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Abstract: This paper aims to adopt partially accelerated life tests model, under Type-II censoring scheme. The model parameters and

the parameter of life are estimated by maximum likelihood, and Bayes methods. Approximate confidence interval under asymptotic

distribution of maximum likelihood estimate, bootstrap confidence and Bayesian credible intervals are estimated. The developed model

and its results are assessed and compared by Monte Carlo simulation study. Finally, a numerical discussion is considered in conclusion

section.
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1 Introduction

he weighted exponential distribution (WED) introduces a
shape parameter for the exponential distribution [1]. It has
more attractive and fascinating properties as compared
with gamma, Weibull, or generalized exponential
distribution for fitting the survival time data. The WED
presents statistical model with non-constant failure rate
function for modeling the lifetime data.

The random variable X has the two-parameter WED
and its probability density function (PDF) is formulated as
follows:

f (x) =
β + 1

β
θe−θx(1− e−β θx), x > 0, β , θ > 0, (1)

where β and θ are shape and scale parameters
respectively. It is noted that WED reduces to exponential
distribution with parameter θ as β → ∞. Also, it reduces
to Γ (2, θ ) when β → 0. The WED is uni-modal at
log(1+β )/β . The random variable X with WED (1) has
the cumulative distribution function (CDF) and the hazerd
failure rate function given as follows:

F(x) = 1−
1

β
e−θx(β + 1− e−β θx), (2)

H(t) = (β + 1)θ
1− e−β θt

β + 1− e−β θt
. (3)

The failure rate function WED is in increasing for 0 < t <
∞. Different methods of estimation of WED and family
of two-parameter weighted exponential distributions have
been discussed in [2,3].

It is known that, if some units of a product are put
under life testing experiment, the failure times of all units
under the test composed a complete sample, and the
failure times of some but not all units under test
composed the censoring sample. In literature, censoring is
available under several types, the commonly used types
are called Type-I and Type-II censoring schemes (Type-I
and Type-II CSs). For the experiment running in Type-I
CS, the ideal test time is proposed prior and number of
failure is taken at random, while in Type-II CS number of
failure is proposed prior and the test time is taken at
random. In both types, we don’t have the flexibility of
removing unit, other than the final stage. But this
flexibility of removing unit is available in progressive
censoring scheme, see [4].

In modern technology, the problem of statistical
inference of a high reliable product is difficult, and
obtaining a sufficient number of failures in a small period

∗ Corresponding author e-mail: falmuhaifeez@kfu.edu.sa

c© 2024 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/180107


60 F. E. Almuhayfith: Statistical Inference of Weighted Exponential Distribution.

becomes more serious under normal stress level. Authors
solved this problem by applying accelerated life test
(ALT) model. For more details and applications of ALT
models, see [5]. In literature, different schemes of ALT
model are available. For example, constant-stress ALT
model tests units input under constant stress until
removing the test, see [6]. Another is the step-stress ALT
model, in which stress level is changed with respect to
constant period of time or number of failures, see [7] and
[8]. Finally, the progressive-stress ALT model, in which
the stress level continuously increases through the
experiment, see [9] and [10]. Modeling some cases in
ALT, we test some units under normal stress level and
other units under stress level which is known by partially
ALT model. In the mechanism of partially constant-stress
ALT model, units are tested under normal stress, and
stress conditions at the same time. But, in partially
step-stress ALT model all units are put in normal stress
conditions until constant period of time or number of
failures, and the survival units are put under stress level.

The goal of this paper is to study the reliability of a
product under population characteristics for given Type-II
lifetime data of product with WED. We formulate the
estimations of unknown quantities in the population. The
material or engineering products which have WED are
tested under partially constant ALT model. The model
parameter and the corresponding parameters of life
(reliability and hazer failure rate) under normal stress
level are estimated. The proposed model and different
estimation methods are tested under Monte Carlo
simulation study and data analysis.

The outlines of paper are summarized as follows:
Model formulation and its assumptions are discussed in
Section 2. The model parameters are estimated with
maximum likelihood and Bayes methods in Section 3.
Interval estimation under asymptotic distribution of
maximum likelihood estimates, bootstrap confidence
interval and credible interval is discussed in Section 4.
Theoretical results are assessed and compared through
Monte Carlo simulation study in Section 5. The
discussion of results is summarized in Section 6.

2 Model and Assumptions

Modeling under partially constant-stress ALT reflects the
effect of environment on the life product. This effect can
be described by hazard failure rate model H2(.) = λ H1(.),
and accelerated model in which the total lifetime under
accelerated conditions is given by Y = X

λ , where λ > 1
denotes the accelerating factor. We adopt the accelerated
model, the WED under stress conditions can be formulated
by

F2(y) = 1−
1

β
e−θλ y(β + 1− e−λ β θy),

y > 0, β , θ > 0,λ > 1, (4)

and the corresponding PDF and hazard rate functions are
given by

f2(y) =
β + 1

β
λ θe−θλ y(1− e−β θλ y), (5)

H2(t)=(β + 1)λ θ
1− e−β θλ t

β + 1− e−λ β θt
. (6)

Under partially constant-stress ALT model with Type-II
censoring scheme, suppose a random sample of size n of
a product is divided randomly into two samples of sizes
n1 and n2, where n = n1+n2. The sample of size n1 is
tested under normal stress conditions and the sample of
size n2 is tested under stress conditions. Prior the
experiment is running, two integer m1 and m2 are
proposed (numbers of failure which is needing under
normal and stress conditions). The Type-II censoring
sample under partially constant-stress ALT is denoted by
X =

(

X j1;n, X j2;n, ..., X jm j ;n j

)

, j = 1, 2. If m j-th failure
times of the n j units is originally have a continuous
distribution with CDF given by Fj(x) and PDF given by
f j(x), then the joint likelihood function of observed

Type-II censoring samples x =
(

x j1;n, x j2;n, ..., x jm j ;n j

)

,
j = 1, 2, is given by

f (x|Θ) =
2

∏
j=1

C jR
n j−m j

j (x jm j ;n j
)

(

m j

∏
i=1

f j(x ji;n j
)

)

, (7)

where C j =
n j

n j−m j
, R

j
(.) = 1−Fj(.) and Θ = {β ,θ ,λ}, λ

is called the accelerated factor.

3 Point Estimation

The model is formulated for given Type-II censoring
sample x = (x j1;n, x j2;n, ..., x jm j ;n j

), j = 1, 2, under
partially constant-stress ALT. Also, the point estimate of
the model parameters are discussed by maximum
likelihood and Bayes approaches.

3.1 Maximum Likelihood Estimation (MLE)

Under observed Type-II censoring sample
x =

(

x j1;n, x j2;n, ..., x jm j ;n j

)

, j = 1, 2, the likelihood
function (7) with distribution given by (2) and (4) is
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formulated by

L(Θ |x) ∝

(

1

β

)n1+n2

(β + 1)m1+m2 (θ )m1+m2 λ m2

exp

{

−θ
m1

∑
i=1

x1i −θλ
m2

∑
i=1

x2i +
m1

∑
i=1

log
[

1− e−β θx1i

]

+
m2

∑
i=1

log
[

1− e−β θλ x2i

]

− (n1 −m1)θx1m1

− (n2 −m2)θλ x2m2
+(n1 −m1) log

[

β + 1− e
−β θx1m1

]

+(n2 −m2) log
[

β + 1− e
−β λ θx2m2

]}

. (8)

The joint likelihood function (8), by taking the natural
logarithm is reduced to

ℓ(Θ |x) =−(n1 + n2) logβ +(m1 +m2) log [β + 1]

+ (m1 +m2) logθ +m2 logλ −θ
m1

∑
i=1

x1i −θλ
m2

∑
i=1

x2i

+
m1

∑
i=1

log
[

1− e−β θx1i

]

+
m2

∑
i=1

log
[

1− e−β θλ x2i

]

−θx1m1

−θλ x1m2
+(n1 −m1) log

[

β + 1− e
−β θx1m2

]

+(n2 −m2) log
[

β + 1− e
−β λ θx2m2

]

. (9)

The estimate value of the parameters vector which
maximize the log-likelihood function (9) can obtain by
the first partially derivatives (likelihood equations) as
follows:

∂ℓ(Θ |x)

∂β
= −

(n1 + n2)

β
+

(m1 +m2)

β + 1
+θ

m1

∑
i=1

x1ie
−β θx1i

1− e−β θx1i

+θλ
m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θx2i
+

(n1 −m1) (1+θx1m2
e
−β θx1m2 )

β + 1− e
−β θx1m2

+
(n2 −m2)(1+λ θx1m2

e
−β λ θx2m2 )

β + 1− e
−β λ θx2m2

= 0, (10)

∂ℓ(Θ |x)

∂θ
=

(m1 +m2)

θ
−

m1

∑
i=1

x1i −λ
m2

∑
i=1

x2i +β
m1

∑
i=1

x1ie
−β θx1i

1− e−β θx1i

+β λ
m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θx2i
− x1m1

−λ x1m2
+

(n1 −m1)β x1m2
e
−β θx1m2

β + 1− e
−β θx1m2

+
(n2 −m2)β λ x1m2

e
−β λ θx2m2

β + 1− e
−β λ θx2m2

= 0, (11)

and

∂ℓ(Θ |x)

∂λ
=

m2

λ
+θ

m2

∑
i=1

x2i +β θ
m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θλ x2i

−θλ x1m2
+

(n2 −m2)β θx1m2
e
−β λ θx2m2

β + 1− e
−β λ θx2m2

= 0.

(12)

Equations (10) to (12) show MLE of the model, the
parameters are obtained by solving three non-linear
equations. Newton Raphson method can be employed as
iteration method to solve this problem. Also, MLE of the
reliability and failure rate function are given by

R̂(t) =
1

β̂
e−θ̂x(β + 1− e−β̂θ̂x),

and

Ĥ(t) = (β̂ + 1)θ̂
1− e−β̂ θ̂x

β̂ + 1− e−β̂θ̂x
. (13)

3.2 Bayesian Estimation

In this section, we adopt Bayesian approach for obtaining
the Bayes estimators of the model, parameters and the
corresponding credible intervals. The parameters β and θ
of WED have independent gamma prior density and
non-informative prior distribution of accelerated
parameter, the posterior distribution is formulated. Hence,
the Bayes estimators of unknown model parameters under
squared error loss (SEL) function are formulated for point
and symmetric credible intervals as follows:

Suppose the prior information is formulated as

P∗(Θ) = P∗
1 (β )P

∗
2 (θ )P

∗
3 (λ ), (14)

where

P∗
1 (β ) ∝ β a−1 exp(−bβ ), β > 0; a,b > 0, (15)

P∗
2 (θ ) ∝ θ c−1 exp(−dθ ), θ > 0; c,d > 0, (16)

and
P∗

3 (λ ) ∝ λ−1. (17)

The joint posterior distribution can be formulated by

P(Θ) =
P∗

1 (β )P
∗
2 (θ )P

∗
3 (λ )L(Θ |x)

∫∫∫

Θ

P∗
1 (β )P

∗
2 (θ )P

∗
3 (λ )L(Θ |x)dβ dθdλ

. (18)

From the likelihood function (8) and joint prior
distribution (14), the joint posterior distribution can be
formulated by

P(Θ |x) ∝ β a−n1−n2−1 (β + 1)m1+m2 θ c+m1+m2−1λ m2−1

× exp

{

−bβ − dθ +θ
m1

∑
i=1

x1i +θλ
m2

∑
i=1

x2i

+
m1

∑
i=1

log
[

1− e−β θx1i

]

+
m2

∑
i=1

log
[

1− e−β θλ x2i

]

−θx1m1
−θλ x2m2

+(n1 −m1) log
[

β + 1− e
−β θx1m1

]

+(n2 −m2) log
[

β + 1− e
−β λ θx2m2

]}

. (19)
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Based on posterior distribution (19), the Bayes estimate
of the model parameters depends on selection of loss
function. In this section, we adopt squared error loss
function and hence, the Bayes estimate is taken to be
posterior mean. Also, the posterior distribution (19) has
shown that, the analytical solution can not be obtained.
Therefore, different methods can be employed for the
problem, such as numerical integration, Lindelly
approximation and Markov Chen Monte Carlo method
(MCMC). The empirical posterior distribution can be
obtained by using the MCMC method as follows:
Baysian approach under MCMC

From the posterior distribution (19), we formulate the
full conditional posterior distribution as follows:

P(β |θ ,λ ,x) ∝ β a−n1−n2−1 (β + 1)m1+m2 exp{−bβ} ,
(20)

P1(θ |β ,λ ,x)∝ θ c+m1+m2−1 exp

{

−θ

(

d+
m1

∑
i=1

x1i + x1m1

)}

(21)

P(λ |β ,θ ,x) ∝ λ m2−1 exp

{

−λ

(

θ
m2

∑
i=1

x2i +θx2m2

)}

,

(22)
and

h(β ,θ ,λ ,x) ∝
(

d−
m1

∑
i=1

x1i + x1m1

)−(c+m1+m20(

−θ
m2

∑
i=1

x2i +θx2m2

)−m2

× exp

{

m1

∑
i=1

log
[

1− e−β θx1i

]

+
m2

∑
i=1

log
[

1− e−β θλ x2i

]

+(n1 −m1) log
[

β + 1− e
−β θx1m1

]

)

+(n2 −m2) log
[

β + 1− e
−β λ θx2m2

]}

. (23)

The full conditional distribution reduce to two gamma
function, proper function of β and general function of the
model parameters. The function h(β ,θ ,λ ,x) is called the
weight function. Hence, for generating a sample from
distributions, we apply Metropolis–Hastings (MH)
method, [11] with Gaussian proposal distribution. The
description of the algorithm is used to generate MCMC
sampling described as follows:

Algorithm 2 (Importance sample algorithms)

1.Begin with intial values Θ (0) = {β (0), θ (0), λ (0)}={β̂ ,

θ̂ , λ̂} and put κ = 1

2.Generate θ (κ) from gamma density (37).

3.Generate λ (κ) from gamma density (38).

4.Generate β (κ) for (36) with MH algorithms with
normal proposal distribution.

5.Compute the value h(β (κ),θ (κ),λ (κ)|x).
6.Set κ = κ + 1.

7.Steps from (2) to (6) are repeted N times.
8.The Bayes estimate of any function g(β , θ , λ ) under

a SEL function is defined by

g̃B (β , θ , λ ) =

1
N−M

N

∑
i=M+1

g
(

β (i), θ (i), λ (i)
)

h(β (i),θ (i),λ (i)|x)

1
N−M

N

∑
i=M+1

h(β (i),θ (i),λ (i)|x)

,

(24)

where M is the number of iteration needing to reach
stationary distribution.

9.Also the posterior variance of g(β1, β2, θ ) is
calculated by

V (g(β , θ , λ )) =

1
N−M

N

∑
i=M+1

(g
(

β (i), θ (i), λ (i)
)

− g̃B)
2h(β (i), θ (i), λ (i)|X)

1
N−M

N

∑
i=M+1

h(β (i), θ (i), λ (i)|X)

.

(25)

4 Interval Estimation

In this section, we adopt asymptotic confidence interval,
bootstrap confidence interval and Bayes credible intervals.

4.1 Approximate confidence intervals

The estimators of confidence intervals of the model
parameters need to compute the Fisher information
matrix. For this we require to compute the minus
expectation of the second derivative of the log-likelihood
function. But, in several cases this expectation is more
serious to compute under high vector of parameters. The
natural alternative approximate information matrix is
defined by i(Θ) as follows:

i(Θ) =−

(

∂ 2ℓ(Θ |x)

∂Θi∂Θ j

)

, i. j = 1, 2, 3. (26)

The approximate information matrix at the MLE values of

the parameters is denoted by i0(Θ̂) and defined by

i0(Θ̂) =−

(

∂ 2ℓ(Θ |x)

∂Θi∂Θ j

)

|Θ̂ , i. j = 1, 2, 3. (27)
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The second derivatives of the log-likelihood function
are given by

∂ 2ℓ(Θ |x)

∂β 2
=

(n1 + n2)

β 2
−

(m1 +m2)

(β + 1)2

−θ 2
m1

∑
i=1

x2
1ie

−β θx1i

(

1− e−β θx1i
)2

−θ 2λ 2
m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θx2i
)2

−
(n1 −m1) (1+(2+(β + 1)θx1m2

)θx1m1
e
−β θx1m1

(

β + 1− e
−β θx1m1

)2

−
(n2 −m2) (1+(2+(β + 1)λ θx1m2

)λ θx1m2
e
−β λ θx2m2

(

β + 1− e
−β λ θx2m2

)2
,

(28)

∂ 2ℓ(Θ |x)

∂θ 2
=−

(m1 +m2)

θ 2
−β 2

m1

∑
i=1

x2
1ie

−β θx1i

(

1− e−β θx1i
)2

−β 2λ 2
m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θx2i
)2

−
(n1 −m1)β 2x2

1m2
e
−β θx1m2

(

β + 1− e
−β θx1m2

)2

−
(n2 −m2)β 2λ 2x2

1m2
e
−β λ θx2m2

(

β + 1− e
−β λ θx2m2

)2
, (29)

∂ 2ℓ(Θ |x)

∂λ 2
=−

m2

λ 2
−β 2θ 2

m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θλ x2i
)2

−θx2m2

−
(n2 −m2)β 2θ 2x2

2m2
e
−β λ θx2m2

(

β + 1− e
−β λ θx2m2

)2
, (30)

∂ 2ℓ(Θ |x)

∂θ∂β
=

m1

∑
i=1

x1ie
−β θx1i

1− e−β θx1i
−β θ

m1

∑
i=1

x2
1ie

−β θx1i

(

1− e−β θx1i
)2

+λ
m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θx2i
−β θλ

m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θx2i
)2

+
(n1 −m1)β x1m2

e
−β θx1m2

β + 1− e
−β θx1m2

+
(n2 −m2)β λ x1m2

e
−β λ θx2m2

β + 1− e
−β λ θx2m2

,

(31)

∂ 2ℓ(Θ |x)

∂θ∂λ
=

∂ 2ℓ(Θ |x)

∂λ ∂θ
=

−
m2

∑
i=1

x2i +β
m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θx2i
+(β λ )2

m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θx2i

)2

− x1m2
+

(n2 −m2)β x1m2
e
−β λ θx2m2

β + 1− e
−β λ θx2m2

+
(n2 −m2) (β λ x1m2

)2
e
−β λ θx2m2

(

β + 1− e
−β λ θx2m2

)2
, (32)

∂ 2ℓ(Θ |x)

∂β ∂λ
=

∂ 2ℓ(Θ |x)

∂λ ∂β
= θ

m2

∑
i=1

x2ie
−β θλ x2i

1− e−β θx2i

+(θλ )2
m2

∑
i=1

x2
2ie

−β θλ x2i

(

1− e−β θx2i

)2
+
(

β + 1− e
−β λ θx2m2

)

×
(n2 −m2) (θx1m2

e
−β λ θx2m2 − (λ θx1m2

)2
e
−β λ θx2m2 )

(

β + 1− e
−β λ θx2m2

)2

−
(n2 −m2) (1+θx1m2

e
−β λ θx2m2 )

(

θx1m2
e
−β λ θx2m2

)

(

β + 1− e
−β λ θx2m2

)2
.

(33)

Under the properties of MLE model parameters are
distributed with bibariate normal distribution. The
(1 − 2γ)100% approximate confidence intervals are
formulated by







β̂ ∓Zγε11

θ̂ ∓Zγε22

λ̂ ∓Zγε33,

(34)

where, Zγ is standard normal probability with right tailed
γ. Also, ε11, ε22 and ε33 are the elements of diagonal
approximate information matrix.

In different cases the lower bound of the confidence
intervals may be less than 0, which contradicts with the
prerequisite β , θ , λ > 0. Log-transformation and delta
method are used in order to avoid this situation.

The pivotal Φ = logΘ̂i−logΘi

Var( logΘ̂i)
has standard normal

distribution. The 100(1-2γ)% approximate confidence
interval of Θ = {β ,θ ,λ} is given by









Θ̂i

exp

(

γα

√

Var( logΘ̂i)

) ,Θ̂i exp

(

γα

√

Var(logΘ̂i)

)









,

i = 1,2,3, (35)

where Var(logΘ̂i)=
Var(Θ̂i)

Θ̂i
and i = 1,2,3. For more details,

see [12,13].

4.2 Bootstrap confidence intervals

Bootstrap techniques are not only used in parameter
ostentation problems but also to estimate bias and
variance of estimator or calibrate hypothesis tests.
Bootstrap techniques are described as resembling
methods. The bootstrap techniques are defined in
parametric and non-parametric methods, see [14,15].
Here we adopted parametric bootstrap technique to built
two different confidence intervals. In literature the
parametric bootstrap technique, percentile bootstrap
technique and bootstrap-t technique can be found in [16,
18]. The following algorithm is employed to present
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percentile bootstrap technique for formulation bootstrap
confidence intervals:

Algorithm 1 (Bootstrap confidence interval)

1.From the original Type-II GHCS sample
x =

(

x j1;n, x j2;n, ..., x jm j ;n j

)

, j = 1, 2, the MLEs

Θ = {β̂ , θ̂ , λ̂} are obtained.
2.Generate Type-II samples of sizes m1 and m2 from

WED(β̂ , θ̂ ) and accelerated WED(β̂ , θ̂ , λ̂ )
respectively and denote by

x∗ =
(

x∗j1;n, x∗j2;n, ..., x∗jm j ;n j

)

, j = 1, 2.

1.For given bootstrap Type-II sample X∗ the MLEs Θ ∗ =

{β̂ ∗, θ̂ ∗, λ̂ ∗} are obtained.
4.Steps (2) and (3) are repeated N times and each time

computed bootstrap estimate Θ ∗ = {β̂ ∗, θ̂ ∗, λ̂ ∗}.
5.The bootstrap sample estimate

Θ ∗(i) = {β̂ ∗(i), θ̂ ∗(i), λ̂ ∗(i)}, i = 1, 2, ..., N are

arranged in ascending order Θ ∗
(i) = {β̂ ∗

(i), θ̂
∗
(i), λ̂

∗
(i)}.

Percentile Bootstrap Confidence Interval (PBCI)
Suppose that, the ordered sample is described by

F(x) = P(Θ̂ ∗
(i) 6 x), i = 1, 2, 3, the cumulative

distribution function of Θ ∗, where Θ ∗
1 mean β̂ ∗ and

others. So, the point bootstrap estimate is defined by

Θ̂ ∗
i =

1

N

N

∑
j=1

Θ ∗
( j). (36)

Also, the 100(1− 2γ)% PBCIs are given by

(Θ̂ ∗
iboot(γ), Θ̂ ∗

iboot(1-γ)), (37)

where of Θ̂ ∗
iboot = F−1(x).

4.3 Bayesian credible interval

1.The posterior variance of g(β1, β2, θ ) is calculated by

V (g(β , θ , λ )) =

1
N−M

N

∑
i=M+1

(g
(

β (i), θ (i), λ (i)
)

− g̃B)
2h(β (i), θ (i), λ (i)|X)

1
N−M

N

∑
i=M+1

h(β (i), θ (i), λ (i)|X)

.

(38)

2.As given in [17] the credible interval or HPD credible
intervals of any function ϕ(θ1,θ2,β ) can be construct
as follows:

I.We put the posterior sample ϕ(i)(θ
(i)
1 ,θ

(i)
2 ,β (i)) and the

corresponding weighted function

w(i) =
Π(θ

(i)
1 ,θ

(i)
2 ,β (i))

S

∑
i=S∗+1

Π(θ
(i)
1 ,θ

(i)
2 ,β (i))

, i = 1,2, ...S − S∗, in

ascending order (w(i), ϕ(i)), i = 1,2, ...S− S∗.

II.For the ordered pairs (w(i), ϕ(i)), define the α−th
quantile of the marginal posterior of ϕ by

ϕ̂(α) =







ϕ(1), if α = 0

ϕ(k), if
k−1

∑
i=1

w(i) < α <
k

∑
i=1

w(i)
. (39)

III.The 100(1− 2α)% credible intervals of ϕ is given by

(ϕ(α),ϕ(1−α)) (40)

V.The 100(1−2α)% HPD credible intervals of ϕ is given
by

(ϕ(L/(S−S∗)),ϕ({L+[(1−2α)(S−S∗)]}/(S−S∗)))

where L = 1,2, ...,(S − S∗) − [(1 − 2α)(S − S∗)].
Then, 100 (1-2α)% HPD credible intervals is the
smallest interval width among all credible intervals.

5 Simulation Studies

In this section, we discuss the problem of statistical
inferences of WED under partially constant-stress ALTs
model with Type-II censoring scheme. We measure the
estimate values of the parameters based on the proposed
model under different methods of estimations. This
problem is assessed under formulation of Monte Carlo
simulation study. Also, we compare the estimation
methods for different choices of the parameters values
and censoring scheme. Throughout the study, we discuss
the effect of parameter changing and for different sample
sizes and effected sample sizes. Therefore, we generate
1000 size sample and through sample compute average
estimate (AE) and the corresponding mean squared error
(MSE) Table 1 and 3. For interval estimation, we compute
average interval length (AIL) and the corresponding
coverage percentile (CP) Tables 2 and 4. The prior
information are selected to satisfy that, the true parameter
value are equal to mean of prior density and denoted by
P1. If the prior information is weaker then we use
non-informative prior information which is denoted by P0

and the parameter of prior distribution is selected equal to
the value 0.0001. The true parameters values are selected
to be (β ,θ ) = {(0.2, 1.0), (2.5, 2)} and λ = {1.5, 2.5},
respectively. The numerical computations are adopted
with respect to the following algorithms.

Algorithm 3 (Monte Carlo simulation algorithms)

1:Generate samples of size m1 and m2 from WED under
normal and stress conditions, respectively.

2:For the joint sample compute MLEs and Bayes estimate
of model parameters.

3:For the joint sample compute the approximate
confidence interval, bootstrap confidence interval and
credible intervals.

4:The Steps from (1) to (3) are repeated 1000 times.
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Table 1: The MSE of MLE and Bayes estimte when (β , θ ,λ )={0.2, 2.5, 1.5}.

MLE Bayes P0 Bayes P1

(n1,n2,m1,m2) α β λ α β λ α β λ
(30,30,15,15) 0.142 0.455 0.325 0.135 0.418 0.314 0.098 0.385 0.287

(30,30,15,25) 0.127 0.415 0.288 0.118 0.418 0.271 0.071 0.351 0.266

(30,30,25,15) 0.112 0.400 0.272 0.105 0.411 0.265 0.066 0.342 0.253

(30,30,25,25) 0.101 0.388 0.259 0.091 0.402 0.254 0.057 0.331 0.240

(50,30,25,25) 0.105 0.388 0.259 0.091 0.402 0.254 0.057 0.331 0.240

(30,50,25,25) 0.111 0.379 0.245 0.096 0.407 0.248 0.061 0.324 0.233

(50,50,30,30) 0.098 0.363 0.232 0.090 0.392 0.240 0.053 0.311 0.219

(50,50,40,30) 0.092 0.358 0.233 0.087 0.388 0.241 0.046 0.304 0.214

(50,50,30,40) 0.095 0.362 0.231 0.091 0.384 0.240 0.039 0.308 0.209

(50,50,40,40) 0.084 0.341 0.218 0.083 0.357 0.218 0.033 0.285 0.192

(50,50,50,40) 0.077 0.337 0.208 0.072 0.344 0.209 0.031 0.269 0.184

(50,50,40,50) 0.079 0.334 0.208 0.077 0.340 0.207 0.033 0.264 0.180

(50,50,50,50) 0.057 0.302 0.181 0.062 0.319 0.179 0.024 0.225 0.141

Table 2: The AIL and the corresponding CP when (β , θ ,λ )={0.2, 2.5, 1.5}.

MLE Boot Bayes P0 Bayes P1

(n1,n2,m1,m2) α β λ α β λ α β λ α β λ
(30,30,15,15) AIL 5.254 0.624 3.852 5.741 0.751 4.125 5.224 0.600 3.804 4.421 0.541 3.330

CP 0.89 0.88 0.90 0.90 0.88 0.89 0.90 0.91 0.90 0.92 0.91 0.90

(30,30,15,25) AIL 5.115 0.527 3.771 5.587 0.674 4.002 5.040 0.554 3.340 4.250 0.503 3.240

CP 0.91 0.89 0.90 0.90 0.91 0.92 0.93 0.92 0.92 0.94 0.93 0.93

(30,30,25,15) AIL 5.085 0.501 3.745 5.544 0.639 3.970 5.005 0.519 3.315 4.221 0.479 3.218

CP 0.91 0.90 0.91 0.90 0.91 0.89 0.93 0.92 0.91 0.94 0.92 0.92

(30,30,25,25) AIL 5.019 0.441 3.700 5.495 0.601 3.914 4.971 0.491 3.280 4.200 0.424 3.185

CP 0.93 0.90 0.92 0.90 0.93 0.91 0.93 0.94 0.92 0.94 0.95 0.93

(50,30,25,25) AIL 5.012 0.435 3.703 5.488 0.598 3.907 4.970 0.484 3.283 4.207 0.415 3.181

CP 0.92 0.91 0.90 0.90 0.89 0.91 0.91 0.94 0.91 0.94 0.91 0.92

(30,50,25,25) AIL 5.017 0.438 3.711 5.482 0.589 3.911 4.972 0.480 3.281 4.194 0.418 3.192

CP 0.92 0.92 0.90 0.92 0.90 0.91 0.92 0.94 0.92 0.94 0.93 0.91

(50,50,30,30) AIL 4.992 0.401 3.680 5.424 0.531 3.865 4.914 0.442 3.239 4.152 0.389 3.157

CP 0.94 0.93 0.92 0.92 0.95 0.93 0.93 0.95 0.92 0.93 0.93 0.95

(50,50,40,30) AIL 4.962 0.370 3.654 5.401 0.502 3.845 4.875 0.414 3.212 4.109 0.341 3.121

CP 0.93 0.93 0.94 0.93 0.95 0.94 0.94 0.92 0.93 0.92 0.97 0.96

(50,50,30,40) AIL 4.967 0.373 3.658 5.398 0.501 3.839 4.869 0.417 3.215 4.112 0.343 3.118

CP 0.94 0.92 0.93 0.93 0.94 0.91 0.94 0.95 0.93 0.93 0.94 0.92

(50,50,40,40) AIL 4.925 0.339 3.631 5.367 0.472 3.814 4.838 0.400 3.182 4.081 0.312 3.087

CP 0.93 0.94 0.93 0.92 0.94 0.93 0.94 0.94 0.92 0.96 0.94 0.95

(50,50,50,40) AIL 4.875 0.300 3.573 5.314 0.427 3.771 4.802 0.352 3.131 4.041 0.289 3.044

CP 0.95 0.94 0.94 0.92 0.94 0.96 0.94 0.94 0.97 0.93 0.94 0.94

(50,50,40,50) AIL 4.870 0.307 3.582 5.317 0.414 3.775 4.812 0.345 3.125 4.039 0.281 3.047

CP 0.94 0.92 0.94 0.93 0.94 0.93 0.94 0.92 0.93 0.93 0.95 0.97

(50,50,50,50) AIL 4.819 0.254 3.514 5.282 0.379 3.744 4.752 0.301 3.082 4.002 0.231 3.014

CP 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.97 0.92 0.94 0.95 0.94

5:Compute the estimate values of MSE, AIL and CP and
reported in Tables from 1–4.

6 Conclusions

Life testing experiment or reliability analysis of products
require more information about the life of product.
Hence, for the optimal censoring scheme which can serve
this problem, we applied the Type-II censoring scheme.
The mechanism of ALTs that saves the reliability results
more quickly for a high reliable product is applied. In our
paper, we consider the products have WE lifetime
distribution. The unknown model parameters are
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Table 3: The MSE of MLE and Bayes estimte when (β , θ ,λ )={1.2, 0.5, 2.0}.

MLE Bayes P0 Bayes P1

(n1,n2,m1,m2) α β λ α β λ α β λ
(30,30,15,15) 0.354 0.245 0.543 0.315 0.211 0.514 0.245 0.154 0.411

(30,30,15,25) 0.318 0.217 0.512 0.291 0.187 0.489 0.214 0.122 0.387

(30,30,25,15) 0.308 0.211 0.504 0.287 0.181 0.478 0.205 0.120 0.369

(30,30,25,25) 0.287 0.189 0.472 0.257 0.149 0.436 0.179 0.089 0.315

(50,30,25,25) 0.281 0.182 0.477 0.251 0.144 0.425 0.173 0.091 0.318

(30,50,25,25) 0.272 0.191 0.477 0.265 0.141 0.434 0.172 0.093 0.310

(50,50,30,30) 0.233 0.142 0.438 0.224 0.115 0.401 0.122 0.051 0.284

(50,50,40,30) 0.200 0.111 0.405 0.187 0.089 0.379 0.088 0.032 0.232

(50,50,30,40) 0.203 0.115 0.402 0.191 0.084 0.373 0.084 0.028 0.235

(50,50,40,40) 0.173 0.091 0.378 0.145 0.059 0.345 0.044 0.021 0.214

(50,50,50,40) 0.142 0.088 0.370 0.138 0.051 0.320 0.032 0.014 0.192

(50,50,40,50) 0.135 0.082 0.369 0.131 0.051 0.323 0.035 0.011 0.194

(50,50,50,50) 0.1.1 0.052 0.301 0.075 0.032 0.284 0.024 0.009 0.165

Table 2: The AIL and the corresponding CP when (β , θ ,λ )={1.2,0.5,2.0}.

MLE Boot Bayes P0 Bayes P1

(n1,n2,m1,m2) α β λ α β λ α β λ α β λ
(30,30,15,15) AIL 3.458 2.147 5.421 3.879 2.456 5.774 3.411 2.101 5.381 3.114 1.854 4.547

CP 0.90 0.88 0.90 0.89 0.88 0.87 0.91 0.90 0.90 0.93 0.91 0.89

(30,30,15,25) AIL 3.411 2.103 5.382 3.832 2.414 5.725 3.275 2.069 5.341 3.074 1.812 4.500

CP 0.90 0.90 0.91 0.91 0.91 0.91 0.93 0.92 0.92 0.91 0.93 0.92

(30,30,25,15) AIL 3.414 2.101 5.377 3.835 2.417 5.721 3.270 2.063 5.347 3.071 1.815 4.503

CP 0.92 0.90 0.90 0.91 0.91 0.92 0.93 0.92 0.93 0.94 0.93 0.95

(30,30,25,25) AIL 3.374 2.069 5.332 3.802 2.379 5.682 3.225 2.024 5.312 3.024 1.777 4.466

CP 0.92 0.91 0.92 0.92 0.93 0.91 0.94 0.94 0.92 0.92 0.93 0.91

(50,30,25,25) AIL 3.371 2.064 5.335 3.807 2.382 5.680 3.219 2.027 5.304 3.018 1.781 4.462

CP 0.92 0.90 0.93 0.90 0.91 0.91 0.92 0.94 0.93 0.94 0.93 0.92

(30,50,25,25) AIL 3.366 2.061 5.325 3.803 2.377 5.682 3.214 2.018 5.301 3.012 1.775 4.458

CP 0.94 0.92 0.93 0.92 0.92 0.91 0.94 0.94 0.95 0.94 0.93 0.94

(50,50,30,30) AIL 3.311 2.007 5.274 3.761 2.319 5.631 3.169 1.890 5.251 2.974 1.714 4.401

CP 0.92 0.93 0.94 0.92 0.93 0.93 0.93 0.92 0.92 0.93 0.93 0.96

(50,50,40,30) AIL 3.287 1.891 5.238 3.725 2.289 5.600 3.114 1.856 5.221 2.942 1.678 4.365

CP 0.94 0.92 0.91 0.94 0.95 0.90 0.94 0.93 0.93 0.93 0.92 0.94

(50,50,30,40) AIL 3.279 1.894 5.242 3.727 2.282 5.603 3.119 1.851 5.219 2.914 1.666 4.361

CP 0.92 0.93 0.94 0.92 0.92 0.91 0.94 0.93 0.93 0.93 0.95 0.96

(50,50,40,40) AIL 3.242 1.865 5.215 3.692 2.249 5.570 3.049 1.800 5.179 2.841 1.614 4.312

CP 0.94 0.94 0.92 0.92 0.90 0.93 0.93 0.94 0.93 0.96 0.93 0.95

(50,50,50,40) AIL 3.211 1.832 5.181 3.662 2.214 5.535 3.014 1.761 5.142 2.809 1.571 4.276

CP 0.93 0.92 0.94 0.90 0.94 0.92 0.94 0.93 0.94 0.93 0.92 0.95

(50,50,40,50) AIL 3.214 1.837 5.178 3.649 2.212 5.541 3.007 1.756 5.133 2.801 1.569 4.272

CP 0.93 0.92 0.93 0.93 0.93 0.93 0.92 0.92 0.94 0.94 0.93 0.92

(50,50,50,50) AIL 3.120 1.761 5.100 3.691 2.125 5.472 2.874 1.700 5.025 2.706 1.503 4.214

CP 0.92 0.93 0.92 0.94 0.92 0.94 0.95 0.93 0.93 0.93 0.92 0.94

estimated by ML and Bayes methods for point estimate.
Also, asymptotic confidence, bootstrap confidence and
Bayes credible intervals are computed. The numerical
results obtained from Monte Carlo simulation study have
shown that;

1The Type-II censoring scheme under proposed model
serve well for all choices of censoring schemes and
parameter values.

2The results under maximum likelihood estimation and
Bayes non-informative prior P0 are more closed.

3The informative priors P1 serve better than
non-informative prior and maximum likelihood
estimations.

4The higher values of affected sample size m1 and m2

have minimum MSE and AIL.
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