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Abstract: This paper aims to investigate exact multiple soliton solutions for Korteweg-de Vries (KdV) with variable coefficients.

Based on the similarity transformation and some hyperbolic function methods, multiple wave kink and wave bell shape solutions of

the KdV with time dependent variable coefficient are analyzed. Results of this study show that the shapes of multiple kink-type and

bell-type solitons can be effectively controlled by selecting some specific form of self-similar variables.
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1 Introduction

In past decades, specifically in 1965 when two scientists
Zabusky and Kruskal discussed the meaning of soliton
and explained that most of the physical phenomena in
several areas of our life, for instance problems in
engineering, plasma physics, mathematical physics,
quantum mechanics, biomathematics, hydrodynamics,
optics, and chemistry can be described by means of using
nonlinear partial differential equations or systems. Many
researchers, mathematicians and physicists have raced to
discover good and new methods of studying these models
and to obtain accurate numerical and exact wave
solutions. These studies play a very important role in
clarifying the physical meaning of each model. One of
such models is called Korteweg-de Vries (KdV), very
important in the field of waves on shallow water surfaces.
It is the best example of the type of partial differential
equations that can be integrated and whose solutions can
be determined accurately. The KdV model is an
integrable model which can be solved by the inverse
scattering transform method. The KdV model has many
connections to a large number of natural phenomena
examples including quantum mechanics, plasma, and
soliton theory [1-39].

The optical solitons research is nice flourishing, since
it can be applied to the new developments of optical
communication models and data transmissions [1–30],
which include dynamics of electron in semiconductors,

metal phase changes induced by light, and chemical
reactions. Optical soliton is special form of ultrashort
pulses, which enable us to keep its shape and velocity
unchanged in transmission long-distance.

There are abundant types of linear and nonlinear
partial differential models that have been introduced in
the last decades to obtain new analytical and numerical
solutions. Different methods have been introduced to
study a large variety of such models. Since the description
of these linear and nonlinear systems being to supply
several structures to the solutions. Examples include tanh
method, Hirota method, Backlund transformation,
Miura’s transformation, inverse scattering method and
Adomian decomposition method [1-39].

One of the major goals of the present article is to
provide an effective procedure to test developments in a
direct fashion, the verification of multiple solitons for the
KdV equation with time-dependent coefficient. Several
analytical solutions are determined with the aid of
symbolic arithmetic calculating software, such as Maple.

2 Model and Technique of Solution

The generalized KdV equation with time-dependent
coefficient, describes the dynamics of the following
system:

Ut − 6α (t)U Ux +β (t)Uxxx = 0, (1)
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with α(t) = aβ (t) , where U = U(x, t) is a scalar-valued
function t is time and x is the spatial coordinate, and
α(t), β (t) are time dependent coefficients.
By setting α(t) = β (t) = 1 in (1), it is simplified as the
standard KdV equation.
Suppose that

U(x, t) = u(x,T ) (2)

where T = T (t) is a real function of variable t. If we

choose β (t) = ∂T
∂ t

, and using the transformation (2) in
(1), we see that it takes the following form:

uT − 6auux+ uxxx = 0 (3)

Based on Malfliet technique we obtain multiple soliton
solutions of the KdV equation (3) which was suggested in
[10]. This procedure gives the multiple soliton solutions
easily and conveniently simpler than the inverse
scattering technique [11]. Abdel-Rahman [12] discussed
the multiple solitons of the mKdV, the regularized
long-wave, the Boussinesq, and the modified Boussinesq
equations in a slightly modified manner. Moreover, the
combined KdV and mKdV have been studied by Zhang et
al. [13]. In this manuscript we describe in detail the
Malfliet’s procedure and calculate multiple soliton
solutions to the KdV equation with time dependent
variables. We suppose the solitary wave of the suggested
nonlinear equation to be as follows:

u(x,T ) = u(ξ ), ξ = k(x−ω T )+ϕ , (4)

where ξ is the travelling wave k, ω are arbitrary constants
represent the wave number and wave velocity respectively
and ϕ arbitrary constant.

Substituting equation (4) into equation (3), we have

ω u′− 6auu′+ k2 u′′′ = 0. (5)

By following the Malfliet’s procedure as given in [10],
suppose that the solution can be written as product of two
functions as follows:

u(ξ ) = p(ξ )q(ξ ), (6)

where p(ξ ) and q(ξ ) are arbitrary functions. Then, we
have the following relations

u′ = (pq′)+ (p ↔ q), u′′′ = (pq′′′+ 3p′′q′)+ (p ↔ q),
(7)

Next, the nonlinear term −6auu′ is replaced by

−6auu′ =−α uu′−β uu′

=−α pqu′−β u(pq′+ qp′); 6a = α +β ,
(8)

Substituting equations (7) and (8) into equation (5), we get

p[k2q′′′+3k2 p′′

p
q′−α(u+

ω

α
)q′−

β

2
qu′]+q(p↔ q) = 0.

(9)

Since the occurrence of the derivative q′ in equation (9),

we let
k2 p′′

p
= u+ ω

α with a similar expression for q. Thus

we find that for ψ = p , q the Schrödinger equation
obtained is

k2ψ ′′−
(

u+
ω

α

)

ψ = 0, (10)

where u
k2 is the scattering potential and − ω

αk2 is the
eigenvalue. Thus equation (9) can be written as

p[k2q′′′+(3−α)(u+
ω

α
)q′−

β

2
qu′]+ q(p ↔ q) = 0.

(11)
Differentiating the Schrödinger equation (10) with respect
to ξ , we deduce that the resulting equation coincides with
Eq. (9) and gives α = 4a and β = 2a, since the two
functions p, q satisfy the Schrödinger equation

k2ψ ′′− (u+
ω

4a
)ψ = 0. (12)

Suppose the potential u
k2 is attractive, i.e., u

k2 < 0 and
we can find N distinct discrete eigenvalues
− ωn

4ak2
n
, n = 1,2, ...,N associated with it. So, equation (12)

can be written as

k2
nψn

′′−
(

u+
ωn

4a

)

ψn = 0,

′ ≡
d

dξ
, ξn = kn(x−ωnT )+ϕn.

(13)

At this stage, the Schrödinger equation (13) have the
wave functions ψn ; Thus the general solution of the KdV
equation with time-dependent coefficient can be
expressed in terms of the wave functions ψn as follows:

u(ξ ) =
N

∑
n=1

ψ2
n (ξn) , ξn = kn(x−ωnT )+ϕn. (14)

If the functions ψn do not overlap with each other, we can
write equation (13) as follows:

k2
nψn

′′−
(

ψ2
n +

ωn

4a

)

ψn = 0. (15)

To get the functions ψn satisfying (15), according to
the tanh function method, we balance the highest linear
term ψn

′′ with the nonlinear term ψ3
n and the balancing

gives the degree of the series solution as s = 1; thus the
solution takes the form

ψn = a0 + a1 tanh(ξn), [tanh(ξn)]
′ = 1− tanh2(ξn) .

(16)
Substituting into (15), we can obtain algebraic system by
equating the coefficients of the distinct powers of tanh(ξn)
to zero, then solving this system, we have

a0 = 0, a1 =±
√

2akn, ωn =−8ak2
n. (17)

Then the wave functions ψn takes the form

ψn =±
√

2akn tanh(kn(x+ 8ak2
nT )+ϕn). (18)
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Thus, we obtain the following multiple kink wave
solutions of the KdV equation with time dependent
variable

u(ξ ) = 2a
N

∑
n=1

k2
ntanh2(kn(x+ 8ak2

nT )+ϕn) ,

T =

∫

β (t)dt.

(19)

Searching for another solution to the wave function ψn

given in equation (15), using the sech function method, we
have

ψn = b0 + b1sech(ξn),

[sech(ξn)]
′ = sech(ξn)

√

1− sech2(ξn) ,
(20)

substituting into (20) we can obtain algebraic system by
equating the coefficients of the distinct powers of sech(ξn)
to zero, and solving this system of algebraic equations, we
have

b0 = 0, b1 =±
√
−2akn, ωn = 4ak2

n. (21)

Then, the wave functions ψn take the form

ψn =±
√
−2aknsech(kn(x− 4ak2

nT )+ϕn). (22)

Thus, we obtain the following multiple bell wave solutions
of the KdV equation with time dependent variable

u(ξ ) =−2a
N

∑
n=1

k2
nsech2(kn(x− 4ak2

nT )+ϕn);

T =

∫

β (t)dt.

(23)

Based on this result, the multiple soliton solutions for the
KdV equation with time dependent equation (1) are
obtained immediately. The single kink solution for N = 1
takes the form

u(ξ ) = 2ak2
1tanh2(k1(x+ 8ak2

1T )+ϕ1); T =

∫

β (t)dt.

(24)
The evolutional behaviour of the solution (19) when

N = 1 represented in figure (1) below, shows one soliton
behaviour with choices a = 1, k1 = 3 and ϕ1 = 0. Fig
(1-a) when β (t) = 1, Fig (1-b) when β (t) = 10 t, Fig (1-c)

when β (t) = sinh t, Fig (1-d) when β (t) = sech2t, Fig
(1-e) when β (t) = cost, Fig (1-f) when β (t) = et , and Fig
(1-g) when β (t) = sec2t. We obtain one kink soliton
solution represented in figure (1). The evolutional
behaviour of the solution (19) when N = 2 represented in
figure (2) shows two soliton behaviour with the following
choices a = 0.2, k1 = 1, k2 = −2, ϕ1 = −10 and
ϕ2 = 20. Fig (2-a) when β (t) = 1, Fig (2-b) when
β (t) = 10 t, Fig (2-c) when β (t) = sinh t, Fig (2-d) when

β (t) = sech2t, Fig (2-e) when β (t) = cost, Fig (2-f) when
β (t) = et , and Fig (2-g) when β (t) = sec2t,

Fig. 1: Structures of one soliton solution (19) with a = 1, k1 =
3, and ϕ1 = 0: (a) β (t) = 1, (b) β (t) = 10t, (c) β (t) = sinh(t),
(d) β (t) = sech2(t), (e) β (t) = cos(t), (f) β (t) = et , (g) β (t) =
sec2(t).

3 Concluding Remarks

This article introduced KdV equation with time
dependent coefficient that possesses the multiple soliton
solutions. Based on the similarity transformation and tanh
and sech function methods, both multiple kink-type as
well as bell-type soliton solutions of the desired equation
are obtained. We analyzed the emerging multiple soliton
structures by a special selection of time self-similar
variable. The results showed that the shapes of both
multiple kink-type and bell-type solitons can be
effectively controlled by the specific form of these
self-similar variable. Multiple soliton solutions have been
formally derived. We discussed different choices of the
time-dependent coefficient β (t), and illustrated the
obtained soliton solutions by graphs in figures. The
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Fig. 2: Structures of one soliton solution (19) with a= 0.2, k1 =
1, k2 =−2, ϕ1 =−10 andϕ2 = 0 : (a) β (t) = 1(b) β (t) = 10t(c)

β (t) = sinh t (d) β (t) = sech2t (e) β (t) = cos t (f) β (t) = et (g)

β (t) = sec2t.

derived results can be helpful to discuss other integrable
applications for more findings.
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