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Abstract: The objective of this paper is to estimate the diversification effects/benefits of an investment in a portfolio 
consisting of the South African Industrial (J520) and the Financial (J580) Indices using the Generalised Pareto Distributions 
(GPDs) with an extreme value Gumbel copula. The GPD is used as the marginal distribution to both assets to better 
characterize the extreme risk of returns in both Indices tails. The extreme value Gumbel copula captures the dependence 
structure (co-movement) of the financial assets in the portfolio. The Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) goodness of fit tests and the scatterplots indicate that the upper tail of the gains (the larger gains) 
risk and the losses tail (the larger losses) are best captured using the extreme value Gumbel copula. Monte Carlo simulation 
of an equally weighted portfolio of the two Indices is used to estimate the portfolio risk. The univariate marginal risks and 
the portfolio risks are used to calculate the diversification effects/benefits. The results show that there are benefits in 
diversification since the riskiness of the portfolio is less than the sum of the risk of the two financial assets. This implies that 
VaR, although not additive theoretically, is sub-additive in this practical situation. This property of sub-additivity represents 
the benefits of diversification for a portfolio.  The implication is that investors investing in individual risky assets can benefit 
from constructing such a portfolio to reduce extreme risk. Due to high dependence and contagion between developed 
markets/Global markets, this is useful information for local and international investors seeking a portfolio which includes 
developing countries' market Indices, such as South African assets, which are less correlated with other Global markets, 
thereby reducing the risk of contagion.     

Keywords: Machine Learning, GARCH models, Stock market, Statistical Model, ARIMA models, Volatility clustering, 
Leverage effect 

1 Introduction 

The problem of modeling and forecasting stock market volatility in literature has taken wide considerable attention around 
the world in both developing and developed countries. The models of univariate GARCH are used by Dana [1] in the Amman 
stock market to test the behavior of returns volatility. The models of ARCH/GARCH have presented a piece of strong 
evidence for the existence of each Leptokurtic and volatility clustering. Moreover, the results shown in Amman stock market 
returns that, there is no evidence for the presence of a leverage effect. Prashant Joshi [2] used three different models of 
GARCH to predict the daily volatility of the Bombay Stock Exchange's Sensex. According to their findings, the stock market 
shows volatility persistence and the existence of a leverage effect. Moreover, using a variety of macroeconomic variables, 
the predictive performance of linear and non-linear models are compared to the Johannesburg Stock Exchange by Michael 
Van et al. [3] when predicting financial returns. The authors used a variety of models such as Markov switching ARMA and 
Dynamic Regression, linear specifications, and univariate GARCH to capture conditional heteroscedasticity. According to 
their findings, the best in-sample fit is Markov switching models, while findings for the out-of-sample periods reveal the 
outperformance of linear models. Adolphus et al. [4]   attempted to determine the most efficient GARCH models to predict 
the volatility of the Nairobi stock exchange.  The (SBC), (AIC), and Mean Squared Error were used to evaluate the models.  
The results showed that IGARCH models are the best models for modeling and forecasting the volatility of the Nairobi stock 
exchange. 

2 Methodology 
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In modeling and forecasting of stock market volatility, GARCH models are the most commonly used methodologies, see 
Hassan and Hassan [5]. The symmetric and asymmetric models present two types of volatility models. This paper employs 
one of the symmetric models known by the GARCH (1,1) model and two GARCH asymmetric models known by EGARCH 
(1,1) and TGARCH (1,1). 

2.1 ARCH model  

ARCH models are developed by Engle [6]. These models are used in modeling and predicting the volatility of the financial 
time series. The model is written as follows: 

                           			𝑦# = 			 ε&											                                                                                                             (1) 

    ε&	~			((	*,			,-	)								                                                                                                           (2) 

     ℎ# = 𝛼* + ∑ 𝛼3
4
356 𝜀#869 					                                                                                          (3) 

ARCH(q) is the name of this model. For q= 1 ARCH model is reduced to  

ℎ# = 		𝛼* + 𝛼6𝑢#869	 	                                                                                                  (4) 

Where 𝑦# denotes the observed time series, 𝜀# denotes the residual, 𝛼* is a constant, 𝛼3  denotes to the ARCH effect, q denotes 
the duration of ARCH lags and ℎ# denotes the conditional variance. 𝛼* and 𝛼3	are nonnegative normally values to satisfies 
positive conditional variance. 

2.2 GRCH model  

The GARCH model is capturing the volatility of the variance and volatility clustering of financial time series developed by 
Bollerslev [7] as follows:       

     ℎ# = 𝛼* + ∑ 𝛼3
4
356 𝜀#839 + ∑ 𝛽3

<
356 ℎ#83                                                          (5)     

Where equation (5) denotes conditional variance equation with 𝛼* > 0, 𝛼3 > 0, 𝛽3 > 0 

The model (5) referred to as GARCH(p ,q). Then, GARCH(1,1) can be specified by: 

ℎ# = 	𝛼* + 𝛼6𝜀#869 + 𝛽6ℎ#86		                                                                 (6) 

The shortcomings of GARCH model are that the asymmetric effect does not capture what characterizes the most stock market 
return data. 

2.3 Exponential generalized auto regressive conditional heteroskedastic (E-GARCH) model 

EGARCH model suggested by Nelson, which allows for asymmetric effects, see [8]. The model can be written as follows: 

𝜎#9 = 𝑤 + 𝛼6𝜀#869 + 𝛽6𝜎#869 + 𝛾𝑑#86	                                                                 (7) 

Where 𝑑#86 is a dummy variable that takes the value 1 if 𝜀#86 < 0 (bad news) and the value 0 if 𝜀#86 > 0 (good news). 𝛾 
represents the leverage term.  𝜀#86 > 0 indicates good news. The coefficient 𝛾 is the leverage term.  

2.4  Time series analysis in statistics and Econometrics 

 The model of Autoregressive Moving Average (ARMA) is generalized by Autoregressive Integrated Moving Average 
(ARIMA) model, see [9,10,11] and [12]. Therefore, the time series data is used under both these two models in order to better 
understand the data or to forecast it by the future points in the series [13] and [14]. 

Let Zt  a time series data, which represents an integer index, and Zt be a real number, then 

𝑍# 	= 	Z#86 	+	a#	; 	a#		~	𝑊𝑁	(0, 𝜎9)                                                                    (8) 

𝑍# − Z#86 = 	 a#	; 	a#		~	𝑊𝑁	(0, 𝜎9)                                                                       (9) 

(1 − B	)Z# = 	 a#	                                                                                                    (10) 

𝑍# 	=
6

(	6					8		M)
	a#                                                                                                    (11)   

ψ(	B	) = 	 6
(	6				8				M	)

                                                                                                  (12) 

Where the weighed  	ψ6	ψ9, ψO, ………… ..  

ψ(𝐵)(1	 − 			B) 	= 			1	                                                                                               (13) 
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(		1	 +		ψ6𝐵		 +		ψ9	𝐵9 		+		ψO𝐵O 	+	… . . )(		1	 − 		𝐵		) = 		1                               (14)  

B ∶ 	ψ6 	− 		1 = 0		 ⇒ 		ψ6 = 1                                                                                 (15) 

B9 ∶ 	ψ9 	−	ψ6 = 0		 ⇒ 	ψ9 = 	ψ6 = 1                                                                    (16) 
BO ∶ 	ψO 	−	ψ9 = 0		 ⇒ 	ψO = 	ψ9 = 1                                                                   (17)  
BU ∶ 	ψU 	−	ψU86 = 0		 ⇒ 	ψU = 	ψU86 = 1                                                             (18)    

That is, the weights for the random walk model are  
                           ψU 	= 1	,			𝑗 ≥ 1                                                                             (19) 

2.5 Some properties of the weighted function  𝛙(𝑩) 
The auto regressive moving average model of degree ARMA (P,q) can be written  like that: 

 𝑍# − 	µ = 	ψ(B)		a#	; 	a#		~	𝑊𝑁	(0, 𝜎9)                                                                  (20)  
This relationship could be written as follows [15]: 

𝑍# − 	µ = 𝑎# +		ψ6	a#86 +	ψ9	a#89 +	… .		= 			∑ 𝜓U𝑎U86]
U5* ;		𝜓* 	= 1                (21)      

3. Data Analysis  
The daily closing prices of Saudi Stock Exchange represents the data used in this article from January 1-1-2003 to June 18-
6-2020[16]. The following formula was used to measure daily returns 𝑟#: 

𝑟# = 	_
`a
`abc

d                                                                                                            (22) 
where: 
𝑟#is the index's daily return at time t 
𝑃# denotes closing price index 
The results in table (1) show a negative skewness coefficient which supports previous findings and confirms the fact that 
many financial data have a large left tail. The normality at the 1% level of significance of the high value of Jarque- Bbera is 
rejected. Furthermore, the LM test statistics of Engle (1982) suggest the presence of ARCH effects, the variance of the return 
series has indicated that the later series is time-varying. 

Table 1: TASI returns descriptive statistics 
Skewness -0.944936 
Kurtosis 14.08645 
Jarque- Bera 10002.53 
Probability of Jarque- Bera  0.00000 
ARCH-LM (2) 8.017619 
Probability of ARCH- LM 0.0182 

 
In Fig. 1, we notice that periods of higher changes are pursued by periods of higher changes whereas periods of low changes 
are followed by periods of low changes. This pattern of stock return suggests that TASI returns show strong signs of volatility 
clustering.  As a result, residuals are conditionally heteroscedastic, and ARCH and GARCH models can be used to describe 
it. 
The distribution of TASI log returns is shown in Fig. 2, which clearly reveals a deviation from normality. 

 
Fig 1: Daily Returns series 
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Fig 2: Daily Returns Distribution 

The stationarity is determined under unit rule test of return series; the results, which are described in table (2), show that non-
stationary returns were rejected, and we conclude that TASI returns are stationary in level. 

Table 2: TASI daily return series, stationery test 

Augmented  Dickey- Fuller unit root  test                    -38.35 

critical values   1%                   -3.43 

5%                       -2.86 

10%                    -2.57  

This section contains estimates for Saudi Exchange returns series from various GARCH and ARMA models. Also diagnostic 
test of the models are achieved   

Table 3.  The estimation values of TASI index under different GARCH models 
parameters GARCH (1,1) EGARCH(1,1) TGARCH(1,1) 
The Equation of the Mean 

∅𝟎 0.000333 
(0.0000) 

0.000262 
(0.0000) 

0.000285 
(0.0000) 

The Equation of the Variance 
∅𝟏 6.21E-07 

(0.0001) 
-0.57554 
(0.0000) 

5.99E-07 
(0.0000) 

           a      0. 173918 
(0.0000) 

0.231682 
(0.0000) 

0.054040 
(0.0082) 

           b 0.812225 
(0.0000) 

0.963812 
(0.0000) 

0.829462 
(0.0000) 

𝜸               - -0.107144 
(0.0000) 

0.179816 
(0.0000) 

Log likelihood  7751.398 7785.570 7779.557 
AIC -8.163749 -8.161704 -8.192368 
SIC -8.152055 -8.184088 -8.177751 
ARCH-LM(1) 
Test 

0.14073 
(0.9321) 

0.171168 
(0.9180) 

0.181503 
(0.9132) 

The p-value is putted in parentheses  
The results in Table 3 reveal that the constant coefficients of ARCH and GARCH in the conditional variance equation for 
GARCH (1,1) model are positive and statistically significant at 1%. The sum of parameters (𝛼 + 𝛽) of ARCH and GARCH 
is close to unity. Also, the results suggest that volatility shocks are quite persistent. 
From Table 3, The EGARCH model results indicate that the parameters at 1% are statistically significant.  The parameter 𝛾 
has asymmetric effect captured by significant with negative sign, meaning that good news produce less volatility than bad 
news. 
TGARCH is an alternative asymmetric model for investigating existence of leverage effect in TASI index. The results of 
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TGARCH model displayed in table (3) reveal that the parameter of the asymmetric term 𝛾 is positive and significant at the 
1% level. This   
The ARCH- LM test of order 1 shows that there is no ARCH effect remaining in the residuals of the variance equations for 
all GARCH models, as shown in table (3). This shows that the variance equations are correctly defined. The identified model 
in table (4) for this data is ARIMA (1, 0, 1) where it succeeded in estimated parameter significance test and it succeeded in 
residual analysis test. 

Table 4: The identified model ARIMA (1, 0, 1) 

Par. Value 
Met. St. 
error 

95% 
Lower 
bound  

95% upper 
bound 

Asy. St. 
error 

95% 
Lower 
bound  

95% upper 
bound 

AR(1) -0.368 0.156 -0.674 -0.063 0.128 -0.619 -0.118 

MA(1) 0.504 0.158 0.196 0.813 0.119 0.272 0.737 

 

The GARCH and ARMA models were evaluated by using maximum log likelihood criteria, Akaike Information Criteria 
(AIC) and minimum Schwartz Bayesian Criteria (SBC) values. The results in table (5) show that the GARCH (1,1) 
outperforms the other models depending on the min AIC and SBC values. While the biggest log likelihood criteria reveal 
that EGARCH (1,1) model outperforms the other models. However, because of the asymmetric response to news, this study 
suggests that the EGARCH (1,1) model is the best model for predicting the volatility of Saudi stock market returns. 

Table 5. The Criteria to evaluate Models 

Criteria GARCH (1,1) TGARCH (1,1) EGARCH (1,1) ARIMA (1,0,1) 

AIC -8.299 -8.314 -8.319 -14.744 

SBC -8.284 -8.297 -8.302 -14.72 

Log likelihood 7881 7896 7901 7375 

4. Conclusion  

  For academics and market participants, modelling the volatility of stock returns has become an important field of study in 
the financial markets. In this article ARIMA models and GARCH models were used to estimate and predict volatility returns 
of TASI series, from January 1, 2013 to August 16, 2020. Findings indicate that the daily returns of TASI are characterized 
by clustering characteristics of volatility, leptokurtosis and by the presence of heteroscedasticity in the residuals. Besides, the 
study has shown that the EGARCH model is superior to the other models in estimating and predicting the volatility returns 
of the Saudi stock exchange.  

Acknowledgement:  

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work 
through large group Research Project under grant number RGP2/462/44 

References 

[1] Alnajjar, D. Modelling and Estimating Volatility Using ARCH/GARCH Models in Jordan’s Stock Market, Asian Journal 
of Finance and Accounting ,8(1),152-167(2016).   

[2] Joshi, P.,& Vidyanagar, G. Forecasting Volatility of Bombay Stock Exchange, International Journal of Current Research 
and Academic Review, 2(7), 222-230(2014). 

[3] Michael, V.G., Chun, S.H., & Ryan, K. The Performance of Linear Versus Non-Linear Models in Forecasting Returns 
on The Johannesburg Stock Exchange, International Business & Economics Research Journal, 12(8),985-994 (2013). 

[4] Wagala, A., Nassiuma, D., Islam, A.,& Mwangi, J.W. Volatility Modelling of the Nairobi Securities Exchange Weekly 
Returns Using the Arch-Type Models, International Journal of Applied Science and Technology , 2(3),165-174 (2012). 

[5] Ghassan, H.B., & Alhajhoj, H.R. Effect of Capital Market liberalization on Volatility of TASI", Journal of Development 
and Economic Policies ,14 (2),7-39 (2012). 



1596                                                                                                                             A. Abaker et al.: A Study of The Saudi Stock … 
 

 
 
© 2023 NSP 
Natural Sciences Publishing Cor. 
 

[6] Engle, R.F. Autoregressive conditional heteroscedasticity with estimation of variance of United Kingdom inflation, 
Econometrica ,50(4),987-1007 (1982). 

[7] Bollerslev, T. Generalized Autoregressive Conditional Heteroscedasticity with Estimate of the Variance of United 
Kingdom Inflation, Journal of Econometrics, 31, 307-327 (1986). 

[8] Martinet, G.G & Micheal, M. On inevitability of EGARCH (p,q), Econometric Reviews, 37(8), 824-849,(2018). 

[9] Miron, D., & Tudor, C. Asymmetric Conditional Volatility Models: Empirical Estimation and Comparison of 
Forecasting Accuracy, Romanian Journal of Economic Forecasting, 3, 74-91 (2010). 

[10] Suliman, Z.S., &Winker, P. Modelling Stock Market Volatility Using Univariate GARCH Models: Evidence from Sudan 
and Egypt, International Journal of Economics and Finance, 4(8), 161176  (2012). 

[11] Glosten, L. R., Jagannathan, R., & Runkle, D. E. On the Relation Between the Expected Value and the Volatility of the 
Nominal Excess Return on Stocks, Journal of Finance, 48(5),1779-1801 (1993). 

[12] Box, G. E., Jenkins, G. M., Reinsel, G. C., Ljung, G. M., 2015. John Wiley & Sons: Hoboken, NJ, USA. 

[13] Fried, R., George, A. C., International Encyclopedia of Statistical Science, Springer Berlin Heidelberg (2014). 

[14] Montgomery, D. C., Jennings, C. L., Kulahci, M. John Wiley & Sons, Hoboken, New Jersey, United States (2015). 

[15] Touama, H.Y., Mathematical Theory and Modeling Journal, 4, 19-26 (2014). 

[16] https://www.saudiexchange.sa/Resources/Reports/DailyFinancialIndicators_en.html 


