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Abstract: In this paper a number of findings present various ways of new research with novel class of trigonometric functions which

unifies the properties of the well-known standard functions. From our previous knowledge, the important and significant role which

investigated by the trigonometric functions in simplifying results in astronomy, physics and engineering, therefore, we may naturally

predict that these new studies of trigonometric functions can lead to interpretations and results that have not appeared before and

are new in mathematics, physics, biology, engineering and other branches of science. By introducing the variable-coefficient Riccati

Fibonacci procedure, we investigate explicit solutions for some Kortewege de Vries models with variable coefficient (vcKdV). The

main and basic idea of this procedure is based on finding solutions to desired models as a series in terms of solutions of the quadratic

Riccati differential equation which are satisfied by Fibonacci trigonometric symmetric functions.
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1 Introduction

In the last three decades, research and study have been
intensified in nonlinear differential models, which are
largely represented in different fields of modern science
and technology. The investigation and search for explicit
and numerical solutions to nonlinear partial differential
models represent a vital and major role in nonlinearity
research of natural phenomena. In earlier years, great
developments have been done in analyzing and finding
accurate solutions to nonlinear models. Accordingly,
various important procedures have been investigated, for
example, Darboux transformation, inverse scattering [1],
Hirota [2], Cole-Hopf transformation, Bäcklund
transformation [2, 3], Painlevé [2, 4], homogeneous
balance [5, 6, 7, 8, 9], tanh and coth [10, 11], the
generalized hyperbolic [12, 13] and so on. As a result of
the emergence of various scientific computational
programs for example Maple, Matlab and Mathematica
that give us opportunity to carry out some complex or
long algebraic calculations as well as differential
calculations on computer which help to investigate other
explicit solutions of desired nonlinear differential models.

The effective and important procedures for finding
explicit solutions of nonlinear differential models is the
tanh procedure [10, 11]. In the previous few years, Fan

[13] proposed an extension for tanh method. Furthermore,
it is further extended by many authors for example Fan
[14, 15], Yan [16] and Chen et-al [17, 18]. Also, the
extended tanh method is modified by Elwakil et-al [19]
and investigated another explicit solution for some
nonlinear models. It has become important to find new
mathematical algorithms to find explicit solutions to
nonlinear differential models which may have a
significant impact and a major role on future research.

Recently, much attention has been paid to the vcKdV
models which is mostly used in describing different
natural phenomena in modern physics, plasma and
engineering [20, 21]. The generalized vcKdV model can
be written with dissipative, perturbative, and force
extrinsic terms as

ut + µ1(t)uux + µ2(t)uxxx + µ3(t)ux + µ4(t)u = µ5(t),
(1)

with u(x, t) function in x and t called wave amplitude, and
the coefficient µ1(t) is the nonlinear, µ2(t) is dispersive,
µ3(t) is dissipative, µ4(t) is perturbed and µ5(t) is
external-force terms [20, 21].
The generalized vcKdV [22, 23]

ut +[α(t)+β (t)x]ux−3cγ(t)uux+2β (t)u+γ(t)uxxx = 0,
(2)
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The generalized modified vcKdV (vcmKdV) model reads
as

ut − [4α(t)−β (t)x]ux+6γ(t)u2 ux+β (t)u−γ(t)uxxx = 0,
(3)

which plays an important role in the field of mathematical
physics and its applications. The well-known modified
KdV and cylindrical mKdV are considered special cases
of model (3) [24, 25, 26, 27, 28].

From the known facts that there are two mathematical
natural constants e− and π-numbers, which have a major
role in mathematics, astronomy and all branches of
physics, their extreme importance is due to the fact that
they form and establish the classical functions:
hyperbolic, exponential, logarithmic, and trigonometric
functions. For instance, the role played by standard
hyperbolic functions in geometry and in astronomical
research. Furthermore, there is another mathematical
constant that appears in modeling process in the
interpretation of phenomena of physical nature called the
Golden Mean, Section, Proportion and Ratio [29,30, 31,
32, 33, 34, 35]. However, we may say that this constant
did not take its real role in explaining phenomena in
mathematics and modern physics. One of the famous and
well-known facts is that the principal symbols of
esotericism are related to golden section. Furthermore, in
modern physics perspective and attitude toward
applications of the golden section and the interconnected
Lucas and Fibonacci numbers seemed to changed rapidly.
The new discoveries and recent researches of modern
science, which were built on the use of golden section, are
of great importance and made a breakthrough in the
development of science. It should be noted that harmony
and chaos are opposites of each other. Referring to
Euclid’s Elements book, we find that he referred to the
geometric problem that is a division of a segment line in
the extreme and middle ratio which called the golden
section problem [29,30, 31, 32, 33, 34, 35]. When finding
a solution to the problem of the golden section, we arrive
at an algebraic equation of the second degree in the form,
x2 = x+ 1. It is known that this equation has two roots.

The positive root α = (1 +
√

5)/2 is called golden
section, or golden proportion or golden mean or golden
ratio.

This manuscript is arranged as: Section 2 explores
and introduces some axioms of the symmetric Fibonacci
trigonometric functions. The Fibonacci Riccati method
for finding explicit solutions for nonlinear differential
models is introduced in Section 3. In sections 4, 5 and 6,
we use the desired method to solve the vcKdV equation
(1), the generalized vcKdV (2) and the generalized
vcmKdV (3). Section (6) is discussion and summery.

2 Definitions, properties, and laws induced by

Fibonacci symmetric trigonometric functions

Using the definitions of trigonometric functions, we can
define the following which depend on the golden ratio,
Fibonacci hyperbolic symmetric sine sFs, Fibonacci
hyperbolic symmetric cosine cFs and Fibonacci
hyperbolic symmetric tangent tFs functions as

sFs(y) =
αy −α−y

√
5

, cFs(y) =
αy +α−y

√
5

,

tFs(y) =
αy −α−y

αy +α−y
.

That have been presented by considering symmetric
representation of Fibonacci hyperbolic functions that
contribute to modern natural sciences, taking into account
the vital role played by the golden ratio in the results of
modern research. In addition, we may define three
functions corresponding to the three functions that were
defined before, Fibonacci hyperbolic symmetric cotan as
cotFs = 1/tFs Fibonacci hyperbolic symmetric sec as
secFs = 1/cFs Fibonacci hyperbolic symmetric cosec as
cscFs = 1/sFs which satisfies the following

cFs2(y)− sFs2 =
4

5
, 1− tFs2(y) =

4

5
secFs2,

cotFs2(y)− 1 =
4

5
cscFs2.

Also, based on the above definitions, we can compute
differential formulas for Fibonacci hyperbolic symmetric
functions as :

d

dy
sFs(y) = cFs(y) ln(α),

d

dy
cFs(y) = sFs(y) ln(α),

d

dy
tFs(y) =

4

5
secFs2(y) ln(α).

We may also give the corresponding definitions of
Fibonacci trigonometric symmetric sTFs, Fibonacci
trigonometric symmetric Cosine cTFs, and Fibonacci
trigonometric symmetric tan tTFs, functions on the form
[32]

sTFs(y) =
α iy −α−iy

i
√

5
, cTFs(y) =

α iy +α−iy

√
5

,

tTFs(y) =
α iy −α−iy

α iy +α−iy
.

Further, we may define Fibonacci trigonometric
symmetric cotan as cotTFs = 1/tTFs Fibonacci
trigonometric symmetric sec as secTFs = 1/cTFs and
Fibonacci trigonometric symmetric cosec as
cscTFs = 1/sTFs which satisfy the following relations
[32]

cTFs2(y)+ sTFs2 =
4

5
, 1+ tTFs2(y) =

4

5
secTFs2,

cotTFs2(y)+ 1 =
4

5
cscTFs2.
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The differential formulas are given as follows:

d

dy
sTFs(y) = cTFs(y) ln(α),

d

dy
cTFs(y) =−sTFs(y) ln(α),

d

dy
tTFs(y) =

4

5
secTFs2(y) ln(α).

3 The variable coefficient Riccati Fibonacci

technique

The basic and principle idea of this technique is based on
finding solutions to desired models as a series in terms of
solutions of the quadratic Riccati differential equation
that are satisfied by Fibonacci trigonometric symmetric
functions.

Taking into consideration a given variable-coefficient
nonlinear differential model

M(u, ux, ut , uxx, uxt , utt , ...) = 0. (4)

Assuming that u(x, t) can be expressed as finite series in
F(ξ ) as

u(x, t) = a0(t) +
n

∑
i=1

ai(t)F i(ξ (x, t));

ξ = ξ (x, t) = g(t)+ f (t)x,

(5)

with n represents highest score of finite series, that will be
calculated by equating the highest derivational term with
nonlinear term(s) in equation (4) and f (t) and g(t) are
optimal functions of t to be computed. The function F(ξ )
have the differential form

F ′(ξ ) = A + BF(ξ )2, ′ ≡ d

dξ
, (6)

with A and B arbitrary constants.
Using (5) with (6) into (4), which enables us to

convert the differential equation (4) into an identity or a
series in F(ξ ). Taking each coefficient of F(ξ ) in the
series to zero produces system of PDEs in ai(t), f (t) and
g(t). Solving this system, then ai(t), f (t) and g(t) can be
calculated by A and B. Using the results in (5), the general
solution of model (4) can be constructed. By choosing
special and appropriate values for the constants A and B
for obtaining the corresponding solution F(ξ ) for the
desired equation (6) in the form of one of symmetric
Fibonacci functions mentioned above.
Case 1: when A = ln(α), B = − ln(α), so (6) possesses
solutions

tFs(ξ ), cotFs(ξ ).

Case 2: when A = ln(α), B = ln(α), so (6) possesses a
solution

tTFs(ξ ).

Case 3: when A = − ln(α), B = − ln(α), so (6) possesses
a solution

cotTFs(ξ ).

Case 4: when A = ln(α)
2

, B = − ln(α)
2

so (6) possesses a
solution

tFs(ξ )

1± secFs(ξ )
.

Case 5: when A = ln(α), B =−4ln(α), so (6) possesses a
solution

tFs(ξ )

1± tFs(ξ )2
.

Case 6: when A = ln(α)
2

, B = ln(α)
2

so (6) possesses a
solution

tTFs(ξ )± secTFs(ξ ),
tTFs(ξ )

1± secTFs(ξ )
,

cscTFs(ξ )− cotTFs(ξ ).

Case 7: when A = ln(α), B = 4ln(α), so (6) possesses a
solution

tTFs(ξ )

1− tTFs(ξ )2
.

Case 8: when A = − ln(α)
2

, B = − ln(α)
2

so (6) possesses a
solution

cotTFs(ξ )± cscTFs(ξ ),
cotTFs(ξ )

1± cscTFs(ξ )
,

secTFs(ξ )− tTFs(ξ ).

Case 9: when A=− ln(α), B =−4ln(α), so (6) possesses
a solution

cotFs(ξ )

1− cotFs(ξ )2
.

Now, we can apply the variable coefficient Fibonacci
Riccati method to a class of vcKdV equations.

4 Explicit analytic solution of the vcKdV

model (1)

Now, we can apply the variable coefficient Fibonacci
Riccati method to the vcKdV equation (1), balancing uxxx

with uux, gives n = 2. Thus, the solution takes the firm

u(x, t) = a0(t)+ a1 F(ξ )+ a2 F(ξ )2, (7)

and we get

ut = a0t + a1A( ft x+ gt)+ [2a2A( ft x+ gt)

+a1t ]F(ξ )+ [a1B( ft x+ gt)+ a2t ]F(ξ )
2

+2a2 B( ftx+ gt)F(ξ )3,

(8)

ux = a1A f + 2a2A f F(ξ )+ a1B f F(ξ )2

+2a2 B f F(ξ )3,
(9)
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uux = a0a1A f +(2a0a2 + a2
1)A f F(ξ )

+ a1(a0B+ 3a2A) f F(ξ )2

+[(2a0a2 + a2
1)B+ 2a2

2A] f F(ξ )3

+ 3a1a2B f F(ξ )4 + 2a2
2B f F(ξ )5,

(10)

uxxx = 2a1A2B f 3 + 16a2A2B f 3F(ξ )

+8a1AB2 f 3F(ξ )2 + 40a2AB2 f 3F(ξ )3

+6a1B3 f 3 F(ξ )4 + 24a2B3 f 3F(ξ )5,

(11)

By substituting (7)- (11) into the vcKdV (1) yields a
system of PDEs with respect to F(ξ ). Solving this system
in ai(t), f (t) and g(t), we find that

a1(t) = 0, f (t) = c,

g(t) =−
∫
[cµ1(t)a0(t)+ 8c3µ2(t)AB+ cµ3(t)B]dt + c0,

a0(t) = [
∫

µ5(t)e
∫

µ4(t)dt dt + c1]e
∫

µ4(t)dt ,

a2(t) =−12c2µ2(t)B
2

µ1(t)
,

(12)

with constraint condition

µ1t(t)µ2(t)− µ2t(t)µ1(t)− µ1(t)µ2(t)µ5(t) = 0, (13)

where c, c0, c1 are constants of integration. Thus, we have
the general solution of the general vcKdV model (1) in the
form

u = {
∫

µ5(t)e
∫

µ4(t)dt dt + c1}e
∫

µ4(t)dt

−12c2µ2(t)B
2

µ1(t)
F(cx+ g(t))2,

(14)

where g(t) is given in (12) and µi(i = 1,2,5) satisfies the
constraint condition (13). By taking the specific value of
the A,B and F(ξ ), we obtain solution of the vcKdV model
(1) as

u1 = a0 −
12c2µ2(t)(lnα)2

µ1(t)
tFs(cx+ g(t))2, (15)

u2 = a0 −
12c2µ2(t)(lnα)2

µ1(t)
cotFs(cx+ g(t))2, (16)

with

g(t) =−
∫
[cµ1(t)a0(t)− 8c3µ2(t)(lnα)2 − cµ3(t) lnα]dt

+c0

and

u3 = a0 −
12c2µ2(t)(lnα)2

µ1(t)
tTFs(cx+ g(t))2, (17)

with g(t) =
−∫

[cµ1(t)a0(t) + 8c3µ2(t)(lnα)2 + cµ3(t) lnα]dt + c0

and

u4 = a0 −
12c2µ2(t)(lnα)2

µ1(t)
cotTFs(cx+ g(t))2, (18)

with g(t) =
−∫

[cµ1(t)a0(t) + 8c3µ2(t)(lnα)2 − cµ3(t) lnα]dt + c0.
We omitted the reminder solutions for simplicity.

5 Explicit solutions of the generalized vcKdV

model (2)

With the aim of obtaining the explicit solution of the
generalized vcKdV equation (2), we first assume that the
form of solution to equation (2) is the same as equation
(7). By substituting (7)- (11) into the vcKdV (2) yields a
system of PDEs with respect to F(ξ ). Solving this system
of equations for ai(t), f (t) and g(t), we find that

a1(t) = 0,

g(t) =−
∫

α(t)β (t)[1+ 8 f (t)2AB− 3ca0(t)]dt + c0,

f (t) = c2e−
∫

β (t)dt , a0(t) = c0e−2
∫

β (t)dt ,

a2(t) =−4 f (t)2B2

c
,

(19)

with c, c0, c1 are integration constants. Thus, we have the
general solution of general vcKdV model (2)

u = c0e−2
∫

β (t)dt − 4 f (t)2B2

c
F( f (t)x+ g(t)), (20)

With f (t) and g(t) are given in (19). By choosing the
different values of the constants A,B and the consistent
function F(ξ ), we obtain the subsequent solutions of
generalized vcKdV equation (2):

u1 = c0e−2
∫

β (t)dt − 4 f (t)2(lnα)2

c
tFs( f (t)x+ g(t)),

(21)

u2 = c0e−2
∫

β (t)dt − 4 f (t)2(lnα)2

c
cotFs( f (t)x+ g(t)),

(22)
with g(t) =−∫

α(t)β (t)[1−8 f (t)2(lnα)2 −3ca0(t)]dt +

c0, f (t) = c2e−
∫

β (t)dt , and

u3 = c0e−2
∫

β (t)dt − 4 f (t)2(lnα)2

c
tTFs( f (t)x+ g(t)),

(23)

u4 = c0e−2
∫

β (t)dt − 4 f (t)2(lnα)2

c
tTFs( f (t)x+ g(t)),

(24)
with g(t) =−∫

α(t)β (t)[1+8 f (t)2(lnα)2 −3ca0(t)]dt +

c0, f (t) = c2e−
∫

β (t)dt . We omitted the reminder solutions
for simplicity.
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6 Discussion and Summary

In conclusion, using the variable coefficient Fibonacci
Riccati, we present explicit solutions of different types of
vcKdV models. These solutions are expressed by the
Fibonacci symmetrical function. Our hopefulness is that
in forthcoming experimental educations these new
solutions will be realized in some fields. In fact, this
current short manuscript is just a commencement study,
due to a wide variety of applications of KdV equations.
The Fibonacci Riccati procedure can be study further
differential nonlinear models.
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