency. The initial gating mechanism
uses a sigmoid activation layer to determine specific
portions of the cell state for transmission as output. The
hyperbolic tangent activation function and multiplication
operation regulate information flow within the memory
cell, enhancing the model’s capacity to capture long-term
dependencies and generate precise predictions.

2.4 Strengths and weaknesses of LSTM and

SARIMA models:

LSTM models are appropriate for complicated
forecasting jobs because they can capture long-term
dependencies and non-linear interactions in time-series
data. They can be trained end-to-end without the
requirement for feature engineering, and they can manage
noisy inputs and missing data. One of the limitations of
LSTM models is their high computational cost and the
need for a substantial quantity of training data to achieve
optimal performance. Overfitting may occur when the
model is excessively intricate, or the training data is
inadequate [27,28,29]. The implementation of the
SARIMA model offers notable strengths and weaknesses.
SARIMA models excel in their ability to effectively
capture and analyze seasonal patterns and trends within
time-series data. This makes them particularly well-suited
for forecasting tasks that exhibit distinct and recurring
seasonal patterns. Furthermore, these models are
characterized by their relative simplicity and ease of
implementation, making them highly accessible for
practical applications. Additionally, they exhibit the
remarkable capability to be trained effectively even with
limited data. SARIMA models, short for Seasonal
Autoregressive Integrated Moving Average models,

operate assuming that the underlying time-series data is
stationary. However, it is important to note that this
assumption may not hold for all types of time-series data.
Machine learning models can exhibit sensitivity to
outliers and noise present in the data, thereby potentially
compromising their accuracy [31,32,33].

3 Results and Discussion

This section presents the experimental data that compare
the predicted outcomes of SARIMA and LSTM.

3.1 SARIMA Forecasting

The training data for the SARIMA model consists of 90%
of the visceral leishmaniasis dataset, while the remaining
10% is allocated for testing the model’s predictions. The
SARIMA model was developed using a training data set.
The plot of the training data set is illustrated in Figure 1,
showing the time series pattern over a specific period. The
SARIMA model considers the seasonal and non-seasonal
components of the data, allowing for accurate forecasting
and prediction. In comparison, Figure 2 represents the
seasonal decomposition of the training data set using the
SARIMA model. The decomposition shows clear patterns
of seasonality, trend, and residual components. These
components will inform the forecasting process and
improve the accuracy of future predictions. The
autocorrelation function (ACF) and partial autocorrelation
function (PACF) showed clear seasonal patterns. Figure 3
shows that the series is not stationary. Figure 4 represents
ACF and PACF for a first-order difference and a first
seasonal difference time series. The Augmented
Dickey-Fuller (ADF) test yielded a t = (−2.65),
indicating a statistically significant result with a P value
of 0.005. Hence, it may be concluded that the initial
sequence had characteristics of both non-stationary and
non-randomness. The original series achieved stationary
using a first-order difference and a first-seasonal
difference. Because the Augmented Dickey-Fuller (ADF)
test yielded a t = (−4.88), indicating a statistically
significant result with a P = 0.00005. Ultimately, the
SARIMA (p,1,q) (P,1,Q) model was tentatively chosen.
An exhaustive search was conducted using a Python
programming grid search method to identify the optimal
model based on the best Akaike Information Criterion
(AIC) value criteria. After careful analysis, it has been
determined that the SARIMA (0,1,1)(2,1,2) model
exhibits superior performance, as evidenced by its
remarkably low AIC value of 2748.17. The SARIMA
(0,1,1)(2,1,2) model was the most suitable for
forecasting VL cases. Figure 5 illustrates a comparative
fit. The SARIMA model’s predicted data and the test data
set are shown in conjunction, illustrating a strong
resemblance between the two. This suggests that the
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Fig. 1: Plot of the monthly incidence of visceral leishmaniasis in

Gadaref State, Sudan, from 2000 to 2022.

Fig. 2: Seasonal decomposition of visceral leishmaniasis in

Gadaref State, Sudan, from 2000 to 2021.

Fig. 3: Autocorrelation and partial autocorrelation plots: The

original time series.

Fig. 4: Autocorrelation and partial autocorrelation plots: A first-

order difference and a first seasonal difference time series

SARIMA model can effectively capture VL case patterns
and variations.

Fig. 5: Comparing predicted SARIMA and test data.

3.2 LSTM Result

The investigation utilizes an artificial recurrent neural
network (RNN) model to forecast instances of visceral
leishmaniasis. This is accomplished by leveraging a
dataset consisting of 240 monthly cases. The dataset has
been subjected to compression and partitioning, resulting
in distinct subsets for training and testing. Specifically,
the training dataset encompasses 90% of the overall
instances of visceral leishmaniasis cases. The input data
undergoes a conversion process to be represented as a
NumPy array, which is then utilized as input for the
LSTM model. The Adam optimizer minimizes the mean
squared error, augmenting the model’s efficacy. The
dynamic algorithm uses an adaptive learning rate
mechanism to expedite convergence and increase
precision. The Mean Squared Error (MSE) is a statistical
metric that quantifies the average discrepancy between
predicted and observed values. It is particularly
well-suited for tasks involving regression analysis. The
training involves utilizing a batch size of 1 and a single
epoch value while the model is evaluated on a scaled
testing dataset. The model exhibits a mean squared error
(MSE) of 0.05, suggesting a moderate average deviation
between the predicted and observed values. This indicates
the model’s robustness in effectively forecasting the
dependent variable within regression analyses. The model
is subsequently evaluated using the scaled testing dataset,
yielding the ensuing outcomes: Figure (9) depicts the
testing dataset for visceral leishmaniasis, showcasing the
predictions generated by the LSTM model. The visual
representation illustrates that the predicted values exhibit
higher proximity to the training data. The observed results
suggest that the LSTM model has effectively captured the
underlying patterns and trends within the testing dataset,
resulting in precise predictions for visceral leishmaniasis.
The strong correlation between the predicted values and
the actual data implies the robustness and efficacy of the
model in prognosticating this ailment.
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Fig. 6: A comparative analysis between the training dataset and

the predicted values generated by the LSTM model.

3.3 Model comparison

The metrics often employed for evaluating and comparing
forecasting techniques on a singular time series are MAP
(mean absolute percentage error), RMS (root mean square
error), and MA (mean absolute error). The utilization of
MAP as the key performance statistic in this study is
justified by its interpretability. The mean absolute
percentage mistake (MAP) is a metric that quantifies the
absolute mistake as a percentage of the true value. This
measure facilitates the convenient comparison of diverse
time series characterized by differing scales and units.
Furthermore, the mean absolute percentage error (MAP)
exhibits a higher degree of resistance to the influence of
outliers when compared to both the root mean square
error (RMS) and the mean absolute error (MAP). This
characteristic renders MAPE a reliable option for
assessing the accuracy of predictions. Equation 4
provides the formal mathematical expressions for the
Mean Absolute Percentage Error (MAP), Root Mean
Square Error (RMS), and Mean Absolute Error (MAP). In
this equation, Zi represents the observed values, Ẑi

represents the projected values, and T is the total number
of data points used for testing.

MAP =
1

T

T

∑
i=1

|Zi − Ẑi|

Zi

× 100%,

RAM =

√

1

T

T

∑
i=1

(Zi − Ẑi)2
,

AM =
1

T

T

∑
i=1

|Zi − Ẑi|.

(4)

Table 1: A comparative analysis of the performance between two

models.

Methods MPA RMS MA

SARIMA 66.69 198.94 160.5

LSTM 40.10 183.685 127.5

As shown in Table 1, the MAP, RMS, and MA of the
test data set for the LSTM model were 40.10,183.685,
and 127.5, respectively, which are significantly lower
than those of the SARIMA model. These results indicate
that the LSTM model outperforms the SARIMA model
regarding accuracy, precision, and mean error. The lower
values of MAP, RMS, and MA suggest that the LSTM
model provides more accurate predictions for the test data
set than the SARIMA model.

3.4 Discussion

This work provides a comparative analysis of SARIMA
and LSTM models to forecast the time series of VL
states. Forecast accuracy assessment entails using
monthly VL data counts, covering the period from
January 2000 to December 2021. The SARIMA model
(0,1,1)(2,1,2) was identified as the optimal model for
predicting the monthly number of VL cases. The ensuing
study utilized the LSTM model with a single hidden layer
layout. Based on empirical data, both SRIMA and LSTM
have positively predicted future outcomes. The LSTM
model demonstrates superior prediction accuracy
compared to the SRIMA model. In light of the
unpredictability and dynamic character of epidemics, it is
critical to acknowledge the need for future methods in the
conclusion of this study comparing ARIMA and LSTM
models for epidemic forecasting. The following are a few
instances of potential future research areas to improve the
efficiency of epidemic forecasting models: The accuracy
of the models might be improved by adding more
epidemiological variables, such as vaccination rates,
public health initiatives, and demographic data. By
utilizing the advantages of each model, combining many
model types (ARIMA, LSTM, and SEIR models) in an
ensemble method may result in more reliable predictions,
extending the models to examine cross-border dynamics
and geographical dissemination, especially for illnesses
that are likely to spread via migration and travel.
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