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Abstract: This paper presents an innovative analytical approach to investigate the effects of rotation and initial stress on a magneto-

thermo-viscoelastic non-homogeneous medium with a spherical cavity under periodic loading. The study focuses on analyzing the

distribution of displacements, temperature, and stresses within the non-homogeneous medium using the generalized thermoelasticity

framework based on the GL theory. The derived analytical solutions are extensively discussed, and the results are visually presented to

illustrate the influences of rotation, initial stress, relaxation times, magnetic field, viscoelasticity, and non-homogeneity. Furthermore,

comprehensive comparisons with prior research are conducted, encompassing scenarios with and without rotation, magnetic field, and

initial stress. These comparisons contribute to establishing the significance of the findings and highlight the advancements made in this

study in relation to existing knowledge in the field.
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1 Introduction

In the last decade, the scientific community has shown
significant interest in the exploration of
thermo-visco-elastic phenomena in the presence of
magnetic fields. This research area has gained
prominence due to its broad applicability across various
domains. Notably, the field finds relevance in geophysics,
where comprehending the interaction between Earth’s
magnetic field and seismic waves, as well as the
attenuation of acoustic waves in a magnetic field, holds
paramount importance. Moreover, the emission of
electromagnetic radiation from nuclear devices,
advancements in highly sensitive superconducting
magnetometers, and applications in optics and electrical
power engineering have further accentuated the
significance of this field [1,2,3,4].

In recent years, several notable investigations have
contributed to advancing our understanding in this area.
Mahmoud et al. conducted comprehensive studies on the
effects of rotation on plane vibrations in infinite hollow
cylinders as transversely isotropic media. They also
explored wave motion through cylindrical bores in

micropolar porous cubic crystals under the influence of
rotation, as well as the influence of magnetic fields on
radial vibrations in non-homogeneous, rotating cylinders
[5,6]. These investigations have shed light on key aspects
of the complex interplay between rotation, magnetic
fields, and various mechanical phenomena, paving the
way for further advancements in this field. Abd-Alla et al.
conducted a comprehensive investigation into the
behavior of rotating non-homogeneous, infinite
orthotropic cylinders. They examined the influence of
rotation on radial vibrations in non-homogeneous
orthotropic rotating elastic hollow spheres, as well as
magneto-thermo-elastic problems in rotating
non-homogeneous orthotropic cylinders under the
hyperbolic heat conduction model [7,8,9,10]. Mahmoud
conducted a study on the electrostatic potential solution
for wave propagation in human wet bones.

Additionally, they explored the impact of generalized
magneto-thermoelasticity on Rayleigh waves in granular
rotating media under the influence of initial stress and
gravity [11]. Abd-Alla and Mahmoud further investigates
the magneto-thermoelastic behavior of a rotating,
non-homogeneous orthotropic hollow cylindrical
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structure under the hyperbolic heat conduction model,
shedding light on its complex thermal and mechanical
response. Balubaid et al. [12] study the dynamic behavior
of orthotropic elastic materials is investigated through the
application of an analytical solution, providing valuable
insights into their mechanical response [13]. In a separate
study, Abd-Alla et al. addressed various problems,
including the propagation of S-waves in
non-homogeneous, anisotropic, incompressible media
under the influence of gravity, generalized
magneto-thermoelastic Rayleigh waves in granular media
under the influence of gravity and initial stress, and the
transient coupled thermoelasticity of an annular fin [14,
15,16].

Abd-Alla and colleagues [17,18] conducted a
comprehensive exploration of thermoelasticity and wave
propagation modeling specifically in cylindrical
structures. Similarly, Mukhopadhyay [19] investigated the
intricate interactions of thermal relaxations and
thermo-visco-elastic properties in unbounded bodies
containing spherical cavities, with a focus on their
response to periodic loading applied at the boundary.
Roychoudhuri and Banerjee [20] conducted a study
examining the effects of both periodic loading and
thermal relaxations on thermoelastic interactions in
unbounded bodies featuring spherical cavities or
cylindrical holes. Building upon this research, Erbay et al.
and Al-Basyouni et al. [21,22] delved into the
investigation of thermally induced vibrations in
generalized thermoelastic solids, particularly those
containing cavities. In a related vein, Mahmoud [23]
explored the realm of elastodynamic orthotropic hollow
spheres, providing an analytical solution for their free
vibrations while considering the influence of rotation.

This research paper is dedicated to the decomposition
of equations pertaining to rotation, initial stress, and
magneto-thermo-elasticity for a spherical cavity,
transforming them into non-homogeneous equations with
appropriate boundary conditions. The paramount
objective is to comprehensively examine the impact of
thermal relaxation times on wave propagation within
magneto-thermo-viscoelastic media, employing the GL
theory. The material properties of the spherical cavity are
assumed to align with the Kelvin-Voigt model.
Consequently, precise expressions are derived to
characterize the transient response of displacement,
stresses, and temperature within the spherical cavity. The
investigation extends further through numerical
calculations to explore the behavior of displacement,
temperature, and stress components, with specific
attention given to scenarios involving magnetic fields,
non-homogeneity, initial stress, and rotation. The
obtained numerical results are meticulously computed
and graphically presented, facilitating a comprehensive
analysis and in-depth discussion of the findings.

2 Formulation of The Problem

To properly analyze the problem at hand, it is essential to
utilize spherical coordinates (r, θ , φ ) to represent any
given point. Additionally, it is assumed that the spherical
cavity is subjected to a rapid temperature change denoted
by T(r, t) and a magnetic field H(0,0,H0), For the
axisymmetric plane strain problem, the displacement
components u=u( ur,uθ ,uφ ) can be expressed as follows
uθ=uφ= 0, and ur=ur(r, t). It is important to note that
we are considering an infinite isotropic non-homogeneous
viscoelastic solid. The viscoelastic behavior of the
material is described by the Voigt type of linear
viscoelasticity. Within this medium, a spherical cavity
with a radius of a is present. Additionally, Lorentz’s force
[18] can be expressed as:

fr=µe(J×H) =µeH2
0

∂

∂ r
(

∂ur

∂ r
+

2ur

r
), (1)

h=curl(u×H) = (0,0,−H0(
∂ur

∂ r
+

2ur

r
)),

J=curl h = (0,
∂hφ

∂ r
,0),

Let us denote h , E , J , µe , H and u as the perturbed
magnetic field, electric intensity, electric current density,
magnetic permeability, constant primary magnetic field,
and displacement vector, respectively. When considering
the magneto-elastodynamic equation for the
non-homogeneous spherical medium with radial
displacement ur=ur(r, t), it can be expressed as follows:

∂σrr

∂ r
+

2

r
σ

rr
−

1

r
σ

θθ
−

1

r
σ

ϕϕ
+µe

(

J×H
)

−ρ
(

←−
Ω×
←−
Ω×←−u

)

r
−ρ
(

2
←−
Ω×
←−
u̇
)

r
=ρ

∂ 2ur

∂ t2

(2)

where
←−
Ω = (0,0,Ω) , The cross product of the vector

←−
Ω×
←−
Ω×←−u represents the centripetal acceleration, while

the product of 2
←−
Ω×
←−
u̇ denotes the Coriolis acceleration.

For a system exhibiting spherical symmetry, the
non-vanishing stress components can be expressed as
follows:

σrr=τm(λ+2µ+P)
∂ur

∂ r
+(2λ+P)τm

ur

r
−γ(T+τ2 T ),

σθθ= 2τm(λ+µ+P)
ur

r
+(λ+P)τm

∂ur

∂ r
−γ(T+τ2 T ),

σϕϕ = 2τm(λ+µ)
ur

r
+λ τm

∂ur

∂ r
−γ(T+τ2 T ),

σrϕ = σrθ = σθϕ = 0 (3)

where σrr , σθθ and σϕϕ are normal mechanical stresses,

σrϕ , σrθ , σθϕ are shear mechanical stresses. τm= 1+τ0
∂
∂ t
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and the parameter τ0 represents the mechanical relaxation
time arising from viscosity, P represents the initial stress.

The magneto-thermo-elastodynamic equations
governing the behavior of the non-homogeneous sphere
can be expressed as follows:

∂σrr

∂ r
+

2

r
σ

rr
−

1

r
σ

θθ
−

1

r
σ

ϕϕ
+µeH2

0

∂

∂ r
(

∂ur

∂ r
+

2ur

r
)

+ρΩ 2ur=ρ
∂ 2ur

∂ t2
,

(4)

K(
∂ 2T

∂ r2
+

2

r

∂T

∂ r
) =ρcv(

∂T

∂ t
+τ1

∂ 2T

∂ t2
)+γT0[

∂

∂ r
+

2

r
]ur .

(5)
In the context of the discussed parameters, thermal
conductivity (K) plays a significant role in the heat
transfer process. The coefficient γ is defined as the
product of γ=αt (3λ+2µ), where αt represents the
coefficient of linear thermal expansion, and λ and µ
denote the Lame elastic constants.

Other essential parameters include Ω , which
represents the rotation, ρ for material density, cv for the
specific heat of the material per unit mass, τ1,τ2 as
thermal relaxation parameters. Additionally, T represents
the temperature difference (?−T0) , ? as the absolute
temperature, and T0 as the reference temperature of the
solid and τ0 accounts for the mechanical relaxation time
resulting from viscosity. It is noteworthy to mention a
special law that characterizes the non-homogeneity of the
material. This law embodies specific characteristics or
properties related to the material’s variation in
composition or structure, which significantly impact its
behavior and response under the given conditions.

λ=λ0r2n
, µ=µ0r2n

, P =P0r2n
,

ρ=ρ0r2n
, µe=µ0

e r2n
, γ=γ0r2n

,

(6)

In the equations provided, λ0 and µ0 represent Lame’s
constants, P0 represents the intial stress, γ represents the
shear modulus, ρ0 represents the mass density, pressure
represents the pressure, and µ0

e represents the magnetic
permeability coefficient of the homogeneous material.
The variable n is an arbitrary real number that represents
the non-homogeneous exponent of the material. By
substituting equation (5) into equations (3), we obtain the
following results.

σrr=r2n[τm(λ0+2µ0+P0)
∂ur

∂ r
+2(λ0+P0)τm

ur

r

−γ0(T+τ2 T )],

σθθ=r2n[2τm(λ0+µ0+P0)
ur

r
+(λ0+P0)τm

∂ur

∂ r

−γ0(T+τ2 T )],

σϕϕ = r2n[2τm(λ0+µ0)
ur

r
+λ0τm

∂ur

∂ r
−γ0(T+τ2 T )],

σrϕ = τrθ = τθϕ = 0

σ∗rr=µ0
e H2

0 r2n (
∂ur

∂ r
+

2ur

r
), (7)

By substituting the expressions of σ∗rr as the Maxwell
stress tensor from equations (6) and (7) into equation (2),
we obtain

[τm+
µ0

e H2
φ

(λ0+2µ0+P0)
]
∂ 2ur

∂ r2
+[2(n+1)τm+

µ0
e H2

φ

(λ0+2µ0+P0)
]×

1

r

∂ur

∂ r
+[

4nλ0τm

(λ0+2µ0+P0)
−2τm−

µ0
e H2

φ

(λ0+2µ0+P0)
]
ur

r2

−[
2n

r
+

∂

∂ r
]

γ0

(λ0+2µ0+P0)
(T+τ2

.

T )+ρ0r2nΩ 2u=

ρ0

(λ0+2µ0+P0)

∂ 2u

∂ t2
.

(8)

Subsequently, the elastodynamic equation (7) can be
reformulated as follows:
(

τm+
µ0

e H2
φ

(λ0+2µ0+P0)

)

∂ 2ur

∂ r2
+[2(n+1)τm

+
µ0

e H2
φ

(λ0+2µ0+P0)

]

1

r

∂ur

∂ r
−

γ0

(λ0+2µ0+P0)
×

[

2n

r
+

∂

∂ r

]

(

T+τ2Ṫ
)

+

[

4nc0τm−2τm−

µ0
e H2

φ

(λ0+2µ0+P0)

]

ur

r2
+ρ0Ω 2ur

=
1

c2
v

∂ 2ur

∂ t2
.

(9)

Furthermore, the heat conduction equation is considered
in the current study to

K(
∂ 2T

∂ r2
+

2

r

∂T

∂ r
) =ρ0r2n

√

(λ0+2µ0+P0)

ρ0

×

(
∂T

∂ t
+τ1

∂ 2T

∂ t2
)+ γ0r2nT0[

∂

∂ r
+

2

r
]ur .

(10)

The following dimensionless quantities are employed in
our analysis:

u
′

r=
ur
a
,l′ = K

ρ0 cv
,t
′

= kcv
a

t,T ′ = T
T0
,τ ′0=

cv
a

τ0,τ
′
1=

cv
a

τ1,

τ ′2=
kcv

a
τ2,r

′ = r
a
,Ω
′

=Ω
a

σ ′rr=
σrr

(λ0+2µ0+P0)
,σ ′θθ=

σθθ

(λ0+2µ0+P0
)
.

In the ensuing discourse, the prime symbols (’), denoting
differentiation with respect to a particular variable, are
omitted for brevity and clarity. The equations governing
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the normal stresses can be suitably formulated in
dimensionless terms as presented below:

σrr= (ar)2n[(1+τ0
∂

∂ t
)

∂ur

∂ r
+2c1(1+τ0

∂

∂ t
)

ur

r

−T0c2(1+τ2
∂

∂ t
)T ]

σΘΘ= (ar)2n[2(1+τ0

∂

∂ t
)

ur

r
+c4(1+τ0

∂

∂ t
)

∂ur

∂ r

−T0c5(1+τ2

∂

∂ t
)T ],

σ∗rr=µ0
e H2

φ (ar)2n

(

∂ur

∂ r
+

2ur

r

)

,

fr=
µ0

e H2
φ (ar)2n

a

(

∂ 2ur

∂ r2
+

2

r

∂ur

∂ r
−

2ur

r2

)

,

(11)

where

c0=
λ0

(λ0+2µ0+P0)
, c2=

γ0

(λ0+2µ0+P0)
,

c3=
µ0

e H2
φ

(λ0+2µ0+P0)
, c4=

λ0

(λ0+2µ0)
,

c5=
γ0

(λ0+2µ0)
, cv=

√

(λ0+2µ0+P0)

ρ0

By substituting equation (11) into equations (9) and (10),
we obtain the non-dimensional form of the displacement
equation for the non-homogeneous spherical medium as
follows:

[(1+τ0
∂

∂ t
)+c3]

∂ 2ur

∂ r2
+[2(n+1)(1+τ0

∂

∂ t
)+c3]

1

r

∂ur

∂ r

+[(4nc1−2)(1+τ0
∂

∂ t
)−c3]

ur

r2
−c2T0

[

1+τ2
∂

∂ t

]

×

(

2l

r
+

1

c2
L

∂

∂ r

)

T+ρ0ac2
1Ω 2ur=l2 ∂ 2ur

∂ t2
.

(12)

The heat conduction equation is expressed in
non-dimensional forms as follows:

(
∂ 2T

∂ r2
+

2

r

∂T

∂ r
) =

a

√

(λ0+2µ0+P0)
ρ0

l
(1+τ1

∂

∂ t
)

∂T

∂ t

+
aγ0

ρ0

[
∂

∂ r
+

2

r
]
∂ur

∂ t
,

(13)

3 The Problem Solution

Our objective is to obtain the general solution for the
fundamental equation (12) governing the harmonic
vibration of magneto-thermo-elastic motion.

ur (r, t)=U (r)eiωt
, (14)

T (r, t)=T1 (r)eiωt
. (15)

By substituting the values from equation (14) into the
equation of motion, the resulting equation can be
expressed as:

[(1+iωτ0)+c3]
d2U

dr2
+[2(n+1)(1+iωτ0)+c3]

1

r

dU

dr

+[(4nc1−2)(1+iωτ0)−c3]
U

r2
+ρ0ac2

1Ω 2U

=−k2ω2U+c2T0γ ′(
2n

r
+

d

dr
)T1,

(16)

where γ ′ = (1+iτ2ω). or in the form

d2U

dr2
+

(

(2n+1)(1+iωτ0)

(1+iωτ0)+c3

+1

)

1

r

dU

dr
+η2

U

r2

+ρ0ac2
1 Ω 2U=−m2

1U+ε(
2n

r
+

d

dr
)T

Let

η1=
(2n+1)(1+iωτ0)

(1+iωτ0)+c3

+1,

η2=
(4nc1−1)(1+iωτ0)

(1+iωτ0)+c3

−1,

ε=
c2T0γ ′

(1+iωτ0)+c3

, m2
1=

k2ω2

(1+iωτ0)+c3

,

c1=

√

λ+2µ

ρ0

Furthermore, the heat conduction equation can be
expressed as follows:

(∇2+l1
(

ω2τ1−iω
)

)T1=iω l2[
d

dr
+

2

r
]U, (17)

where ∇2= d2

dr2 +
2
r

d
dr

l1=
acv

l
, l2=

aγ0
ρ0

In order to obtain solutions for equations (16) and (17),
we utilize the approach of

U(r) =
dξ (r)

dr
, (18)

d

dr

[

d2ξ (r)

dr2
+

η1

r

dξ (r)

dr
+

η2

r2
ξ (r)

]

+ f1Ω 2 dξ (r)

dr

=−m2
1

dξ (r)

dr
+ε

(

2n

r
+

d

dr

)

T1.

(19)

By performing a comparison of the coefficient of the
derivative with respect to r in equation (19), we are able
to derive insightful conclusions.

d2ξ (r)

dr2
+

η1

r

dξ (r)

dr
+[

η2

r2
+m2

1]ξ (r) =εT1. (20)
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The fundamental equation that governs the process of heat
conduction can be mathematically represented as follows:

(∇2+γ1)T1=iω l2∇2ξ (r). (21)

Where γ1=l1
(

ω2τ1−iω
)

By referring to equations (20)
and (21), we can deduce

d4ξ (r)

dr4
+[η1+1]

1

r

d3ξ (r)

dr3
+[Γ1+

η2−η1

r2
]
d2ξ (r)

dr2

+[
η2+η1

r3
+

Γ2

r
]
dξ (r)

dr
+γ1N2ξ+ f1Ω 2 dξ (r)

dr
= 0

(22)

where

Γ1=m2
1+γ1−εγ2, Γ2=m2

1+γ1η1−εγ2., γ2=iω l2

By decoupling equations (20) and (21), we arrive at the
following expressions:

(∇2+χ1
2)(∇2+χ2

2)(ξ ,T1) = 0, (23)

where γ4=
γ1
l
, χ2

1 and χ2
2 are the biquadratic equation

possesses roots with positive real parts.

χ4+(m1
2+γ4

2
−η1η2)χ

2+m1
2γ4

2= 0. (24)

By assuming the regularity conditions for ξ and T1, the
solutions of equation (23) can be derived using spherical
Hankel’s functions. Equation (23) represents a
fourth-order ordinary differential equation with variable
coefficients. Solving this equation allows us to determine
the component of displacement, U(r), and the
temperature, T, which in turn enables us to determine the
components of stress

ξ (r)=K1h0
(2)(χ1r)+K2h0

(2)(χ2r).

U (r)=
d

dr

(

K1h0
(2) (χ1r)+K2h0

(2) (χ2r)
)

, (25)

T1=K1h0
(2)(χ1r)+K2h0

(2)(χ2r), (26)

Here, K1 and K2 represent arbitrary constants, while h0
2

denotes Hankel’s function of order zero and second kind.
By analyzing equations (14), (18), (16), (25) and (26), the
solutions for displacement, temperature, radial stress, and
hoop stress can be expressed as follows:

ur=
{

C1h1
(2)(χ1r)+C2h1

(2)(χ2r)
}

eiωt
′

,

T=
{

K1h0
(2)(χ1r)+K2h0

(2)(χ2r)
}

eiωt
′

,

σrr=

{

S1h0
(2)(χ1r)+

S2

r
h1

(2)(χ1r)

}

C1eiωt
′

+

{

S3h0
(2)(χ2r)+

S2

r
h1

(2)(χ2r)

}

C2eiωt
′

,

σθθ=

{

S4h0
(2)(χ1r)+

S5

r
h1

(2)(χ1r)

}

C1eiωt
′

+

{

S6h0
(2)(χ2r)+

S5

r
h1

(2)(χ2r)

}

C2eiωt
′

.

4 Boundary Conditions

Let us denote the corresponding boundary conditions as
follows: ur(1, t) = 0, r = 1 σrr+σ∗rr=−σ0eiωt , r = 1

where σ0 is a constant we get zi=
χi

2
−m1

2

t
′
χi

,

Ki=ziAi, i= 1,2

A1=−
σ
′

0 h0
(2) (χ2 )

d1

,

A2=
σ
′

0z1h0
(2) (χ1 )

d1

,

σ0

′

=
σ0

γT0

.

d1=z2h0
(2)(χ2)

{

S1h0
(2)(χ1)+S2h1

(2)(χ1)
}

−z1h0
(2)(χ1)

{

S3h0
(2)(χ2)+S2h1

(2)(χ2)
}

,

S1= qχ1−q1z1, S2= q(2λe−2),

S3= qχ2−q1z2, S4= qχ1−q1z1,

S5= q(1−λe) , S6=λeqχ2−q1z2,

m1
2 = k2w2

qa2c2 , λe=
λ

λ+2µ+P
, q=

(

1+iωτ0
′

+γ4
2
)

,

q1 =
(

1+iωτ2
′

)

, γ4
2 =

µ0
e H2

φ

ρc2 ,

This research paper introduces a novel solution
addressing a pertinent issue concerning a
non-homogeneous isotropic viscoelastic unbounded body
containing a spherical cavity. Significantly, this solution
takes into account the impact of crucial factors such as the
magnetic field, rotation, and initial stress. Importantly, the
findings of this study align with and build upon the
outcomes presented in the preceding publication,
providing further insights into the problem at hand.

5 Discussion and Numerical Results

The findings presented in this study are expected to be of
great value to researchers in the fields of material science
and low-temperature physics, as well as those involved in
advancing the magneto-thermo-viscoelastic theory.
Numerical evaluations are conducted using copper as the
material of interest, with the relevant material constants
provided [24]. The numerical method outlined in this
research is employed to obtain radial displacement, radial
stress, hoop stress, and temperature profiles within the
material. The resulting distributions are depicted in
Figures 1-4, respectively. Significant observations emerge
from the computational analyses. For large time values,
the coupled and generalized theories exhibit similar
behavior. However, notable differences arise when
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considering small time intervals. In the case of the
coupled theory, infinite wave propagation speeds are
predicted. This is evident from the non-zero nature of the
obtained solutions, which gradually diminish to very
small values as one moves away from the surface.
Conversely, solutions obtained using the generalized
theory within the framework of the GL theory
demonstrate finite wave propagation speeds. The
computations are performed using specific parameter
values, namely a thermal relaxation time τ1= 0.7, a
magnetic field strength H0= 1x102

, a mechanical
relaxation time τ0= 0.6,, and a frequency ω= 2x102

. Due
to brevity constraints, not all computational results are
presented in this paper.

Figures 1-4 depict the solutions obtained for a
non-homogeneous material (m=0.6) subjected to rotation,
initial stress, thermal relaxation times, and magnetic field.
Figure 1 showcases the temperature distribution subjected
to rotation, thermal relaxation times, and magnetic field
and the solution incorporating the effect of initial stress.
In Figure 2, the depicted results exhibit the radial
displacement within a generalized thermoelastic
non-homogeneous medium under the influence of
rotation, thermal relaxation times, and magnetic field. The
figures unmistakably portray the occurrence of expansion
deformation along the radius r as a consequence of these
factors. It is worth noting that the radial displacement
exhibits a direct correlation with both the initial stress and
the radius r. Moving to Figure 3, it showcases the radial
stress in the same generalized thermoelastic
non-homogeneous medium, subjected to rotation, thermal
relaxation times, and magnetic field. Interestingly, an
intriguing observation can be made regarding the
relationship between the radial stress and the initial stress
when the radius r is smaller than 2. Specifically, the radial
stress demonstrates a declining trend with increasing
initial stress. Furthermore, Figure 3 also presents the
solution incorporating the influence of the initial stress
parameter H0.

Lastly, Figure 4 provides an insightful depiction of the
hoop stress within the generalized thermoelastic
non-homogeneous medium under the influence of
rotation, thermal relaxation times, and magnetic field. It
becomes apparent from this figure that the hoop stress
exhibits a diminishing pattern as the radius r increases.
Figure 4 depicts both the initial stress effect and the
influence of the magnetic field H0 on the hoop stress.
Notably, the generalized and coupled theories yield
similar results near the surface cavity, while distinct
solutions arise within the sphere. This discrepancy stems
from the fact that thermal waves in the coupled theory
exhibit non-zero behavior, albeit small, during small time
intervals. Comparisons between these results and those in
[24] indicate that the behavior of the variable u in both
media is consistent. However, the values of u in the
generalized thermoelastic medium are larger compared to
those in the thermoelastic medium. The same observation
applies to the radial stress σrr when comparing, the

figures are done. This discrepancy can be attributed to the
influence of relaxation time, magnetic field, and
frequency.

The topic under consideration has been extensively
explored in the existing literature, with numerous
noteworthy investigations being conducted. Due to the
limitations of space, we can only mention a select few
recent and compelling studies, which can be found in the
references provided [25,26,27,28,29,30,31,32,33]; the
phenomena of rotation, viscoelasticity, initial stress,
non-homogeneity, and magneto-thermo-elasticity are
fundamental to the present study, contributing
significantly to the overall comprehension of the behavior
and response exhibited by the investigated system.
Rotation: The investigation focuses on exploring the
influence of rotation on the magneto-thermo-viscoelastic
non-homogeneous medium featuring a spherical cavity.
Rotation introduces intricacies that impact the distribution
of displacements, temperature and stresses within the
system, further enriching our understanding.
Viscoelasticity: The study takes into account the
viscoelastic nature of the medium, acknowledging its
time-dependent response to applied loads. This
characteristic plays a pivotal role in shaping the overall
mechanical behavior and deformation patterns of the
material under examination. Initial Stress: The presence
of initial stress conditions is duly considered, recognizing
their significance. Initial stress represents pre-existing
internal forces within the medium, exerting a substantial
influence on its response to external loading conditions.
Non-homogeneity: The non-homogeneous nature of the
medium forms a crucial aspect of the investigation. The
spatial variations in material properties across the system
give rise to complex variations, impacting the overall
response and distribution of displacements, temperature,
and stresses.

Magneto-thermo-elasticity: The study incorporates
the coupled effects of magneto-thermo-elasticity, where
the magnetic field, temperature, and mechanical response
interact. This coupling enables a comprehensive analysis
of the intricate interplay between these parameters and
their combined impact on the behavior of the medium.
Gaining a deep understanding of the interrelationships
and influences of rotation, viscoelasticity, initial stress,
non-homogeneity, and magneto-thermo-elasticity is
crucial for comprehending the intricate behavior of the
magneto-thermo-viscoelastic non-homogeneous medium
and its response to periodic loading. By thoroughly
investigating these factors, we can attain a more precise
and comprehensive understanding of the system’s
behavior.

6 Concluding

The elastodynamic equations governing the generalized
thermo-visco-elastic theory in the presence of
non-homogeneous material, rotation, relaxation times,
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initial stress, and magnetic fields exhibit a complex
nature. In this study, a highly effective methodology has
been employed to tackle these intricate problems.
Analytical expressions for the displacement, temperature,
and stress components have been derived, employing a
transformative approach based on Hankel’s transform
domain, which aligns with the governing equations of the
investigated problem.

The obtained analytical solution offers precise results,
and numerical computations have been carried out to
evaluate and discuss the findings. Additionally, the results
have been visually presented through informative
graphical representations, enabling a comprehensive
interpretation and analysis of the data.
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Fig. 1: illustrates the variation of temperature T with respect to

the radius (r) at different intial stress values, with τ1 = 0.7,τ0 =
0.6,w = 2×3

,m = 0.6,h0 = 1×102
,Ω = 1.5

Fig. 2: illustrates the variation of radial displacement ur with

respect to the radius (r) at different intial stress values, with

τ1 = 0.7,τ0 = 0.6,w = 2×3
,m = 0.6,h0 = 1×102

,Ω = 1.5

Fig. 3: illustrates the variation of radial stress with respect to

the radius (r) at different intial stress values, with τ1 = 0.7,τ0 =
0.6,w = 2×3

,m = 0.6,h0 = 1×102
,Ω = 1.5

References

[1] Mahmoud, S.R., Tounsi, A. ”A new shear deformation

plate theory with stretching effect for buckling analysis of

functionally graded sandwich plates.” Steel and Composite

Structures Journal, Vol. 24, No. 5, (2017).

[2] Mahmoud, S.R. ”On problem of shear waves in magneto-

elastic half-space of initially stressed non-homogeneous

anisotropic material under influence of the rotation.”

International Journal of Mechanical Sciences, 77, 269-276,

(2013).

[3] Mahmoud, S.R. ”Influence of rotation and generalized

magneto-thermoelastic on Rayleigh waves in a granular

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


108 M. A. Balubaid: Influence of Non-Homogeneity, Rotation, Magnetic Field

Fig. 4: illustrates the variation of hoop stress with respect to the

radius (r) at different intial stress values, with τ1 = 0.7,τ0 =
0.6,w = 2×3

,m = 0.6,h0 = 1×102
,Ω = 1.5

medium under effect of initial stress and gravity field.”

Meccanica, 47(7), 1561-1579, (2012).

[4] Mahmoud, S.R. ”An analytical solution for the effect of

initial stress, rotation, magnetic field and a periodic loading

in a thermo-viscoelastic medium with a spherical cavity.”

Mechanics of Advanced Materials and Structures, 23(1), 1-

7 (2016).

[5] Mahmoud, S.R., Abd-Alla, A.M. ”Influence of magnetic

field on free vibrations in the elastodynamic problem of

an orthotropic hollow sphere.” Applied Mathematics and

Mechanics, 35(8), 1051-1066 (2014).

[6] Mahmoud, S.R., Abd-Alla, A.M., AL-Shehri, N.A. ”Effect of

rotation on plane vibrations in a transversely isotropic infinite

hollow cylinder.” International Journal of Modern Physics B,

25(26), 3513-3528 (2011).

[7] Mahmoud, S.R., Abd-Alla, A.M., Matooka, B.R. ”Effect

of rotation on wave motion through cylindrical bore in a

micropolar porous cubic crystal.” International Journal of

Modern Physics B, 25, 2713-2728 (2011).

[8] Abd-Alla, A.M., Yahya, G.A., Mahmoud, S.R. ”Effect of

magnetic field and non-homogeneity on the radial vibrations

in hollow rotating elastic cylinder.” Meccanica, 48(3), 555-

566 (2013).

[9] Abd-Alla, A.M., Mahmoud, S.R., AL-Shehri, N.A.

”Effect of rotation on a non-homogeneous infinite

cylinder of orthotropic material.” Applied Mathematics

and Computation, 217, 8914-8922 (2011).

[10] Mahmoud, S.R., Ghandourah, E., Algarni, A., Balubaid,

M., Tounsi, A., Bourada, F. ”On thermo-mechanical bending

response of porous functionally graded sandwich plates

via a simple integral plate model.” Archives of Civil and

Mechanical Engineering, 22(4), 1-8 (2022).A.M. Abd-Alla,

Mahmoud S. R ”Magneto-thermoelastic problem in rotating

non-homogeneous orthotropic hollow cylindrical under the

hyperbolic heat conduction model”, Meccanica, Vol.45,

pp.451-462, (2010).

[11] Balubaid, M., Abdo, H., Ghandourah, E., Mahmoud, S.R.

”Dynamical behavior of the orthotropic elastic material using

an analytical solution.” Geomechanics and Engineering,

25(4), 331-339 (2021).

[12] Mahmoud, S.R. ”Influence of rotation and generalized

magneto-thermoelastic on Rayleigh waves in a granular

medium under effect of initial stress and gravity field.”

Meccanica, 47(7), 1561-1579 (2012).

[13] Abd-Alla, A.M., Mahmoud, S.R. ”Analytical solution

of wave propagation in non-homogeneous orthotropic

rotating elastic media.” Journal of Mechanical Science and

Technology, 26(3), 917-926 (2012).

[14] Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M., Helmi,

M.I.R. ”Propagation of S-wave in a non-homogeneous

anisotropic incompressible and initially stressed medium

under influence of gravity field.” Applied Mathematics and

Computation, 217(9), 4321-4332 (2011).

[15] Abd-Alla, A.M., Abo-Dahab, S.M., Mahmoud, S.R.,

Hammad, H.A. ”On generalized magneto-thermoelastic

Rayleigh waves in a granular medium under influence of

gravity field and initial stress.” Journal of Vibration and

Control, 17, 115-128 (2011).A.M. Abd-Alla, S. R. Mahmoud

and S.M. Abo-Dahab, ”On Problem of Transient Coupled

Thermoelasticity of an Annular Fin”, Meccanica, Vol. 47, N0

5. pp. 1295-1306, (2012).

[16] Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M. ”Wave

propagation modeling in cylindrical human long bones with

cavity.” Meccanica, 46(6), 1413-1428 (2011).

[17] Abd-Alla, A.M., Mahmoud, S.R. ”On problem of radial

vibrations in non-homogeneity isotropic cylinder under

influence of initial stress and magnetic field.” Journal of

Vibration and Control, 19(9), 1283-1293 (2013).

[18] Mukhopadhyay, S. ”Effects of thermal relaxations on

thermo-visco-elastic interactions in an unbounded body with

a spherical cavity subjected to a periodic loading on the

boundary.” Journal of Thermal Stresses, 23, 675–684 (2000).

[19] Roychoudhuri, S.K., Mukhopadhyay, S. ”Effect of rotation

and relaxation times on plane waves in generalized thermo-

viscoelasticity.” International Journal of Mathematics and

Mathematical Sciences, 23(7), 497–505 (2000).

[20] Al-Basyouni, K.S., Mahmoud, S.R., Alzahrani, E.O. ”Effect

of rotation, magnetic field, and a periodic loading on radial

vibrations in thermo-viscoelastic non-homogeneous media.”

Boundary Value Problems, (2014).

[21] Li, J., Qi, J. ”Spectral problems for fractional differential

equations from nonlocal continuum mechanics.” Advances in

Difference Equations, 2014:85 (13 March 2014).

[22] Dewangan, H.C., Panda, S.K., Sharma, N., Mahmoud, S.R.,

Harursampath, D., Mahesh, V. ”Thermo-mechanical large

deformation characteristics of cutout-borne multilayered

curved structure: Numerical prediction and experimental

validation.” International Journal of Non-Linear Mechanics,

150, 104345 (2023).

[23] Ramady, A., Dakhel, B., Balubaid, M., Mahmoud, S.R.

”A mathematical approach for the effect of rotation on

thermal stresses in the piezo-electric homogeneous material.”

Computers and Concrete, 25(5), 471-478 (2020).

[24] Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R. ”Free

vibration investigation of FG nanoscale plate using nonlocal

two variables integral refined plate theory.” Computers and

Concrete, 24(6), 579-586 (2019).

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 1, 101-109 (2024) / www.naturalspublishing.com/Journals.asp 109

[25] Dewangan, H.C., Panda, S.K., Mahmoud, S.R.,

Harursampath, D., Mahesh, V., Balubaid, M. ”Geometrical

large deformation-dependent numerical dynamic deflection

prediction of cutout-borne composite structure under

thermomechanical loadings and experimental verification.”

Acta Mechanica, 1-25 (2022).

[26] Alkenani, Naser, Mahmoud, S.R., Metwally, A.M., Alwabli,

A.S., Al-Solami, H.M. ”A mechanical approach for

mosquito fascicle under the influence of mechanical forces

with medical applications.” Structural Engineering and

Mechanics, 79(6), 677-682 (2021).

[27] Alhebshi, A.M.S., Metwally, A.M., Al-Basyouni,

K.S., Mahmoud, S.R., Al-Solami, H.M., Alwabli, A.S.

”Mechanical Behavior and Physical Properties of Protein

Microtubules in Living Cells Using the Nonlocal Beam

Theory.” Physical Mesomechanics, 25(2), 181-186 (2022).

[28] Benmansour, Djazia Leila, Kaci, Abdelhakim,

Bousahla, Abdelmoumen Anis, Heireche, Houari, Tounsi,

Abdelouahed, Alwabli, Afaf S., Alhebshi, Alawiah M., Al-

ghmady, Khalid, Mahmoud, S.R. ”The nano scale bending

and dynamic properties of isolated protein microtubules

based on modified strain gradient in nano research, 7(6),

443-457 (2019).

[29] Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R.,

Adda Bedia, E.A. ”A new higher-order shear and normal

deformation theory for the static and free vibration analysis

of sandwich plates with functionally graded isotropic face

sheets.” Journal of Sandwich Structures and Materials, 15(6),

671-703 (2013).

[30] Alwabli, Afaf S., Kaci, Abdelhakim, Bellifa, Hichem,

Bousahla, Abdelmoumen Anis, Tounsi, Abdelouahed,

Alzahrani, D.A., Abulfaraj, A.A., Mahmoud, S.R. ”The nano

scale buckling properties of isolated protein microtubules

based on modified strain gradient theory and a new single

variable trigonometric beam theory.” Advances in nano

research, 10(1), 15-24 (2021).

[31] Mahmoud, S.R., Al-Solami, H.M., Alkenani, N., Alhebshi,

A., Alwabli, A.S., Bahieldin, A. ”A mechanical model to

investigate Aedes aegypti mosquito bite using new techniques

and its applications.” Membrane and Water Treatment, 11(6),

399-406 (2020).

[32] Al-Basyouni, K.S., Mahmoud, S.R. ”Effect of the magnetic

field, initial stress, rotation, and nonhomogeneity on stresses

in orthotropic material.” Physical Mesomechanics, 24(3),

303-310 (2021).

[33] Balubaid, M., Abdo, H., Ghandourah, E., Mahmoud, S.R.

”Dynamical behavior of the orthotropic elastic material using

an analytical solution.” Geomechanics and Engineering,

25(4), 331-339 (2021).

Mohammed A. Balubaid
received my MSc degree
in 2002 from Warwick
University, UK, and my PhD
in 2007 from Manchester
University, UK. He has been
an Assistant professor at King
Abdulaziz University since
2008. He has had several
research papers published in

reputed international journals and conferences. Among
his research interests are Mathematical Engineering,
Industrial Engineering, Mechanical Engineering, and
numerical methods.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Formulation of The Problem
	The Problem Solution
	Boundary Conditions
	Discussion and Numerical Results 
	Concluding

