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Abstract: In this paper certain inequalities are established for q-h-integrals by applying definitions of two types of convex functions.

The Hermite-Hadamard inequality in different variants for q-h-integrals is given by using (h̄-m)- and (α-m)-convex functions. Some

well-known q-integral inequalities for several types of convex functions are deduced.
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1 Introduction and Preliminaries

Inequalities have an important role in mathematical
modeling of almost all kinds of real world problems.
Differential equations along with initial and boundary
conditions, are vital tools in expressing various problems
of science and engineering. Then these problems are
solved by applying different integral transformations and
techniques. Nowadays, in place of usual derivatives and
integrals some new and generalized notions are utilized in
representing classical problems in general form. As a
result difference equations occur which are dealt with
new and generalized methods. In this context one can
consider fractional derivatives, q-derivatives, h-
derivatives and q-h-derivatives etc. For a detailed study
we refer the readers to [1,2,3].
New and generalize inequalities established in recent
years are due to fractional integrals, q-integrals and
(p,q)-integrals [4,5]. Various new classes of real valued
functions are also explored for the sake of generalizations,
refinements and extensions of classical results. For
example convex functions and related notions are very
frequently analyzed to get diverse variants of classical
inequalities for different kinds of integrals, see [6,7,8,9].

The aim of this paper is to utilize classes of (h̄-m)- and
(α-m)-convex functions in deriving Hermite-Hadamard
type inequalities. By using a new and generalize
definition of derivatives and integrals on finite intervals
these inequalities are obtained. Results of some recent
articles are also reproduced from findings of this paper.
Let we start by defining convex function and stating the
Hermite-Hadamard inequality as follows:

Definition 1. A real valued function f is said to be

convex on an interval I, if the following inequality holds:

f (ta+(1− t)b)≤ t f (a)+ (1− t) f (b),

for t ∈ [0,1], a,b ∈ I.

Theorem 1. The following inequality holds:

f

(

a+ b

2

)

≤
1

b− a

∫ b

a
f (x)dx ≤

f (a)+ f (b)

2
, (1)

for a convex function f defined on an interval I ⊂ R and

a,b ∈ I where a < b.

The inequality (1) has been published in several
variants for different types of functions and new kinds of
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integrals. For instance, it is studied for fractional order
derivatives/integrals in[6,10], for quantum derivatives /
integrals one can see [11,12]. Next, we define q-definite
integrals and state the Hadamard inequality for convex
functions.

Definition 2.[13] Let f : I →R be a continuous function.

Then the q-definite integral on [a,b] is defined as

∫ x

a
f (x)dqt = (1− q)(b− x)

∞

∑
n=0

qn f (qnx+(1− qn)a),

(2)

for x ∈ [a,b], a,b ∈ I, a < b.

In [10], by applying q-definite integrals the following
q-Hadamard inequality for convex functions is proved:

Theorem 2. Let f : [a,b]→R be a differentiable convex

function. Then for q-integrals the following inequality

holds:

f

(

b+ aq

1+ q

)

≤

∫ b
a f (x)dqx

b− a
≤

q f (a)+ f (b)

1+ q
. (3)

Further, we give definition of q-h-integrals and the q-
h-Hadamard inequality for convex functions.

Definition 3.[14] Let 0 < q < 1 and function

f : I = [a,b]→ R be a continuous function. Then the left

q-h-integral and the right q-h-integral on I denoted by

Ia+

q−h f and Ib−

q−h f are defined as follows:

Ia+

q−h f (x) :=

∫ x

a
f (t)hdqt.= ((1− q)(x− a)+ qh)

×
∞

∑
n=0

qn f (qna+(1− qn)x+ nqnh), x > a, (4)

Ib−

q−h f (x) :=
∫ b

x
f (t)hdqt.= ((1− q)(b− x)+ qh)

×
∞

∑
n=0

qn f (qnx+(1− qn)b+ nqnh), x < b. (5)

Theorem 3.[15] Let ∑
∞
k=0 kq2k = S and q ∈ (0,1). Also,

let f : I → R be a convex function, for a,b ∈ I, a < b, the

following inequality holds for q-h-integrals:

f

(

a+ qx

1+ q
+(1− q)hS

)

+ f

(

x+ qb

1+ q
+(1− q)hS

)

≤
1− q

(1− q)(x− a)+ qh

∫ x

a
f (x)hdqx

+
1− q

(1− q)(b− x)+ qh

∫ b

x
f (x)hdqx ≤

( f (a)+ q f (b))(b− a)+ (1+ q)( f (a)(b− x)+ f (b)(x− a))

(1+ q)(b− a)

+
2( f (b)− f (a))

b− a
× hS(1− q).

(6)

In the following we define some extended definitions of
convex functions. These definitions will be applied for
establishing the results of this paper.

Definition 4.[16] Let J ⊆ R be an interval containing

(0,1) and let h̄ : J → R be a non negative function. We

say f : [0,b] → R is a (h̄-m)-convex function, if f is

non-negative and for all x,y ∈ [0,b], m ∈ [0,1] and

t ∈ (0,1) one has

f (tx+m(1− t)y)≤ h̄(t) f (x)+mh̄(1− t) f (y).

If we choose m = 1, then we have h̄-convex function.
If h̄(t) = t, we obtain non-negative m-convex function. If
m = 1 and h̄(t) = t, we get convex function.

Definition 5.[17] For some fixed s ∈ (0,1] and m ∈ [0,1] a

mapping f := [0,∞)→ R is said to be (s−m)- convex on

I if

f (tx+m(1− t)y)≤ ts f (x)+m(1− t)s f (y) (7)

holds for all x,y ∈ I and t ∈ [0,1].

Definition 6.[18] Let α,m ∈ [0,1]. The function f := I →
R is said to be (α,m)-convex if

f (tx+m(1− t)y)≤ tα f (x)+m(1− tα) f (y) (8)

holds for all x,y ∈ I and t ∈ [0,1].

Definition 7.[19] Let h̄ : (0,1)⊆ J →R be a non-negative

and non-zero function and I be interval in R. We say that

f := I →R is a (p,h)-convex function or f belongs to the

class ghx(h, p, I), if f is non-negative and

f ([αxp +(1−α)yp]
1
p )≤ h̄(α) f (x)+ h̄(1−α) f (y), (9)

for all x,y ∈ I and α ∈ (0,1).

In the forthcoming section we prove q-h-integral
inequalities for monotone convex functions. The
q-h-Hermite-Hadamard type inequalities for generalized
convex functions are established. Several variants of
q-Hermite-Hadamard inequalities are deducible in from
main results.

2 Generalized q-h-Hermite Hadamard

inequalities

Theorem 4.Let g : I → R be a real valued q-h-integrable

function, and h ≥ 0.

(i) If g is decreasing and convex, then the q-h-integral

satisfies the following inequality:

∫ x
a g(x)h1

dqx

(1− q)(x− a)+ qh1

+

∫ b
x g(x)h2

dqx

(1− q)(b− x)+ qh2

≤
g(a)+ g(x)+ q(g(x)+ g(b))

1− q2
, (10)
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where h1 = (x− a)h and h2 = (b− x)h, x ∈ [a,b], a,b ∈ I

and a < b.

(ii) If g is increasing and concave function, then the

reverse of above inequality holds:

Proof.(i) For h≥ 0, k ∈N, q∈ (0,1) and x∈ [a,b], we have

qka+(1− qk)x+ kqkh ≥ qka+(1− qk)x. (11)

By using monotonicity and convexity of g, one can have

qkg(qka+(1− qk)x+ kqkh)≤ qk(qkg(a)+ (1− qk)g(x)).

From which one can get the following expression for
infinite sums:

∞

∑
k=0

qkg(qka+(1− qk)x+ kqkh)

≤
∞

∑
k=0

qk(qkg(a)+ (1− qk)g(x)).

Keeping in view Definition 4, for left hand side, while
calculating the sum of right hand side, the following
inequality is yielded:

1

(1− q)(x− a)+ qh1

∫ x

a
g(x)h1

dqx ≤
g(a)+ qg(x)

1− q2
. (12)

Also, we have that

qkx+(1− qk)b+ kqkh ≥ qkx+(1− qk)b. (13)

By using monotonicity and convexity of g, one can have

qkg(qkx+(1− qk)b+ kqkh)≤ qk(qkg(x)+ (1− qk)g(b)).

From which one can get the following expression for
infinite sums:

∞

∑
k=0

qkg(qkx+(1− qk)b+ kqkh)

≤
∞

∑
k=0

qk(qkg(x)+ (1− qk)g(b)).

Keeping in view Definition 5 for right hand side, while
calculating the sum of right hand side, the following
inequality yielded:

1

(1− q)(b− x)+ qh2

∫ b

x
g(x)h2

dqx ≤
g(x)+ qg(b)

1− q2
. (14)

From (12) and (14), one can constitute the required
inequality.
(ii) The proof is similar to the proof of (10).

Remark.Let h ≤ 0 in Theorem 4. (i) If g is increasing and
convex, then (10) also holds. (ii) Moreover, if g is
decreasing and concave, then (10) holds in reverse order.

Theorem 5.Let g : I → R be (h̄-m)-convex function and g

be q-h-integrable, and h ≥ 0.

(i) If g is decreasing and convex, then the q-h-integral

satisfies the following inequality:

∫ x
a g(x)h1

dqx

(1− q)(x− a)+ qh1

+

∫ b
x g(x)h2

dqx

(1− q)(b− x)+ qh2

≤ (g(a)+ g(x))
∞

∑
k=0

qkh̄

(

qk
)

+m
∞

∑
k=0

qk×

h̄
(

1− qk
)

(

g
( x

m

)

+ g

(

b

m

))

,

(15)

where h1, h2 are same as in Theorem 4, x∈ [a,b], a,b∈
I, a > 0 and m 6= 0.

(ii) If g is increasing and concave function then the reverse

of above inequality holds.

Proof.(i) By using monotonicity and (h̄-m)-convexity of g,
one can have the following inequality from (11):

qkg

(

qka+m(1− qk)
x

m
+ kqkh

)

≤ qk

(

h̄(qk)g(a)+mh̄(1− qk)g

(

x

m

))

.

From which one can get the following expression for
infinite sums: ∑

∞
k=0 qk

(

g
(

qka+m
(

1− qk
)

x
m
+ kqkh

))

≤

∑
∞
k=0 qk

(

h̄
(

qk
)

g(a)+mh̄
(

1− qk
)

g
(

x
m

))

.
Keeping in view Definition 4 for left hand side, while

calculating the sum of right hand side, the following
inequality is yielded:

1

(1− q)(x− a)+ qh1

∫ x

a
g(x)h1

dqx

≤
∞

∑
k=0

qkh̄(qk)g(a)+m
∞

∑
k=0

qkh̄(1− qk)g

(

x

m

)

. (16)

On the other hand by using monotonicity and (h̄-m)-
convexity of g, one can have the following inequality from
(13):

qkg

(

qkx+m(1− qk)
b

m
+ kqkh

)

≤ qk

(

h̄(qk)g(x)+mh̄(1− qk)g

(

b

m

))

From which one can get the following expression for
infinite sums:

∞

∑
k=0

qkg

(

qkx+m(1− qk)
b

m
+ kqkh

))

≤
∞

∑
k=0

qk

(

h̄(qk)g(x)+mh̄(1− qk)g

(

b

m

))

.
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Keeping in view Definition5 for right hand side, while
calculating the sum of right hand side, the following
inequality is yielded:

1

(1− q)(b− x)+ qh2

∫ b

x
g(x)h2

dqx

≤
∞

∑
k=0

qkh̄
(

qk
)

g(x)+m
∞

∑
k=0

qkh̄
(

1− qk
)

g

(

b

m

)

(17)

From(16) and(17) , one can constitute the required
inequality.
(ii) The proof is similar to the proof of(15).

Remark.Let h ≤ 0 in Theorem 4. (i) If g is increasing and
convex, then(15) also holds. (ii) Moreover, if g is
decreasing and concave, then (15) holds in reverse order.

Theorem 6.Let g : I → R be (α-m)-convex function and g

be q-h-integerable and h ≥ 0.

(i) If g is decreasing and convex, then the q-h-integral

satisfies the following inequality :

∫ x
a g(x)h1

dqx

(1− q)(x− a)+ qh1

+

∫ b
x g(x)h2

dqx

(1− q)(b− x)+ qh2

≤

(1− q)(g(a)+ g(x))+mq(1−qα)

(

g

(

x
m

)

+ g

(

b
m

))

(1− q)(1− q1+α)
,

(18)

where h1, h2 are same as in Theorem 4, x ∈ [a,b], a,b ∈ I,

a > 0 and m 6= 0.

(ii) If g is increasing and concave function then the reverse

of above inequality holds.

Proof.We leave the proof for reader.

Remark.Let h ≤ 0 in Theorem 4. (i) If g is increasing and
convex, then (18) also holds. (ii) Moreover, if g is
decreasing and concave, then (18) holds in reverse order.

Theorem 7.Let I be an interval in R, g : I →R be qa < b.

(i) If g is symmetirc about a+z
2

, z ∈ (a,b), then left q-h-

integrals satisfy the following inequality:

1

h

(

1
2

)g

(

a+ z

2

)

≤
(1− q)(1+m)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt

≤ g(z)

∫ 1

0
h̄(t)hdqt +m× g

(

a

m

)

∫ 1

0
h̄(1− t)hdqt. (19)

(ii) If g is symmetirc about z+b
2

, z ∈ (a,b), then right

q-h-integrals satisfy the following inequality:

1

h

(

1
2

)g

(

z+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− z)+ qh2

∫ b

z
g(t)h2

dqt

≤ g(b)

∫ 1

0
h̄(t)hdqt +m× g

(

z

m

)

∫ 1

0
h̄(1− t)hdqt, (20)

where h1 and h2 is same as in Theorem 4.

Proof.Here we proof the inequality (19) for left
q-h-integral and leave the proof of (20) for the reader.
(i) It is given that g is (h̄-m)-convex, hence the following
inequality holds:

1

h̄

(

1
2

)g

(

a+ z

2

)

≤ g(ta+(1− t)z)

+mg

(

tz+(1− t)a

m

)

, t ∈ [0,1].

Applying q-h-integral on the above inequality one can get

1

h̄

(

1
2

)g

(

a+ z

2

)

≤
(1− q)

(1− q)+ qh

(

∫ 1

0
g(ta+(1− t)z)hdqt

+mg

(

tz+(1− t)a

m

)

hdqt

)

, t ∈ [0,1]. (21)

By using the condition g

(

a+z−u
m

)

= f (u) for all u ∈

(a,z), one can have:

1

h̄

(

1
2

)g

(

a+ z

2

)

≤
(1+m)(1− q)

(1− q)+ qh

∫ 1

0
g(a+(z− a)t)hdqt.

(22)

This further leads to the following inequality, for left q-h-
integrals:

((1− q)+ qh)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt

= ((1− q)+ qh)
∞

∑
k=0

qkg(qka+(1− qk)z+ kqk(z− a)h)

=

∫ 1

0
g(a+(z− a)t)hdqt. (23)

Again using the (h̄-m)-convexity on the last term of above
inequality the following inequality is yielded:

∫ 1

0
g(a+(z− a)t)hdqt ≤ g(z)

∫ 1

0
h̄(t)hdqt

+mg

(

a

m

)

∫ 1

0
h̄(1− t)hdqt.

The inequality (23) leads to the upcoming inequality:

((1− q)+ qh)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt ≤ g(z)

∫ 1

0
h̄(t)hdqt

+mg

(

a

m

)

∫ 1

0
h̄(1− t)hdqt. (24)

Inequalities (22), (23) and (24) constitute the required
inequality (19).
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Corollary 1.The upcoming inequalities hold for left and

right q-integrals, by setting h = 0, in (19) and (20)
respectively:

1

h

(

1
2

)g

(

a+ z

2

)

≤
1+m

z− a

∫ z

a
g(t)dqt ≤ g(z)

∫ 1

0
h̄(t)dqt

+mg

(

a

m

)

×

∫ 1

0
h̄(1− t)dqt,

1

h

(

1
2

)g

(

z+ b

2

)

≤
1+m

b− z

∫ b

z
g(t)h2

dqt ≤ g(b)

∫ 1

0
h̄(t)hdqt

+mg

(

z

m

)

×

∫ 1

0
h̄(1− t)hdqt.

Theorem 8.From Theorem 4, the following inequality can

also be obtained:

1

h̄

(

1
2

)g

(

a+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− a)+ qh3

∫ b

a
g(t)h3

dqt

≤ g(b)

∫ 1

0
h̄(t)hdqt +mg

(

a

m

)

×

∫ 1

0
h̄(1− t)hdqt, (25)

where (b− a)h = h3.

Proof.If we put z = b in (19), we get the following
inequality:

1

h̄( 1
2
)

g

(

a+ b

2

)

≤
((1− q)+ qh)

(1− q)(b− a)+ qh3

∫ b

a
g(t)h3

dqt

≤ g(b)

∫ 1

0
h̄(t)hdqt +mg

(

a

m

)

∫ 1

0
h̄(1− t)hdqt. (26)

If we put z = a in (20), we get the following inequality:

1

h̄

(

1
2

)g

(

a+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− a)+ qh3

∫ b

a
g(t)h3

dqt

≤ g(b)

∫ 1

0
h̄(t)hdqt +mg

(

a

m

)

×

∫ 1

0
h̄(1− t)hdqt. (27)

From (31) and (32), one can get the required inequality
(25).

Corollary 2.The upcoming inequality hold for q-integrals,

by setting h = 0, in (25):

1

h̄( 1
2
)

g

(

a+ b

2

)

≤
1

b− a

∫ b

a
g(t)dqt ≤ g(b)

∫ 1

0
h̄(t)dqt

+mg

(

a

m

)

∫ 1

0
h̄(1− t)dqt. (28)

Theorem 9.Under the assumptions of Theorem 2 and let

h̄(t) = ts in (19) and (20) and using (a + b)s ≤ as + bs

where 0< s < 1, we get the inequalities for (s−m)-convex

function:

1

h

(

1
2

)g

(

a+ z

2

)

≤
(1− q)(1+m)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt

≤ ((1− q)+ qh)

(

g(z)

(

∞

∑
k=0

qk × (1− qk)s +
kh

1− q2s

)

+mg

(

a

m

)(

1+ kh

1− q2s

))

. (29)

1

h

(

1
2

)g

(

z+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− z)+ qh2

∫ b

z
g(t)h2

dqt

≤ ((1− q)+ qh)

(

g(b)

(

∞

∑
k=0

qk × (1− qk)s +
kh

1− q2s

)

+mg

(

z

m

)(

1+ kh

1− q2s

))

. (30)

Theorem 10.Let g : I → R be (α-m)-convex function

differentiable on (a,b) and q ∈ (a,b).
(i) If g is symmetric about a+z

2
, z ∈ (a,b), then left

q-h-integrals satisfy the following inequality:

2g

(

a+ z

2

)

≤
(1− q)(1+m)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt

≤

(

g(z)−mg

(

a

m

))(

∞

∑
K=0

qk × ((1− qk)α +
kh

1− q2α

)

+
m

1− q
g

(

a

m

)

. (31)

(ii) If g is symmetric about z+b
2

, z ∈ (a,b), then right q-h-

integrals satisfy the following inequality:

2g

(

z+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− z)+ qh2

∫ b

z
g(t)h2

dqt

≤

(

g(b)−mg

(

z

m

))(

∞

∑
K=0

qk × ((1− qk)α +
kh

1− q2α

)

+
m

1− q
g

(

z

m

)

, (32)

where h1 and h2 is same as in Theorem 2.

Proof.Here we proof the inequality (31) for left
q-h-integral and leave the proof of (32) for the reader.
(i) It is given that g is (α-m)-convex, hence the following
inequality holds:

2g

(

a+ z

2

)

≤ g(ta+(1− t)z)+mg

(

tz+(1− t)a

m

)

, t ∈ [0,1].
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Applying q-h-integral on the above inequality one can get

2g

(

a+ z

2

)

≤
(1− q)

(1− q)+ qh

(

∫ 1

0
g(ta+(1− t)z)hdqt +m

× g

(

tz+(1− t)a

m

)

hdqt

)

, t ∈ [0,1] (33)

By using the condition f

(

a+z−u
m

)

= f (u) for all u∈ (a,z),

one can have

2g

(

a+ z

2

)

≤
(1+m)(1− q)

(1− q)+ qh

∫ 1

0
g(a+(z− a)t)hdqt.

(34)

Again by using the (α-m)-convexity on the last term of
(23) the following inequality yielded:

((1− q)+ qh)

(1− q)(z− a)+ qh1

∫ z

a
g(t)h1

dqt

≤ f (z)

∫ 1

0
tα
h dqt +m f

(

a

m

)

∫ 1

0
(1− tα)hdqt (35)

Hence from (23), (34) and (35), we get the following
inequality:

2g

(

a+ x

2

)

≤
(1+m)(1− q)

(1− q)(x− a)+ qh1

∫ x

a
g(t)h1

dqt

≤ g(x)

∫ 1

0
tα
h dqt +mg

(

a

m

)

∫ 1

0
(1− tα)hdqt. (36)

From definition, we have that

∫ 1

0
tα
h dqt = ((1− q)+ qh)

∞

∑
k=0

qk((1− qk)+ kqkh)α
,

by using (a+ b)α ≤ aα + bα where 0 < α < 1 we have

∫ 1

0
tα
h dqt = ((1− q)+ qh)

∞

∑
k=0

qk((1− qk)+ kqkh)α

≤ ((1− q)+ qh)

(

∞

∑
k=0

qk((1− qk)α +
kh

1− q2α

)

. (37)

Using (37) in (36), constitute the required inequalities.

Corollary 3.The upcoming inequalities hold for left and

right q-integrals, by setting h = 0, in (31) and (32)
respectively:

2g

(

a+ x

2

)

≤
1+m

x− a

∫ x

a
g(t)dqt

≤

(

g(x)−mg

(

a

m

))

∞

∑
K=0

qk(1− qk)α +
m

1− q
g

(

a

m

)

.

(38)

2 f

(

x+ b

2

)

≤
1+m

b− x

∫ b

x
f (t)dqt

≤

(

f (b)−m f

(

x

m

))

∞

∑
K=0

qk(1− qk)α +
m

1− q
f

(

x

m

)

.

(39)

Theorem 11.From Theorem 10, the following inequality

can also be obtained:

2g

(

a+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− a)+ qh3

∫ b

a
g(t)h3

dqt

≤

(

g(b)−mg

(

a

m

))(

∞

∑
K=0

qk((1− qk)α +
kh

1− q2α

)

+
m

1− q
g

(

a

m

)

. (40)

Proof.If we put x = b in (31), we get the following
inequality:

2g

(

a+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− a)+ qh1

∫ b

a
g(t)h3

dqt

≤

(

g(b)−mg

(

a

m

))(

∞

∑
K=0

qk × ((1− qk)α

+
kh

1− q2α

)

+
m

1− q
g

(

a

m

)

. (41)

If we put x = a in (32), we get the following inequality:

2g

(

a+ b

2

)

≤
(1− q)(1+m)

(1− q)(b− a)+ qh3

∫ b

a
g(t)h3

dqt

≤

(

g(b)−mg

(

a

m

))(

∞

∑
K=0

qk × ((1− qk)α +
kh

1− q2α

)

+
m

1− q
g

(

a

m

)

. (42)

From (41) and (42), one can get the required inequality
(40).

Corollary 4.If h = 0 in (40) we have

2g

(

a+ b

2

)

≤
1+m

b− a

∫ b

a
g(t)dqt

≤

(

g(b)−mg

(

a

m

))

∞

∑
K=0

qk((1− qk)α +
m

1− q
g

(

a

m

)

.

Theorem 12. Let h̄ : (0,1) ⊆ J → R be a non-negative

and non-zero function and let g := I →R is a (p, h̄)-convex

function then,

(i) If g is symmetric about ap+xp

2
, x ∈ (a,b), then for left

q-h-integrals the following inequality holds:

h̄

(

1

2

)

g

(

ap + xp

2

) 1
p

≤
2(1− q)

(1− q)(xp − ap)+ qh4

∫ xp

ap
g(t)

1
p

h4
dqt

≤ g(xp)
∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdqt, (43)
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where (xp − ap)h = h4.

(ii) If g is symmetric about xp+bp

2
, x ∈ (a,b), then we have

the following inequality for right q-h-integrals.

h̄

(

1

2

)

g

(

xp + bp

2

)
1
p

≤
2(1− q)

(1− q)(bp− xp)+ qh5

∫ bp

xp
g(t)

1
p

h5
dqt

≤ g(bp)
∫ 1

0
h̄(t)hdqt + g(xp)

∫ 1

0
h̄(1− t)hdqt, (44)

where (bp − xp) = h5.

Proof.Here we proof the inequality (43) for left
q-h-integral and leave the proof of (44) for the reader.
(i) It is given that g is (p,h)-convex, hence the following
inequality holds:

g

(

ap + xp

2

)
1
p

≤ h̄

(

1

2

)(

g(tap +(1− t)xp)
1
p + g(txp +(1− t)ap)

1
p

)

,

t ∈ [0,1].

Applying q-h-integral on the above inequality, one can
get the

1

h̄

(

1
2

)g

(

ap + xp

2

)
1
p

≤
(1− q)

(1− q)+ qh

(

∫ 1

0
g(tap +(1− t)xp)

1
p

h dqt

+ g

(

txp +(1− t)ap

)
1
p

hdqt

)

, t ∈ [0,1]. (45)

By using the condition g(ap+ xp − z)
1
p = g(z)

1
p for all z ∈

(ap,xp), one can get

h̄

(

1

2

)

g

(

ap + xp

2

)
1
p

≤
2(1− q)

(1− q)+ qh

∫ 1

0
g(ap +(xp − ap)t)

1
p

h dqt. (46)

This further leads to the following inequality, for left q-h-
integrals:

((1− q)+ qh)

(1− q)(xp− ap)+ qh4

∫ xp

ap
g(t)h4

dqt

= ((1− q)+ qh)
∞

∑
k=0

qkg(qkap +(1− qk)xp + kqk(xp − ap)h)

=
∫ 1

0
g(ap +(xp − ap)t)

1
p

h dqt. (47)

Again by using the (p, h̄)-convexity on the last term of
above inequality the following inequality yielded:

∫ 1

0
g(ap +(xp − ap)t)

1
p

h dqt

≤ g(xp)

∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdq, (48)

the inequality (47) leads to the upcoming inequality:

((1− q)+ qh)

(1− q)(xp− ap)+ qh4

∫ xp

ap
g(t)h4

dqt

≤ g(xp)

∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdqt. (49)

Hence from (46), (47) and (49), one can get the required
inequality (43).

Corollary 5.The upcoming inequalities hold for left and

right q-integrals, by setting h = 0, in (43) and (44)
respectively:

h̄

(

1

2

)

g

(

ap + xp

2

)
1
p

≤
2

xp − ap

∫ xp

ap
g(t)

1
p dqt

≤ g(xp)
∫ 1

0
h̄(t)dqt + g(ap)

∫ 1

0
h̄(1− t)dqt,

h̄

(

1

2

)

g

(

xp + bp

2

)
1
p

≤
2

bp − xp

∫ bp

xp
g(t)

1
p dqt

≤ g(bp)
∫ 1

0
h̄(t)dqt + g(xp)

∫ 1

0
h̄(1− t)dqt.

Theorem 13.Under the assumptions of Theorem 8, we get

the following inequality:

h̄

(

1

2

)

g

(

ap + bp

2

)
1
p

≤
2(1− q)

(1− q)(bp− ap)+ qh6

∫ bp

ap
g(t)

1
p

h6
dqt

≤ g(bp)

∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdqt, (50)

where (bp − ap) = h6.

Proof.(i) By setting x = b, in (43), we get the following
inequality:

h̄

(

1

2

)

g

(

ap + bp

2

) 1
p

≤
2(1− q)

(1− q)(bp− ap)+ qh6

∫ bp

ap
g(t)

1
p

h6
dqt

≤ g(bp)
∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdqt, (51)
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(ii)By setting x = a, in (44), we get the following
inequality:

h̄

(

1

2

)

g

(

ap + bp

2

) 1
p

≤
2(1− q)

(1− q)(bp− ap)+ qh6

∫ bp

ap
g(t)

1
p

h6
dqt

≤ g(bp)

∫ 1

0
h̄(t)hdqt + g(ap)

∫ 1

0
h̄(1− t)hdqt. (52)

From(51) and (52), one can get the required inequality
(50).

Corollary 6.By setting h = 0 in (50), we get the following

inequality:

h̄

(

1

2

)

g

(

ap + bp

2

)
1
p

≤
2

bp − ap

∫ bp

ap
g(t)

1
p dqt

≤ g(bp)
∫ 1

0
h̄(t)dqt + g(ap)

∫ 1

0
h̄(1− t)dqt, (53)

Corollary 7.By setting h̄(t) = ts in (43) and (44) and using

(a+ b)s ≤ as + bs where 0 < s < 1 we get the following

inequality:

h̄

(

1

2

)

g

(

ap + xp

2

)
1
p

≤
2(1− q)

(1− q)(xp − ap)+ qh4

∫ xp

ap
g(t)

1
p

h4
dqt ≤ ((1− q)+ qh)

×

(

(g(xp)− g(ap))

(

∞

∑
k=0

qk(1− qk)s +
kh

1− q2s

)

+
g(ap)

1− q

)

,

(54)

h̄

(

1

2

)

g

(

xp + bp

2

)
1
p

≤
2(1− q)

(1− q)(bp− xp)+ qh5

∫ bp

xp
g(t)

1
p

h5
dqt ≤ ((1− q)+ qh)

×

(

(g(bp)− g(xp))

(

∞

∑
k=0

qk(1− qk)s +
kh

1− q2s

)

+
g(xp)

1− q

)

.

(55)

3 Conclusion

We established inequalities for q- and h-integrals in
implicit forms. Inequalities for q-integrals were deduced
from composite results. All the inequalities were analyzed
for certain classes of functions closely related with
convexity. Moreover, some symmetry and symmetry like
conditions were required to impose for getting the
required results.
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