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Abstract: In this paper, a two-parameter generalization of Modified Size-Biased Lehmann Type-II distribution is obtained, 
with the purpose of obtaining a more flexible model relative to the behaviour of hazard rate functions. Various statistical 
properties of this distribution including the density, hazard rate functions, quantile function, mode, moments, incomplete 
moments, moment generating functions, Lorenz, Bonferroni and Zenga curves, Rényi entropy and distribution of 𝑟"# order 
statistics have been derived. The method of maximum likelihood estimation has been used to estimate the parameters of the 
Quadratic Transmuted-Modified Size-Biased Lehmann Type-II distribution and its performance is discussed by following a 
simulation study. Real data sets are presented to demonstrate the effectiveness of the new model.  

Keywords: Quadratic Transmutation; Transmuted Distribution, A new generalization of Lehmann type-II distribution, 
moment generating function, entropy and maximum likelihood estimation. 

1 Introduction 

The procedure of adding new shape parameters to a family of distributions to generate new distributions that are more 
flexible is a well-known technique in the statistical literature, but our main focus in this paper is to present a transmuted -G 
class of distribution that increases the flexibility of the distribution. We first present some well-known generators such as 
the exponentiated G distributions due to Gupta and Kundu [1], Nassar and Eissa [2], [3] and others, the Beta-G 
distributions by Eugene et al. [4], Jones [5], Nadarajah and Kotz [6], [7], Nassar and Nada [8], [9], [10], Nassar and 
Elmasry [11] and Mahmoud et al. [12], Kumaraswamy-G by Cordeiro et al. [13], [14], Cordeiro and de Castro [15], 
Nassar [16], Topp–Leone-G family distributions proposed by Al-Shomrani et al. [17], Nassar and Ibrahem [18], Gamma-
G distributions by Zografos and Balakrishnan [19] and Transmuted Family of Distributions by Shaw and Buckley [20], 
introduced an interesting method of adding new parameter to an existing distribution and named the family as quadratic 
transmuted family (QT-G) of distributions. Many authors considered this transmutation map to generalize some existing 
distributions. 

The quadratic transmuted family distributions proposed by Cordeiro et al. [21], with its cumulative distribution function 
(cdf) and probability density function (pdf) are given by,  

                         𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) − 𝜆𝐺(𝑥).											, 𝜆	 ∈ 	 [−1, 1]	.                                    (1) 

                       𝑓(𝑥) = 61 + 𝜆 − 2𝜆𝐺(𝑥)8𝑔(𝑥)											, 𝜆	 ∈ 	 [−1, 1]	.                                      (2) 

Where 𝐺(𝑥)and	g(x) are the cdf	and	the	pdf	of	the	base	distribution	respectively. 

Many authors considered this transmutation map to generalize some existing distributions. For example, Merovci [22] 
used the transmuted family to introduce the transmuted Lindley distribution, Ashour and Eltehiwy [23] proposed the 
transmuted Lomax distribution, transmuted Ishita distribution by Gharaibeh and Al-Omari [24], transmuted Generalized 
Gamma distribution by Cordeiro et al. [25] and others.    

In this paper, we introduce a two-parameter model, called the Quadratic Transmuted-Modified Size-Biased Lehmann 
Type-II, to extend the Modified Size-Biased Lehmann Type-II model for its importance and usefulness in many practical 
applications.  
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The Modified Size-Biased Lehmann Type-II distribution is developed by Arshad et al. [26] with its (cdf) and (pdf) are 
given by,  

													𝐺(𝑥) = 1 − N OPQ
ORSQ

T
S
	.                                                                                                (3) 

												𝑔(𝑥) = α(α + 1) (OPQ)VWX

(ORYZ)V[X
	.                                                                                        (4) 

where	0	 < 	x	 < 	1	and		α	 > 	0	is	a	shape	parameter. 

The only generalization of the modified size-biased Lehmann type-II (MSBL-II) distribution was the three - parameters 
Kumaraswamy of MSBL-II (Kum–MSBL-II) distribution proposed by Arshad et al. [26].   

2 The Quadratic Transmuted-Modified Size-Biased Lehmann Type-II Distribution   

In this section, we introduce the Quadratic Transmuted-Modified Size-Biased Lehmann Type-II (QT- MSBL-II) 
distribution. Some reliability functions corresponding to the QT- MSBL-II distribution are also discussed. the QT-MSBL-II 
distribution is obtained simply by inserting Equation (3) in Equation (1). Hence, the associated cdf of the QT-MSBL-II 
distribution with two shape parameters takes the form; 

𝐹(𝑥) = (1 + 𝜆) N1 − N OPQ
ORSQ

T
S
T − 𝜆 N1 − N OPQ

ORSQ
T
S
T
.
, 0 < 𝑥 < 1, 𝛼 > 0, 𝜆 ∈ [−1, 1].											(5) 

And The pdf corresponding to Equation (5) is given by  

𝑓(𝑥) = α(α + 1)b1 + 𝜆 − 2𝜆 N1 − N OPQ
ORSQ

T
S
Tc (OPQ)VWX

(ORYZ)V[X
, 0 < 𝑥 < 1, 𝛼 > 0, 𝜆 ∈ [−1, 1].	(6)  

  Plots of the (cdf) (5) for selected values of the QT-MSBL-II distribution are given in Figure 1. It is illustrated that when 
the value of 𝛼 > 1, the graphs of 𝐹(𝑥)  are increasing then constant but when  

 0< 𝛼 < 1	𝑎𝑛𝑑 − 1 < 	𝜆	 < 0, the graphs of 𝐹(𝑥)  are concave up graph. 

 

 
 

 

 
 

Fig.1: Plots of the cumulative distribution function of QT-MSBL-II distribution for some parameter values. 

       (b) 
       (a) 

       (c) 
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We define the hazard rate function of the QT-MSBL-II distribution as follow ℎ(𝑥) = [ORhP.hi(Q)]j(Q)
[OPi(Q)][OPhi(Q)]

	, 

Then the hazard rate function of the QT-MSBL-II distribution (6) is given by  

ℎ(𝑥) = S(SRO)
(ORSQ)(OPQ)

k1 +
h	N XWlX[mlT

m

OPhRh	N XWlX[mlT
mn      , 0 < 𝑥 < 1, 𝛼 > 0, 𝜆 ∈ [−1, 1].	                 (7)   

 

Plots of the hazard rate function (7) of the QT-MSBL-II distribution (6) are given in Figure 2, for selected values of the 
parameters, where we demonstrate the possible shapes of the hazard rate function which include bathtub shape and 
increasing hazard rate.  

                                         
 

 

                     

  

 

 

 

 

 

 

Fig.2: Plots of the hazard rate function of QT-MSBL-II distribution for some parameter values. 

 

      (a)       (b) 

      (d)       (c) 

      (e) 
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Plots of the density function (6) for selected values of the QT-MSBL-II distribution are given in Figure 3., It is observed 
that these plots show great flexibility of the QT-MSBL-II for different values of the shape parameter 𝛼	and	𝜆 . we present 
some possible shapes of the pdf given in (6) including right-skewed shape, asymmetric shape and when the value of 𝛼 ≥
1	and 1 > 𝜆 > 0,	 the graphs of 𝑓(𝑥)  are decreasing. 

 

 
Fig. 3: Plots of the density function of QT-MSBL-II distribution for some parameter values. 

3 Expansions for the QT-MSBL-II distribution 

When determining the mathematical properties, linear combination provides a much more informal method of discussing 
the cdf and pdf than does traditional integral computation. The following binomial expansions is considered: 

		(1 − 𝑧)q = ∑ (−1)s6qs 8(𝑧)
st

suv  , |z| < 1                                                                                (8) 

The pdf of QT-MSBL-II in Equation (6) can be expressed as 

𝑓(𝑥) = α(α + 1)(1 − 𝜆) (OPQ)VWX

(ORYZ)V[X
+ 2𝜆α(α + 1) (OPQ)wVWX

(ORYZ)wV[X
.                                               (9) 

Using the binomial expansion (8) in Equation (9), the infinite linear combinations of pdf is given as follows 

𝑓(𝑥) = α(α + 1)(1 − 𝜆)xy
−𝛼 − 1

𝑖 {𝛼s(1 − 𝑥)SPO𝑥s
t

suv

+ 2𝜆α(α + 1)xy
−2𝛼 − 1

𝑖 {𝛼s(1 − 𝑥).SPO𝑥s.																																										(10)
t

suv

 

The cdf of QT-MSBL-II in Equation (5) can be expressed as 

                                   𝐹(𝑥) = N1 − N OPQ
ORSQ

T
S
T N1 + λN OPQ

ORSQ
T
S
T                                           (11) 

 (a)  (b) 

 (d)  (c) 
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4 Statistical Properties of the QT-MSBL-II distribution 
 In this section, we discuss some statistical properties of the proposed distribution such as 

quantile function, mode, 𝑟}~ moment, moment generating functions, incomplete moment, Lorenz, Bonferroni and Zenga 
curves and Rényi of entropy. 

4.1 Quantile function 

     Theorem 1: 

Let 𝑋 be a random variable following QT-MSBL-II distribution and let	𝑢 ∈ (0,1) where 𝐹(𝑥) = 𝑢	and F(x) is the cdf of 
the QT-MSBL-II distribution. Then the quantile function is given by 

																																										𝑥 = 				
OPb�WXw� P�

(X[�)w
��w

	P	��c

X m�

ORSb�WXw� P�
(X[�)w

��w
	P	��c

X m�
						                                                       (12) 

Proof: 

The quantile function of QT-MSBL-II distribution  𝑥 = 𝐹PO(𝑢), 𝑢 ∈ (0,1) can be obtained by inverting Equation(5) as       

																																							𝐹(𝑥) = (1 + 𝜆) N1 − N OPQ
ORSQ

T
S
T − 𝜆 N1 − N OPQ

ORSQ
T
S
T
.
= 𝑢     

Then                                               

−
𝑢
𝜆 = b1 − y

1 − 𝑥
1 + 𝛼𝑥{

S

c
.

−
(1 + 𝜆)
𝜆 b1 − y

1 − 𝑥
1 + 𝛼𝑥{

S

c	

                                                            
Using complete squares, the last equation can be expressed as 

                    
(1 + 𝜆).

4𝜆. −
𝑢
𝜆 = kb1 − y

1 − 𝑥
1 + 𝛼𝑥{

S

c −
(1 + 𝜆)
2𝜆 n

.

 

Therefore,       

y
1 − 𝑥
1 + 𝛼𝑥{

S

=
𝜆 − 1
2𝜆 − �

(1 + 𝜆).

4𝜆. −
𝑢
𝜆 

Then 

1 − 𝑥 = �
𝜆 − 1
2𝜆 − �

(1 + 𝜆).

4𝜆. 	−	
𝑢
𝜆�

O S�

+ 𝛼�
𝜆 − 1
2𝜆 −�

(1 + 𝜆).

4𝜆. 	−	
𝑢
𝜆�

O S�

𝑥	 

Therefore, the quantile function of order 𝑢 of the QT-MSBL-II distribution is the solution of Equation (12). 

The median of the QT-MSBL-II distribution can be defined at u= 0.5 in Equation (12). 

The QT-MSBL-II distribution is easily simulated from 𝐹(𝑥) in Equation (5) using the form of the quantile function in 
Equation (12). 

4.2 Mode 

      The density function of QT-MSBL-II distribution given in (6) by solving  ��(Q)
�Q

= 0	𝑓𝑜𝑟	𝑥, to obtain the mode of 
Quadratic Transmuted-Modified Size-Biased Lehmann Type-II distribution as follows 

𝑑𝑓(𝑥)
𝑑𝑥 =

𝛼(𝛼 + 1)	(1 − 𝑥)SP.

(1 + 𝛼𝑥)SR. �−2𝜆𝛼(𝛼 + 1) y
1 − 𝑥
1 + 𝛼𝑥{

S

																																																																																																							

+ (2𝛼𝑥 − 2𝛼 − 𝛼. + 1) k1 − 𝜆 + 2𝜆 y
1 − 𝑥
1 + 𝛼𝑥{

S

n�																																			 
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Therefore ��(Q)
�Q

= 0	, 

Then 𝑥 = 1. 

or  

�−2𝜆𝛼(𝛼 + 1) y
1 − 𝑥
1 + 𝛼𝑥{

S

+ (2𝛼𝑥 − 2𝛼 − 𝛼. + 1) k1 − 𝜆 + 2𝜆 y
1 − 𝑥
1 + 𝛼𝑥{

S

n� = 0. 

But we cannot obtain an explicit Form, so we calculate the mode numerically for different values of 𝛼	𝑎𝑛𝑑	𝜆. 

                                     Table 1: Mode for some chosen different values of 𝜶	𝒂𝒏𝒅	𝝀. 

 
The values of 𝛂 and 𝝀 

 
Mode 

α =5 and 𝜆 = 0.5 1 
α = 3	and	𝜆 = 0.5 1 
α = 1	and	𝜆 = 0.5 1 
α = 5	and	𝜆 = −0.5 0.00772 
α = 1	and	𝜆 = −0.5 0.2 
α = 3		and	𝜆 = −0.5 0.018429 
α = 1	and	𝜆 = 1 1 
α = 3	and	𝜆 = 1 1 
α = 5	and	𝜆 = 1 0.999967 
α = 5	and	𝜆 = −1 0.022092 
α = 3	and	𝜆 = −1 0.05521 
α = 1	and	𝜆 = −1 0.5 
α = 0.5	and	𝜆 = 0.5 0.634711 

             

4.3 Moments 

    Theorem 2:      

If X follows the QT-MSBL-II distribution given by the pdf (10), then the r"# moment of X	is given by 

					µ�� 	= (1 − λ)∑ 𝑣s(𝛼)𝐵(𝑖 + 𝑟 + 1, 𝛼) + 2𝜆∑ 𝜔s(𝛼)B(𝑖 + r + 1, 2𝛼)t
suv

t
suv ,                  (13)                              

where 

            

𝑣s(𝛼) = (𝛼 + 1)𝛼sRO6PSPOs 8,			
𝜔s(𝛼) = (𝛼 + 1)𝛼sRO6P.SPOs 8

		B(a, b) = ∫ 𝑡¤POO
v (1 − 𝑡)¥POdt	is	the	beta	function	

¦					                                     (14) 

Proof: 

         The r"# moment of the QT-MSBL-II distribution is given as follows 

                                          µ�� = 𝐸(𝑥¨) = ∫ 𝑥¨𝑓(𝑥)𝑑𝑥	.t
Pt

	
 

From Equation (10), we have 

		µ�� = ©𝑥¨ �α(α + 1)(1 − 𝜆)xy
−𝛼 − 1

𝑖 {𝛼s(1 − 𝑥)SPO𝑥s
t

suv

+ 2𝜆α(α + 1)xy
−2𝛼 − 1

𝑖 { 𝛼s(1 − 𝑥).SPO𝑥s	
t

suv

� 𝑑𝑥
O

v
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Then   

						µ�� = ©(α + 1)(1 − 𝜆)xy
−𝛼 − 1

𝑖 { 𝛼sRO𝑥sR¨(1 − 𝑥)SPO
t

suv

𝑑𝑥
O

v

+ © 2𝜆(α + 1)xy
−2𝛼 − 1

𝑖 {𝛼sRO𝑥sR¨(1 − 𝑥).SPO𝑑𝑥	
t

suv

O

v
 

Therefore, 

						µ�� = (1 − 𝜆)x𝑣s(𝛼)
t

suv

©𝑥sR¨(1 − 𝑥)SPO𝑑𝑥 + 2𝜆x𝜔s(𝛼)
t

suv

© 𝑥sR¨(1 − 𝑥).SPO𝑑𝑥
O

v

O

v

 

This yields the r"# moment given in Equation (13).  

Putting r =1 in Equation (13), we easily obtain the mean of QT-MSBL-II distribution,    

If X follows the QT-MSBL-II distribution given by the pdf (10), the moment generating function (mgf) of X is given by 

𝐸(𝑒}Q) = 1 +x
t¨

𝑟!

t

¨uO

µ��  

4.4 Incomplete moments 

       Theorem 3: 

If X follows the QT-MSBL-II distribution defined in Equation (10), then the 𝑛}~incomplete moments denoted as 𝑚(𝑧) is 
given by 

𝑚(𝑧) = (1 − λ)∑ 𝑣s(𝛼)𝐵(𝑧, 𝑖 + 𝑛 + 1, 𝛼) + 2𝜆∑ 𝜔s(𝛼)B(z, 𝑖 + n + 1, 2𝛼)t
suv

t
suv ,       (15)       

where 

𝑣s(𝛼), 𝜔s(𝛼)is	defined	in	Equation	(14)
and	also	B(a, b) = ∫ 𝑡¤PO±

v (1 − 𝑡)¥POdt	is	the	incomplete	beta	function	²																							(16) 

Proof  

   The	𝑛}~incomplete moments denoted as	𝑚(𝑧) can be obtained as follows:  

𝑚(𝑧) = © 𝑥𝑓(𝑥)𝑑𝑥
±

Pt
 

From Equation (10), we have 

𝑚(𝑧) = ©𝑥 �α(α + 1)(1 − 𝜆)xy
−𝛼 − 1

𝑖 {𝛼s(1 − 𝑥)SPO𝑥s
t

suv

+ 2𝜆α(α + 1)xy
−2𝛼 − 1

𝑖 {𝛼s(1 − 𝑥).SPO𝑥s	
t

suv

� 𝑑𝑥
±

v

 

Then 

𝑚(𝑧) = ©(α + 1)(1 − 𝜆)xy
−𝛼 − 1

𝑖 { 𝛼sRO𝑥sR(1 − 𝑥)SPO
t

suv

𝑑𝑥
±

v

+ © 2𝜆(α + 1)xy
−2𝛼 − 1

𝑖 {𝛼sRO𝑥sR(1 − 𝑥).SPO𝑑𝑥	
t

suv

±

v
 

Therefore, 	

𝑚(𝑧) = (1 − 𝜆)x𝑣s(𝛼)
t

suv

©𝑥sR(1 − 𝑥)SPO𝑑𝑥 + 2𝜆x𝜔s(𝛼)
t

suv

© 𝑥sR(1 − 𝑥).SPO𝑑𝑥
±

v

±

v

 

This yields the 𝑛}~incomplete moments given in Equation (15).  
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4.5 Lorenz, Bonferroni, and Zenga curves  

      Lorenz, Bonferroni and Zenga curves are important applications for the first incomplete moments. These curves are 
useful in many fields such as medicine, insurance, reliability, demography and economics. The Lorenz, Bonferroni and 
Zenga curves are defined, respectively, as follows: 

       𝐿(𝐹(𝑧)) = O
´(±) ∫ 𝑥𝑓(𝑥)𝑑𝑥 = 	µX(±)

¶X·
±
Pt   ,    𝐵6𝐹(𝑧)8 = ¸(¹(±))

¹(±)
  

and					𝐴(𝑧) = 1 − »W(±)
»[(±)

 

where    𝑀P(𝑧) = O
¹(±) ∫ 𝑥𝑓(𝑥)𝑑𝑥	±

Pt ,		𝑀R(𝑧) = O
OP¹(±) ∫ 𝑥𝑓(𝑥)𝑑𝑥t

±  

Therefore, using Equations (15) and (13), we obtain the Lorenz curve as follows   

     

 						𝐿6𝐹(𝑧)8 = (OP½) ∑ ¾¿(S)À(±,sR.,S)R.h∑ Á¿(S)Â(Ã,sR.,.S)
Ä
¿ÅÆ

Ä
¿ÅÆ

(OP½)∑ ¾¿(S)À(sR.,S)R.h∑ Á¿(S)Â(sR.,.S)Ä
¿ÅÆ

Ä
¿ÅÆ

,			                                                 (17) 

From Equations (17) and (5), we find the Bonferroni curve as 

   

   𝐵6𝐹(𝑧)8 = (OP½)∑ ¾¿(S)À(±,sR.,S)R.h∑ Á¿(S)Â(Ã,sR.,.S)
Ä
¿ÅÆ

Ä
¿ÅÆ

		k(ORh)yOPN XWÇX[mÇT
m
{PhyOPN XWÇX[mÇT

m
{
w
n(OP½)∑ ¾¿(S)À(sR.,S)R.h∑ Á¿(S)Â(sR.,.S)Ä

¿ÅÆ
Ä
¿ÅÆ

,							(18)		 

Hence, the Zenga curve can be defined as follows  

 

𝐴(𝑧) = 1 − È
ÉOP	k(ORh)yOPN XWÇX[mÇT

m
{PhyOPN XWÇX[mÇT

m
{
w
n²(OP½) ∑ ¾¿(S)À(±,sR.,S)R.h ∑ Á¿(S)Â(Ã,sR.,.S)Ä

¿ÅÆ
Ä
¿ÅÆ

k(ORh)yOPN XWÇX[mÇT
m
{PhyOPN XWÇX[mÇT

m
{
w
n(OP½)∑ ¾¿(S)[À(sR.,S)PÀ(±,sR.,S)]R.h ∑ Á¿(S)[Â(sR.,.S)PÂ(Ã,sR.,.S)]Ä

¿ÅÆ
Ä
¿ÅÆ

Ê,	                                                                                                                                                                   

                                                                                                                                                  (19) 

where 

𝑀P(𝑧) = (OP½)∑ ¾¿(S)À(±,sR.,S)R.h∑ Á¿(S)Â(Ã,sR.,.S)
Ä
¿ÅÆ

Ä
¿ÅÆ

k(ORh)yOPN XWÇX[mÇT
m
{PhyOPN XWÇX[mÇT

m
{
w
n

	  

 

and 𝑀R(𝑧) = (OP½) ∑ ¾¿(S)[À(sR.,S)PÀ(±,sR.,S)]R.h∑ Á¿(S)[Â(sR.,.S)PÂ(Ã,sR.,.S)]
Ä
¿ÅÆ

Ä
¿ÅÆ

ÉOP	k(ORh)yOPN XWÇX[mÇT
m
{PhyOPN XWÇX[mÇT

m
{
w
n²

	.  

4.6 Rényi entropy 

      The entropy of a random variable represents the amount of variation of the uncertainty.                                                                                                            
The Rényi entropy has broad applications in different areas such as statistics, physics and ecology as the index of 
diversity. Rényi [27] entropy of X is described by;   

                                                    𝐽Ì(𝜉) =
O

OPÎ
log6𝐼(𝜉)8,  

where    𝐼(𝜉) = ∫𝑓Î(𝑥)𝑑𝑥	,  𝜉 > 0, 𝑎𝑛𝑑	𝜉 ≠ 1.  

Using this notion, we deduce the Rényi entropy of a random variable following the QT-MSBL-II pdf (6), in Theorem 4. 

Theorem 4: 

Let X be a continuous random variable following the QT-MSBL-II distribution given by Equation (6). The Rényi entropy 
of X is given by  

𝐽Ì(𝜉) = (1 − 𝜉)PO Ñ𝜉 log(𝛼) + 𝜉 log(𝛼 + 1) +		 logÒ∑ ∑ ∇s,Ô(𝛼, 𝜆, 𝜉)𝐵(𝑗 + 1, 𝜉𝛼 + 𝛼𝑖 − 𝜉 + 1)t
Ôuv

Î
suv Ö×                     (20) 
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where 

∇s,Ô(𝛼, 𝜆, 𝜉) = (1 − 𝜆)ÎPO(2𝜆)s𝛼Ô y
𝜉
𝑖{ y

−(𝜉𝛼 + 𝛼𝑖 + 𝜉)
𝑗 {. 

Proof: 

Setting the pdf of QT-MSBL-II (6) in the definition of Rényi entropy given above, we have   

𝑓Î(𝑥) = αÎ(α + 1)Î b1 − 𝜆 + 2𝜆 y
1 − 𝑥
1 + 𝛼𝑥{

S

c
Î (1 − 𝑥)ØYPØ

(1 + αx)ØYRØ
 

The last equation can be written by following the binomial expansion in Equation (8) and it given as follows 

𝑓Î(𝑥) = αÎ(α + 1)Îxx(1 − 𝜆)ÎPO(2𝜆)s𝛼Ô y
𝜉
𝑖{ y

−(𝜉𝛼 + 𝛼𝑖 + 𝜉)
𝑗 {

t

Ôuv

Î

suv

𝑥Ô(1 − 𝑥)ØYRYÙPØ 

𝐼(𝜉) = αÎ(α + 1)Î ∑ ∑ (1 − 𝜆)ÎPO(2𝜆)s𝛼Ô6Îs8 N
P(ÎSRSsRÎ)

Ô Tt
Ôuv

Î
suv ∫ 𝑥Ô(1 − 𝑥)ØYRYÙPØ𝑑𝑥O

v 				            

𝐼(𝜉) = αÎ(α + 1)Î ∑ ∑ (1 − 𝜆)ÎPO(2𝜆)s𝛼Ô6Îs8 N
P(ÎSRSsRÎ)

Ô Tt
Ôuv

Î
suv 𝐵(𝑗 + 1, 𝜉𝛼 + 𝛼𝑖 − 𝜉 + 1)	      

Then  

   𝐼(𝜉) = αÎ(α + 1)Î ∑ ∑ ∇s,Ô(𝛼, 𝜆, 𝜉)t
Ôuv

Î
suv 𝐵(𝑗 + 1, 𝜉𝛼 + 𝛼𝑖 − 𝜉 + 1)	         

Finally, the Rényi entropy can be expressed as in Equation (20). 

5 Order statistics 

In reliability analysis and life testing of a component in quality control, order statistics and its moments are considered 
worthy measures. Let XO:Ü ≤ X.:Ü ≤ ⋯ ≤ XÜ:Übe the order sample from a continuous population with pdf	f(x)	and 
cdf	F(x). The pdf of Xà:Ü, the	k"# order statistic is given by  

       𝑓âã:ä(𝑥) =
µ!

(åPO)!(µPå)!
𝑓(𝑥)[𝐹(𝑥)]åPO[1 − 𝐹(𝑥)]µPå				; 𝑘 = 1,2, … ,𝑚.                      (21) 

     The pdf of the 𝑘}~order QT-MSBL-II random variable 𝑋å:µcan be obtained using Equations (9) and (11) in (21),  

𝑓âã:ä(𝑥) =
𝑚! 	𝛼(𝛼 + 1)

(𝑘 − 1)! (𝑚 − 𝑘)!	éb1 − y
1 − 𝑥
1 + 𝛼𝑥{

S

cb1 + λ y
1 − 𝑥
1 + 𝛼𝑥{

S

cê
åPO

 

b1 − kb1 − y
1 − 𝑥
1 + 𝛼𝑥{

S

cb1 + λ y
1 − 𝑥
1 + 𝛼𝑥{

S

cnc
µPå

k(1 − 𝜆)
(1 − 𝑥)YPO

(1 + αx)YRO + 2𝜆
(1 − 𝑥).YPO

(1 + αx).YROn 

Using the binomial expansion (8), we obtain   

𝑓âã:ä(𝑥) =
𝑚! 	𝛼(𝛼 + 1)

(𝑘 − 1)! (𝑚 − 𝑘)!xy
𝑚 − 𝑘
𝑖 { (−1)s b1 − y

1 − 𝑥
1 + 𝛼𝑥{

S

c
åRsPOt

suv

b1 + λ y
1 − 𝑥
1 + 𝛼𝑥{

S

c
åRsPO

 

																																																										k(1 − 𝜆)
(1 − 𝑥)YPO

(1 + αx)YRO + 2𝜆
(1 − 𝑥).YPO

(1 + αx).YROn 

Therefore by using the binomial expansion (8), we have the pdf of the 𝑘}~ order QT-MSBL-II random variable 𝑋å:µ	is as 
follows 

𝑓âã:ä(𝑥) =
𝑚! 	𝛼(𝛼 + 1)

(𝑘 − 1)! (𝑚 − 𝑘)! x y
𝑚 − 𝑘
𝑖 { y

𝑘 + 𝑖 − 1
𝑗 { y

𝑘 + 𝑖 − 1
𝑠 { (−1)sRÔ𝜆ì y

1 − 𝑥
1 + 𝛼𝑥{

S(ÔRì)t

s,Ô,ìuv

 

																																																									∗ Ò(1 − 𝜆) (OPQ)VWX

(ORYZ)V[X
+ 2𝜆 (OPQ)wVWX

(ORYZ)wV[X
Ö                                     (22)                

Then, the pdf of the 𝑘}~ order QT-MSBL-II random variable 𝑋å:µ	in Equation (22) can written as 
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𝑓(𝑥) = µ!	S(SRO)
(åPO)!(µPå)!

î∑ 6µPås 8 NåRsPOÔ T 6åRsPOì 8(−1)sRÔ𝜆ì(1 − 𝜆) (OPQ)m(ï[ð[X)WX

(ORSQ)m(ï[ð[X)[X
t
s,Ô,ìuv +

																									2∑ 6µPås 8 NåRsPOÔ T 6åRsPOì 8(−1)sRÔ𝜆ìRO (OPQ)m(ï[ð[w)WX

(ORSQ)m(ï[ð[w)[X
t
s,Ô,ìuv ñ                           (23) 

Also, the	𝑛}~moment for the 𝑘}~order statistic with pdf 𝑓âã:ä(𝑥) is given by 

𝜇å:µ
() = © 𝑥	𝑓å:µ(𝑥)𝑑𝑥

t

Pt
 

Then , the 𝑛}~moment for the 𝑘}~order QT-MSBL-II random variable 𝑋å:µcan be obtained using Equation (23) 

𝜇å:µ
() = µ!	S(SRO)

(åPO)!(µPå)!
î∑ 6µPås 8 N

åRsPO
Ô T 6åRsPOì 8(−1)sRÔ𝜆ì(1 − 𝜆) ∫ 𝑥O

v
(OPQ)m(ï[ð[X)WX

(ORSQ)m(ï[ð[X)[X
𝑑𝑥t

s,Ô,ìuv +

																									2∑ 6µPås 8 NåRsPOÔ T 6åRsPOì 8(−1)sRÔ𝜆ìRO ∫ 𝑥O
v

(OPQ)m(ï[ð[w)WX

(ORSQ)m(ï[ð[w)[X
𝑑𝑥t

s,Ô,ìuv ñ  

By using the binomial expansion (8), we have 

𝜇å:µ
() = µ!	S(SRO)

(åPO)!(µPå)!
ó
(1 − 𝜆)	∑ 6µPås 8 N

åRsPO
Ô T 6åRsPOì 86PS(ÔRìRO)POô 8(−1)sRÔ𝜆ì𝛼ô ∫ 𝑥RôO

v (1 − 𝑥)S(ÔRìRO)PO𝑑𝑥t
s,Ô,ì,ôuv

+2∑ 6µPås 8 NåRsPOÔ T 6åRsPOì 86PS(ÔRìR.)PO¾ 8(−1)sRÔ𝜆ìRO𝛼¾ ∫ 𝑥R¾O
v (1 − 𝑥)S(ÔRìR.)PO𝑑𝑥t

s,Ô,ì,¾uv

õ  

which yields the 𝑛}~moment of 𝑋å:µ given by 

𝜇å:µ
() = µ!	S(SRO)

(åPO)!(µPå)!
k
(1 − 𝜆)	∑ 𝑁s,Ô,ì,ô(𝜆, 𝛼)	𝐵6𝑛 + 𝑙 + 1, 𝛼(𝑗 + 𝑠 + 1)8t

s,Ô,ì,ôuv

+2∑ 𝛾s,Ô,ì,¾(𝜆, 𝛼)𝐵6𝑛 + 𝑣 + 1, 𝛼(𝑗 + 𝑠 + 2)8t
s,Ô,ìuv

n  

 

where 𝑁s,Ô,ì,ô(𝜆, 𝛼) = 	 6µPås 8 N
åRsPO
Ô T 6åRsPOì 86PS(ÔRìRO)POô 8(−1)sRÔ𝜆ì𝛼ô and 

		𝛾s,Ô,ì,¾(𝜆, 𝛼)	=6µPås 8 NåRsPOÔ T 6åRsPOì 86PS(ÔRìR.)PO¾ 8(−1)sRÔ𝜆ìRO𝛼¾ . 

6 Estimation of Parameters 

In this section, we describe the maximum likelihood estimators (MLEs) and the observed information matrix of the QT-
MSBL-II distribution. Let	𝑋O, 𝑋., … , 𝑋 be an independent random sample from the QT-MSBL-II distribution, then the 
log-likelihood function is given by  

𝑙 = 𝑛Log[𝛼] + 𝑛Log[𝛼 + 1] + ∑ Log Ò1 − 𝜆 + 2𝜆 N OPQ¿
ORSQ¿

T
S
Ö

suO + (𝛼 − 1)∑ Log[1 − 𝑥s]
suO − (𝛼 + 1)∑ Log[1 + 𝛼𝑥s]

suO                                                                                                                 
(24)    

Then 
úô
úS
= 

S
+ 

SRO
+û Log[1 − 𝑥s]


suO − ∑ Log[1 + 𝛼𝑥s]

suO − (𝛼 + 1)∑ Q¿
ORSQ¿


suO +

∑
.hy

XWl¿
X[ml¿

{
m
yüýþî

XWl¿
X[ml¿

ñP
ml¿

X[ml¿
{

OPhR.hy
XWl¿
X[ml¿

{
m


suO 																																																																																																																						(25)	                                      

úô
úh
= ∑

POR.y
XWl¿
X[ml¿

{
m

OPhR.hy
XWl¿
X[ml¿

{
m


suO                                                                                                                     (26) 

The MLEs 6𝛼ÿ, 𝜆!8of the parameters (𝛼, 𝜆) are obtained by solving the system of nonlinear Equations (25) and (26). These 
equations cannot be solved analytically, but can be solved using numerical techniques such as Newton-Raphson method. 
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7 Applications 

In this section, we use real data sets. The data collected from type 2 diabetic patients on oral hypoglycemic medications 
(ionized Mg levels) of a random sample of 60 patients given by Walaa Reda Badr et al. [28] as:  0.74, 0.93, 0.799, 0.95, 
0.84, 0.815, 0.93, 0.96, 0.815, 0.894, 0.86,0.95, 0.85, 0.68, 0.93, 0.95, 0.77, 0.77, 0.894, 0.62, 0.84, 0.71, 0.91, 0.76, 0.76, 
0.77, 0.83, 0.894, 0.776, 0.574, 0.78, 0.87, 0.95, 0.934, 0.776, 0.618, 0.85, 0.91, 0.776, 0.894, 0.736, 0.776, 0.89, 0.62, 
0.65, 0.776, 0.58, 0.81, 0.94, 0.73, 0.81, 0.77, 0.89, 0.85, 0.89, 0.934, 0.93, 0.776, 0.76, 0.91. 

We use this data set to compare the fit of the new distribution, Quadratic Transmuted modified size-biased Lehmann 
Type-II distribution (QT-MSBL-II) with Lehmann Type-I and II distributions (L-I-II) (Lehmann [29]). First, we obtain the 
maximum likelihood estimates (MLEs) for the unknown parameters of each distribution and then compare the results of 
different criteria like AIC (Akaike information criterion), AICC (corrected Akaike information criterion), CAIC 
(consistent Akaike information criterion) and BIC (Bayesian information criterion), 

where, 

𝐴𝐼𝐶 = 2𝐾 − 2𝑙  

AICC = 𝐴𝐼𝐶 + .å(åRO)
PåPO

,  

𝐶𝐴𝐼𝐶 = .å
PåPO

− 2𝑙,  

𝐵𝐼𝐶 = 𝑘 𝑙𝑜𝑔 𝑛 − 2𝑙,  

where 𝑙 denotes the log – likelihood function evaluated at MLEs, 𝑘	 is the number of parameters and 𝑛		is the sample size. 

     The best model corresponds to the lowest AIC, AICC, CAIC and BIC values. 

Table 2: MLEs for QT-MSBL-II, L-I, L-II models and the statistics AIC, AICC, CAIC, BIC for the data set 

Model 𝛼ÿ 𝜆! −ℓ AIC AICC CAIC BIC 

QT-MSBL-II 0.329608 0.35967 -7.40141 -10.8028 -10.5922 -10.5922 -11.2465 

L-I 4.82299 ------ 738.345 1478.69 1478.75 1478.75 1478.468 

L-II 0.530826 ------ 37.2163 76.4326 76.536 76.501 76.2107 

The minimum value of the goodness-of-fit is the criteria of the better fit mode that QT-MSBL-II distribution perfectly 
satisfies. Hence, we support that the QT-MSBL-II distribution is a better fit model among all of its competitors. 

8 Simulation 

In this section, a Monte Carole simulation that evaluates the MLEs of the QT-MSBL-II distribution by the following 
algorithm is presented. 

Step -1 We generate a random sample of sizes n = 50, 100, 200, 400, and 500, respectively. 

Step -2 Each sample is simulated 1000 times and results are listed in Tables 3. 

Step -3 Table 3 presents the summarized results of bias and Mean squared error. 

Step -4 The required results are obtained based on the different combinations of the model parameters place in SET-1 
(𝛼 = 1, 𝜆 = 1), SET-2 (𝛼 = 1, 𝜆 = −1), SET-3 (𝛼 = 3	, 𝜆 = 0.5), and SET-4 (𝛼 = 0.5	, 𝜆 = −0.3), which are shown in 
Tables 3. 

Step -5   It can be observed from Table 3 that there is a gradual decrease in bias and Mean squared error, with the increases 
in sample size, respectively. 

The measures including bias and Mean squared error are given as follows:     

              Bias6𝜃)8 = O
*
∑ (𝜃) − 𝜃)*
suO  and  M.S.E(𝜃))	= O

*
∑ (𝜃) − 𝜃).*
suO . 
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Table 3: Bias and Mean squared error. 

                                            

9 Conclusion  

In this article, we proposed a new distribution namely the Quadratic Transmuted modified size-biased Lehmann Type-II 
(QT-MSBL-II) distribution which is considered as a new extension of the modified size-biased Lehmann Type-II 
distribution. We provide a mathematical treatment of the new distribution including the density, hazard rate functions, 
quantile function, mode, 𝑛}~ moment, moment generating functions, incomplete moment, Lorenz, Bonferroni and Zenga 
curves, Rényi entropy and the moments of order statistics. The parameters of the new distribution are estimated by using 
the method of maximum likelihood. Real data set is applied to demonstrate that the Quadratic Transmuted modified size-
biased Lehmann Type-II (QT-MSBL-II) distribution can provide a better fit than the Lehmann Type-I and II distributions. 
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