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Abstract: The present research implements the decomposition Adomian approach of the approximation solution for the nonlinear

coupled modification Korteweg-De Vries (KdV) model in space time fractional order with appropriate initial values. This method

yields a power series calculation for the solution. This process does not require linearization, the concept of weak nonlinear nature

assumption, or perturbation theory. A mathematical software like Mathematica or Maple has been used to evaluate the Adomian

formulas of the consequent series solution. This procedure might additionally be applied to resolve various types of fractional order

nonlinear mathematical physics models. A graphic discussion is provided regarding the behavior of Adomian solutions and the varying

changes in non integer order values and their effects. The approach is simple, clear and general enough to be used with other nonlinear

fractional problems in mathematics and physics.
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1 Introduction

Recently, a growing number of nonlinear equations
describing the solitary waves motion concentrated in a
slight region of space have been proposed in numerous
areas for example physics of plasma, hydrodynamics,
optics, and so forth [1, 2]. It is fascinating and significant
to look at the precise solutions to these nonlinear
equations. The study of nonlinear equation solutions
through a variety of techniques has been the focus of
many authors over the last few decades [1-11]. These
techniques include the Darboux and Backlund
transformations, Inverse scattering technique, bilinear
technique, the tanh procedure [9], the sine-cosine
technique, and homogeneous balance procedure.

In several scientific areas such as physics, applied
mathematics and engineering, the decomposition of
Adomian approach [12– 14] has been used to solve an
extensive variety of mechanistic and stochastic issues.
Wazwaz [15] introduced the improved Adomian

decomposition method directly, without requiring the
formulas to be changed. The implementation of this
approach ensures significant computation size savings
furthermore offering the answer in a series that converges
rapidly. The implementation of this enhanced Adomian
decomposition method [13–16] has yielded reliable
results, increasing its applicability in the management of
assessment models.

A large variety of fractional order mechanistic or
stochastic that are nonlinear or linear, partial or ordinary
differential models have been demonstrated to be
effectively, simply, and accurately solved using the
decomposition approach, with approximations that
converge quickly to precise solutions. These strategy is
ideal for solving nonlinear physical models because it
eliminates needless linearization, which can occasionally
cause major perturbations. The current study aims to
discuss the generated solutions by expanding the
application of the decomposition Adomian approach for
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resolving fractional nonlinear models, for example, the
coupled mKdV model of fractional order.

Non integer order calculus that is an extension of
integer one, has been helpful in helping scientists define
and model an extensive variety of phenomena within
various engineering and scientific areas. The works that
fall under this category include recent work on fluid flow
[17], thermodynamics [18], optics [19, 20], signal
processing [21], fractional kinetic equations [22, 23], and
fractional differential equations (FDEs) [24, 25]. The
literature commonly uses a few common approaches to
find approximated or explicit solutions for fractional
nonlinear differential models. For example, both of
fractional linear and nonlinear diffusion and wave models
can be resolved by means of the decomposition technique
[26, 27]. The fractional power series convergence can be
achieved through the application of differential
transformation technique [28]. The space-fractional
Burgers equations can be solved using the Variational
iteration technique [29]. The fractional NNV system can
be disentangled by means of the homotopy perturbation
technique [30]. Ordinary fractional differential equations
can be solved using the finite difference method [31].
while the perturbation-iteration algorithm (PIA) [32] can
be applied to fractional differential equations.

Fractional and non-integer calculus, a generalization
of past mathematical discoveries, will be the calculus of
the twenty-first century. Recent developments and
applications in fractional calculus are a fascinating and
in-demand field of study. Several situations from actual
life are accurately and precisely represented by fractional
differential models. Numerous methods have been used to
define and establish fractional differentials.
Kolwankar-Gangal, Caputo, Chen’s fractal defensibilities,
Riemann-Liouville, modified Riemann-Liouville, and
Cresson’s are a few examples [33-37], Khalil et al. [38]
recently obtainable the conformable fractional differential
(CFD) in their study [38] based on restrictions like

Dα M(s) = limε→0
M(s+εs1−α )−M(s)

ε ,

∀s > 0, α ∈ (0,1],
(1)

M(α)(0) = lim
ε→0+

M(α)(s). (2)

When α = 1 is inserted in the final equations, the
non-integer differential changes into the well-known
integer differential. The CFD met the aforementioned
axioms:

Dα sn = nsn−α , Dα a = 0, ∀ M(s) = a, (3)

Dα (aM+ bN) = aDα M+ bDα N, ∀ a, b ∈ R, (4)

Dα (M N) = M Dα N + N Dα M, (5)

Dα (
N

M
) =

M Dα N − N Dα M,

M2
, (6)

Dα M(N) =
dM

dN
Dα N, Dα M(s) = s1−α dM

ds
, (7)

where s and α are two random constants and M and N

are two α-differentiable functions of a dependent variable.
Reference [38] provides an illustration of relations (5) to
(7).

2 Explanation of the procedure

In order to resolve the coupled nonlinear fractional mKdV
model, we assume that the partial differential space-time
fractional system is expressed in the operator formula as

ℓαt u + ℓαxu + f (u, v) = 0,
ℓαt v + ℓαxv + g(u, v) = 0,

(8)

where the nonlinear operators are denoted by the
symbolizations f (u, v), g(u, v) and the linear
conformable fractional differential operators by the
representations ℓαt = Dα

t and ℓαx = Dααα
x . Using system

(8) and the inverse conformable fractional differential
operator ℓ−1

αt
=

∫ t
0(.)dtα , we have

u(tα , xα) = f1(x
α) − ℓ−1

αt
[ℓαxu + f (u, v)],

v(tα , xα) = g1(x
α ) − ℓ−1

αt
[ℓαxv + g(u, v)],

(9)

with u(0, xα)= f1(x
α) and v(0, xα)= g1(x

α) functions for
the initial conditions have been given. The decomposition
technique makes the assumption that there is an infinite
series for unknown functions u(tα , xα) and v(tα , xα) in
the form

u(tα , xα) = ∑∞
j=0 u j(t

α , xα ),
v(tα , xα) = ∑∞

j=0 v j(t
α , xα),

(10)

additionally to nonlinear operators, the infinite sequence of
Adomian polynomials that gives the expression for f (v,u)
and g(v,u) are

f (u, v) = ∑∞
j=0 M j,

g(u, v) = ∑∞
j=0 N j,

(11)

where the relevant Adomian polynomials,M j and N j are
produced using the procedure found in [13].
We use the nonlinear term f (u, v) = ∑∞

j=0 M j of the
general formulation for the Adomian polynomials M j for
the reader’s convenience. These are described by

M j(u0, ...,u j, v0, ...,v j) =
1
j!

d j

dλ j
[

f
(

∑
j
i=0 λ i ui, ∑

j
i=0 λ i vi

)]

λ=0
, j > 0,

(12)

It is simple to use this formulation to tell the computer
code to calculate as many polynomials as necessary for
both the explicit and numerical solutions. We recommend
the reader to [22,23] for a generic formula of Adomian
polynomials and a full discussion of the Adomian
decomposition technique.
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The nonlinear system formula (8) is generated in an
expression of the recursive relationship given by using the
decomposition methodology

u0(t
α , xα) = f1(x

α),
u j(t

α , xα) =−ℓ−1
αt
[ℓαxu j + M j],

v0(t
α , xα) = g1(x

α),
v j(t

α , xα) =−ℓ−1
αt
[ℓαxv j + N j],

(13)

when the initial conditions are in which functions f1(x
α )

and g1(x
α) are derived. It is important to remember that

the zeroth components, and, being more distinguish than
the remainder components,u j(t

α , xα) and v j(t
α , xα) may

be fully ascertained, meaning that every term can be
computed by utilizing the terms that came before it.

Thus, the series solutions are fully established and
components u0, u1, u2, ... and v0, v1, v2, ... are identified.
Nonetheless, it is frequently possible to find the explicit
solution in a closed form. We created the solutions
u(tα , xα) and v(tα , xα) by means of numerical formulae
in the form

u(tα , xα) = limε→∞ ∑
j
k=0 uk(t

α , xα),

v(tα , xα ) = limε→∞ ∑
j

k=0 vk(t
α , xα),

(14)

and the following is the recurring relationship: (13).
Furthermore, in truly physical areas, the solutions of the
decomposition series tend to converge relatively quickly.
In the section that follows, we examine the space-time
coupled fractional mKdV model to demonstrate the
applicability of the previously discussed Adomian
decomposition technique.

3 Application of the desired technique

Consider the following generalized space time coupled
fractional mKdV model:

Dα
t u+ 3u2Dα

x u− 3Dα
x (uv) = ϕ(tα , xα), (15)

Dα
t v− 3u2Dα

x v− 3vDα
x v− 3Dα

x uDα
x v = ψ(tα , xα),

(16)
under the initial condition

f (xα ) = u(xα ,0), (17)

g(xα) = v(xα ,0), (18)

with ϕ(tα , xα ), ψ(tα , xα), f (xα ) and g(xα) are the given
functions.
We redefine Equations (15) and (16) in an operator
formulae in order to solve them using the Adomian
decomposition approach.

ℓαt u = ϕ(tα , xα)+ 3M(u,v)− 3F(u,v), (19)

ℓαt v = ψ(tα , xα )− 3[H(u,v)+G(u,v)+N(u,v)], (20)

where the linear fractional differential operator is
represented by ℓαt = Dα

t and the inverse fractional

operator ℓ−1
αt

is provided by

ℓ−1
αt

=

∫ t

0
(.)dtα , (21)

Operating with ℓ−1
αt

on the both sides of Eqs. (19) and (20),
give

u(tα , xα) = u(0, xα)
+ℓ−1

αt
[ϕ(tα , xα)+ 3M(u,v)− 3F(u,v)] ,

(22)

v(tα , xα) = v(0, xα)
+ℓ−1

αt
[ψ(tα , xα )− 3[H(u,v)+G(u,v)+N(u,v)] ] ,

(23)
The Adomian decomposition approach makes the
assumption that an infinite series can be used to describe
the two unknown functions, u(tα , xα ) and v(tα , xα ) as

u(tα , xα ) =
∞

∑
j=0

u j(t
α , xα), (24)

v(tα , xα ) =
∞

∑
j=0

v j(t
α , xα), (25)

Equations (22) and (23) can be substituted with Eqs. (24)
and (25) to get

u j+1(t
α , xα) = u(0, xα )

+ℓ−1
αt

[ϕ(tα , xα)+ 3M(u,v)− 3F(u,v)] ,
(26)

v j+1(t
α , xα) = v(0, xα)

+ℓ−1
αt

[ψ(tα , xα )− 3[H(u,v)+G(u,v)+N(u,v)] ] ,
(27)

where the functions F(u,v) = u2 Dα
x u, G(u,v) = vDα

x u,

M(u,v) = Dα
x (uv), H(u,v) = Dα

x uDα
x v, and

N(u,v) = u2 Dα
x v, are associated with the nonlinear term

and have the following expressions in terms of the
Adomian polynomials: F(u,v) = ∑∞

j=0 Fj,

G(u,v) = ∑∞
j=0 G j, M(u,v) = ∑∞

j=0 M j,

H(u,v) = ∑∞
j=0 H j, and N(u,v) = ∑∞

j=0 N j , where it is
possible to compute the components Fj, G j, M j , H j, and
N j using the formula

F(u, v) = ∑∞
j=0 Fj = u2 Dα

x u

= (u0 + u1λ + u2λ 2 + ...)2 Dα
x (u0 + u1λ + u2λ 2 + ...)

(28)
Since

Fj =
1
j!

d j

dλ j
[

(u0 + u1λ + u2λ 2 + ...)2 Dα
x (u0 + u1λ + u2λ 2 + ...)

]

λ=0
,

(29)
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The first four terms can be written as

F0 = u2
0 Dα

x u0,

F1 = u2
0 Dα

x u1 + 2u0 u1 Dα
x u0,

F2 = (u2
1 + 2u0 u2)D

α
x u0 + u2

0 Dα
x u2 + 2u0 u1 Dα

x u1,

F3 = (u2
1 + 2u0 u2)D

α
x u0 + u2

0 Dα
x u3 + 2u0 u1 Dα

x u2

+2(u0u3 + u1u2)D
α
x u1,

(30)

G(u, v) = ∑∞
j=0 G j = vDα

x v

= (v0 + v1λ + v2λ 2 + ...)Dα
x (v0 + v1λ + v2λ 2 + ...)

(31)
Since

G j =
1
j!

d j

dλ j
[

(v0 + v1λ + v2λ 2 + ...)Dα
x (v0 + v1λ + v2λ 2 + ...)

]

λ=0
,

(32)
The first four terms can be written as

G0 = 2v0 Dα
x v0,

G1 = 2v0 Dα
x v1 + 2v1 Dα

x v0,
G2 = 2v0 Dα

x v2 + 2v1 Dα
x v1 + 2v2 Dα

x v0,

G3 = 2v0 Dα
x v3 + 2v1 Dα

x v2 + 2v2 Dα
x v1 + 2v3 Dα

x v0,
(33)

M(u, v) = ∑∞
j=0 M j = Dα

x (uv)

= Dα
x

(

(u0 + u1λ + u2λ 2 + ...)(v0 + v1λ + v2λ 2 + ...
)

(34)
Since

M j =
1
j!

d j

dλ j
[

Dα
x

(

(u0 + u1λ + u2λ 2 + ...)(v0 + v1λ + v2λ 2 + ...
)]

λ=0
,

(35)
The first four terms can be written as

M0 = u0 Dα
x v0 + v0 Dα

x u0,

M1 = u0 Dα
x v1 + v1 Dα

x u0 + v0 Dα
x u1 + u1 Dα

x v0,
M2 = u0 Dα

x v2 + v2 Dα
x u0 + u1 Dα

x v1 + v1 Dα
x u1

+u2 Dα
x v0 + v0 Dα

x u2,

M3 = u0 Dα
x v3 + v3 Dα

x u0 + u1 Dα
x v2 + v2 Dα

x u1

+u2 Dα
x v1 + v1 Dα

x u2 + u3 Dα
x v0 + v0 Dα

x u3,

(36)

H(u, v) = ∑∞
j=0 H j = Dα

x uDα
x v

= Dα
x

(

u0 + u1λ + u2λ 2 + ...
)

Dα
x

(

v0 + v1λ + v2λ 2 + ...
)

(37)
Since

H j =
1
j!

d j

dλ j
[

Dα
x

(

u0 + u1λ + u2λ 2 + ...
)

Dα
x

(

v0 + v1λ + v2λ 2 + ...
)]

λ=0
,

(38)
The first four terms can be written as

H0 = Dα
x u0 Dα

x v0,
H1 = Dα

x u0 Dα
x v1 +Dα

x u1 Dα
x v0,

H2 = Dα
x u0 Dα

x v2 +Dα
x u1 Dα

x v1 +Dα
x u2 Dα

x v0,
H3 = Dα

x u0 Dα
x v3 +Dα

x u0 Dα
x v2 +Dα

x u2 Dα
x v1

+Dα
x u3 Dα

x v0,

(39)

N(u, v) = ∑∞
j=0 N j = u2Dα

x v

=
(

u0 + u1λ + u2λ 2 + ...
)2

Dα
x

(

v0 + v1λ + v2λ 2 + ...
)

(40)
Since

N j =
1
j!

d j

dλ j
[

(

u0 + u1λ + u2λ 2 + ...
)2

Dα
x

(

v0 + v1λ + v2λ 2 + ...
)

]

λ=0
,

(41)
The first four terms can be written as

N0 = u2
0 Dα

x v0,

N1 = u2
0 Dα

x v1 + 2u0 u1 Dα
x v0,

N2 = (u2
1 + 2u0 u2)D

α
x v0 + u2

0 Dα
x v2 + 2u0 u1 Dα

x v1,

N3 = (u2
1 + 2u0 u2)D

α
x v0 + u2

0 Dα
x v3 + 2u0 u1 Dα

x v2

+2(u0u3 + u1u2)D
α
x v1,

(42)
For a given

ϕ(tα , xα) =
1

2
Dααα

x u+
3

2
Dαα

x v− 3aDα
x u, (43)

ψ(tα , xα) =−Dααα
x v+ 3aDα

x v, (44)

u(0, xα) = f (xα ) =
b1

2k
+ k tanh

(

k xα

α

)

, (45)

v(0, xα) = g(xα) =
a

2

(

1+
k

b1

)

+b1 tanh

(

k xα

α

)

, (46)

the remainder components u j(t
α , xα ) and v j(t

α , xα) , j >
0 can be found by means of the recursive relations with
constant values of a = k = b1 = 1 in the following manner,
keeping in mind the theoretical components of Eqs. (27)
and (28).

u0 =
1

2
+ tanh

(

xα

α

)

, (47)

v0 = 1+ tanh

(

xα

α

)

, (48)

u1 =
tα

4α

[

−1+ tanh2

(

xα

α

)]

, (49)

v1 =
tα

4α

[

−1+ tanh2

(

xα

α

)]

, (50)

u2 =

(

tα

4α

)2 [

− tanh

(

xα

α

)

+ tanh3

(

xα

α

)]

, (51)

v2 =

(

tα

4α

)2 [

− tanh

(

xα

α

)

+ tanh3

(

xα

α

)]

, (52)

and so forth. It is possible to fully determine the
remainder components u j(t

α , xα) and v j(t
α , xα) , j > 0

so that each phrase is determined using the preceding
term. The decomposition of Adomian solutions of
u(tα , xα) and v(tα , xα) are obtained in power series form
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Fig. 1: The evolution behavior of the function u when α =
1,0.9,0.8,0.7,0.6 and δ = −10 The layer red α = 1, yellow

α = 0.9, gold α = 0.8, cyan α = 0.7, blue α = 0.6

by substituting the expressions v0, v1, v2, ... and
u0, u1, u2, ... into the summation ∑∞

j=0 u j(t
α , xα) and

∑∞
j=0 v j(t

α , xα)

u(tα , xα) = 1
2
+ tanh

(

xα

α

)

+ tα

4α

[

−1+ tanh2
(

xα

α

)]

+
(

tα

4α

)2 [

− tanh
(

xα

α

)

+ tanh3
(

xα

α

)]

+ ... ,

(53)

v(tα , xα) = 1 + tanh
(

xα

α

)

+ tα

4α

[

−1+ tanh2
(

xα

α

)]

+
(

tα

4α

)2 [

− tanh
(

xα

α

)

+ tanh3
(

xα

α

)]

+ ... ,

(54)
This is compactly expressed as

u(tα , xα) =
1

2
+ tanh

(

δ +
tα

4α
+

xα

α

)

, (55)

v(tα , xα) = 1 + tanh

(

δ +
tα

4α
+

xα

α

)

, (56)

where δ is an arbitrary constant called the phase shift.
The Adomian decomposition procedure’s evolutionary
behavior of the two solutions with varying fractional
order values α = 1, 0.9, 0.8, 0.7 and 0.6 with δ =−10 as
shown in Figs. 1 and 2.
Remark that all the results obtained in [39] are recovered
when α = 1.

4 Discussion and Summary

It has been discovered that non-classical calculus
techniques, such as fractional calculus and non-integer
order calculus, are helpful in explaining significant
physical phenomena. This is partly because of the rapid
development of advanced applied sciences. The use of the

Fig. 2: The evolution behavior of the function v when α =
1,0.9,0.8,0.7,0.6 and δ = −10 The layer red α = 1, yellow

α = 0.9, gold α = 0.8, cyan α = 0.7, blue α = 0.6

Adomian decomposition approach is discussed in this
work, which also offers a possible analytical tool for
investigating these models. The symbolic computation of
the Adomian decomposition technique in non integer
calculus, maple packages, additional numerical
techniques derived from the Adomian decomposition
technique, and other related studies are still to be taken
into consideration. The Adomian decomposition
approach may eventually become as important as
classical calculus, according to the authors. In the future
work, we want to create a software application for Matlab
or Maple that solves fractional differential models by
applying the Adomian decomposition technique.
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