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Abstract: In this paper, a two-parameter generalization of Modified Size-Biased Lehmann Type-II distribution is obtained,
with the purpose of obtaining a more flexible model relative to the behaviour of hazard rate functions. Various statistical
properties of this distribution including the density, hazard rate functions, quantile function, mode, moments, incomplete
moments, moment generating functions, Lorenz, Bonferroni and Zenga curves, Rényi entropy and distribution of v order
statistics have been derived. The method of maximum likelihood estimation has been used to estimate the parameters of the
Quadratic Transmuted-Modified Size-Biased Lehmann Type-II distribution and its performance is discussed by following a
simulation study. Real data sets are presented to demonstrate the effectiveness of the new model.
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1 Introduction

The procedure of adding new shape parameters to a family of distributions to generate new distributions that are more
flexible is a well-known technique in the statistical literature, but our main focus in this paper is to present a transmuted -G
class of distribution that increases the flexibility of the distribution. We first present some well-known generators such as
the exponentiated G distributions due to Gupta and Kundu [1], Nassar and Eissa [2], [3] and others, the Beta-G
distributions by Eugene et al. [4], Jones [5], Nadarajah and Kotz [6], [7], Nassar and Nada [8], [9], [10], Nassar and
Elmasry [11] and Mahmoud et al. [12], Kumaraswamy-G by Cordeiro et al. [13], [14], Cordeiro and de Castro [15],
Nassar [16], Topp—Leone-G family distributions proposed by Al-Shomrani et al. [17], Nassar and Ibrahem [18], Gamma-
G distributions by Zografos and Balakrishnan [19] and Transmuted Family of Distributions by Shaw and Buckley [20],
introduced an interesting method of adding new parameter to an existing distribution and named the family as quadratic
transmuted family (QT-G) of distributions. Many authors considered this transmutation map to generalize some existing
distributions.

The quadratic transmuted family distributions proposed by Cordeiro et al. [21], with its cumulative distribution function
(cdf) and probability density function (pdf) are given by,

F(x) = (1+DG(x) — AG(x)? A € [-1,1]. (D)
fO)=(1+2-226(x))g(x) A € [-1,1]. 2
Where G (x)and g(x) are the cdf and the pdf of the base distribution respectively.

Many authors considered this transmutation map to generalize some existing distributions. For example, Merovci [22]
used the transmuted family to introduce the transmuted Lindley distribution, Ashour and Eltehiwy [23] proposed the
transmuted Lomax distribution, transmuted Ishita distribution by Gharaibeh and Al-Omari [24], transmuted Generalized
Gamma distribution by Cordeiro et al. [25] and others.

In this paper, we introduce a two-parameter model, called the Quadratic Transmuted-Modified Size-Biased Lehmann
Type-I1, to extend the Modified Size-Biased Lehmann Type-II model for its importance and usefulness in many practical
applications.
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The Modified Size-Biased Lehmann Type-II distribution is developed by Arshad et al. [26] with its (cdf) and (pdf) are
given by,

=1 ()" g
9 = a(a+ D ()

where0 < x < land a > 0isashape parameter.

The only generalization of the modified size-biased Lehmann type-II (MSBL-II) distribution was the three - parameters
Kumaraswamy of MSBL-II (Kum—-MSBL-II) distribution proposed by Arshad et al. [26].

2 The Quadratic Transmuted-Modified Size-Biased Lehmann Type-II Distribution

In this section, we introduce the Quadratic Transmuted-Modified Size-Biased Lehmann Type-II (QT- MSBL-II)
distribution. Some reliability functions corresponding to the QT- MSBL-II distribution are also discussed. the QT-MSBL-II
distribution is obtained simply by inserting Equation (3) in Equation (1). Hence, the associated cdf of the QT-MSBL-II
distribution with two shape parameters takes the form;

F(x) = (1+/1)(1—(1_x)a)—/1(1—(1_x)a)2,0<x<1,a>0,/1€ 11 ()

1+ax 1+ax

And The pdf corresponding to Equation (5) is given by

1+ax (1+ax)ot+1’

FOO) = a(a+ 1) (1 +1-24(1- (7= )a)> D" g<x<la>021€[-11].(6)

Plots of the (cdf) (5) for selected values of the QT-MSBL-II distribution are given in Figure 1. It is illustrated that when
the value of a > 1, the graphs of F(x) are increasing then constant but when

0<a<land —1< A <0, the graphs of F(x) are concave up graph.
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Fig.1: Plots of the cumulative distribution function of QT-MSBL-II distribution for some parameter values.
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We define the hazard rate function of the QT-MSBL-II distribution as follow h(x) = % ,

Then the hazard rate function of the QT-MSBL-II distribution (6) is given by

a(a+1) 4 (11+_;x)a
= A Lo<x<ta>021€[-1,1]
h(x) (1+ax)(1-x) [1 + 12 () <x a> [ ] 7

Plots of the hazard rate function (7) of the QT-MSBL-II distribution (6) are given in Figure 2, for selected values of the
parameters, where we demonstrate the possible shapes of the hazard rate function which include bathtub shape and
increasing hazard rate.
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Fig.2: Plots of the hazard rate function of QT-MSBL-II distribution for some parameter values.
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Plots of the density function (6) for selected values of the QT-MSBL-II distribution are given in Figure 3., It is observed

that these plots show great flexibility of the QT-MSBL-II for different values of the shape parameter & and A . we present

some possible shapes of the pdf given in (6) including right-skewed shape, asymmetric shape and when the value of a >
land 1 > A > 0, the graphs of f(x) are decreasing.
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Fig. 3: Plots of the density function of QT-MSBL-II distribution for some parameter values.
3 Expansions for the QT-MSBL-II distribution

When determining the mathematical properties, linear combination provides a much more informal method of discussing
the cdf and pdf than does traditional integral computation. The following binomial expansions is considered:

1-2)f =32,-D'())@" . Izl <1 ®)
The pdf of QT-MSBL-II in Equation (6) can be expressed as

(l_x)tx—l (1_x)20L—1
f(X) = (X((X + 1)(1 - A)m + ZA(X((X + 1) m. (9)

Using the binomial expansion (8) in Equation (9), the infinite linear combinations of pdf is given as follows

F) = ala+ 1)(1 — A)i (_“i_ 1) ai(1 — x)*1xi

o (20— 1\ .
+ 2Aa(a+ 1) Z ( ; ) at(1 —x)2e-1xt,
i=0

(10)
The cdf of QT-MSBL-II in Equation (5) can be expressed as
_ 1-x \% 1-x \*

F(x) - (1 B (1+ax) ) (1 + )\(1+ax) ) (11)
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4 Statistical Properties of the QT-MSBL-II distribution

In this section, we discuss some statistical properties of the proposed distribution such as

quantile function, mode, 7" moment, moment generating functions, incomplete moment, Lorenz, Bonferroni and Zenga
curves and Rényi of entropy.

4.1 Quantile function
Theorem 1:

Let X be a random variable following QT-MSBL-II distribution and letu € (0,1) where F(x) = u and F(x) is the cdf of
the QT-MSBL-II distribution. Then the quantile function is given by

> Ya
1_<,1—1 (1+1) g)

22 N 422 2

x = . (12)
14al 221 a+1)? u
Y a2 7

Proof:
The quantile function of QT-MSBL-II distribution x = F~1(u), u € (0,1) can be obtained by inverting Equation(5) as

2

F(x):(1+,1)(1—(1"‘)“)—,1(1—(1"‘)“) =u

1+ax 1+ax
u L (1—x)“2 1+21 1 (1—x)“
P 1+ ax A 1+ ax
Using complete squares, the last equation can be expressed as

A+ u_ 1-x\% @@+
422 _I_Kl_(uax))_ 21

(1—x)“_/1—1 aA+20)? u
1+ax) 21 42 A

Ya Ya
D P W (R N EEE S (T
i Y) 412 “\ 22 40 2]

Therefore, the quantile function of order u of the QT-MSBL-II distribution is the solution of Equation (12).
The median of the QT-MSBL-II distribution can be defined at u= 0.5 in Equation (12).

Then

Therefore,

Then

>

The QT-MSBL-II distribution is easily simulated from F(x) in Equation (5) using the form of the quantile function in
Equation (12).
4.2 Mode

as(

The density function of QT-MSBL-II distribution given in (6) by solving ?x) = 0 for x, to obtain the mode of

Quadratic Transmuted-Modified Size-Biased Lehmann Type-II distribution as follows

df(x) a(e+1) (1—x)*? 1—x\“
dx (1 + ax)a+2 [—2/10(((1 +1 (1 + ax)

1—x\“
+ Qax —2a—a?+1) 1—/1+2/1( )
1+ ax

© 2023 NSP
Natural Sciences Publishing Cor.



1430 N SS ¥ M. Ibrahem et.al.: Quadratic Transmuted Modified ...
()

Therefore artx 0,
dx

Then x = 1.

or

a

1—x
) +(2ax—2a—a2+1)[1—/1+2/1(
1+ ax

11+_ ;x)“H =0

But we cannot obtain an explicit Form, so we calculate the mode numerically for different values of a and A.

[—2/161(0: +1) (

Table 1: Mode for some chosen different values of a and A.

The values of a and A Mode
a=5and 1 =0.5 1
a=3and A1 =0.5 1
a=1landA1=0.5 1
a=>5and A1 =-05 0.00772
a=1land A= -0.5 0.2
a=3 and A =-0.5 0.018429
a=1landd =1 1
a=3and1 =1 1
a=5and1=1 0.999967
a=5and1=-1 0.022092
a=3andA1=-1 0.05521
a=1landAd=-1 0.5
a=0.5and A= 0.5 0.634711
4.3 Moments
Theorem 2:

If X follows the QT-MSBL-II distribution given by the pdf (10), then the r' moment of X is given by
W =1-)Y2vi(@B(i+r+1,a)+21)72,w;(@)B( +r+1,2a), (13)
where
vi(@) = (a + Dat*i (797,
w;(@) = (a + Da*1(7271) (14)
B(a,b) = fol t%1 (1 — t)?~dt is the beta function
Proof:
The r'" moment of the QT-MSBL-II distribution is given as follows
e =E@") = [7 x"f(x)dx.

From Equation (10), we have

1
I — T
o=
0

ala+ 1)1 —2) Z (—ai— 1) al(1—x)* x4+ 22a(a + 1) Z (—Zai B 1) al(1—x)% 1yt ] dx

© 2023 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 12, No. S1, 1425-1437 (2023) / http://www.naturalspublishing.com/Journals.asp % 1431

Then
1 o
—a—1\ . )
W= f(oc +1)(1 - A)Z( . )a‘“x”r(l —x)*ldx
0 i=0 :
1 o —2a—1\ .. .
+ f 2A(a+ 1) Z ( ) ) attixtr(1 — x)2% 1dx
0 i=0 l

Therefore,

© 1 )
1
wo=_>1- A)Z v;(a) f x7FT(1 — x)* tdx + 2/12 a)i(a)f x7T(1 — x)?* dx
- - 0
=0 0 =0

This yields the r'™ moment given in Equation (13).
Putting r =1 in Equation (13), we easily obtain the mean of QT-MSBL-II distribution,
If X follows the QT-MSBL-II distribution given by the pdf (10), the moment generating function (mgf) of X is given by

[ee] tr
E@e™) =1+ ) —u
r=1

4.4 Incomplete moments
Theorem 3:

If X follows the QT-MSBL-II distribution defined in Equation (10), then the n**incomplete moments denoted as m,,(2) is
given by

m,(z) =1 -)X2vi(@)B(z,i+n+1,a)+21)72,w;(@)B(z,i+n+1,2a), (15)
where

v;(a), w;(a)is defined in Equation (14) } 16)

and also B(a,b) = fOZ t%1 (1 — £)’~dt s the incomplete beta function
Proof

The n**incomplete moments denoted as m,,(z) can be obtained as follows:

m,(z) = f

z

x™f(x)dx

From Equation (10), we have

z

> —a—1y . o —2a—1y .
m,(z) = fx" ala+ 1)1 - /1)2 ( ; )a‘(l —x)* x4+ 22a(a + 1)2 ( i )al(l ) ] dx
0 i=0 i=0
Then
z [ee]
—a—1\ . .
m,(z) = f(oc +1)(1 - /I)Z ( . )a‘“x”"(l —x)%1dx
0 i=0 :
z —2a-1\ . .
+ f 2A(a+ 1) Z ( ) ) attlx*n(1 — x)2% 1dx
0 i=0 !
Therefore,

m,(2) =(1-21) ) v;(a) f xH (1 — x)* ldx + ZAZ w;(a) fzx””(l —x)%etdx

i=0

This yields the n**incomplete moments given in Equation (15).
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4.5 Lorenz, Bonferroni, and Zenga curves

Lorenz, Bonferroni and Zenga curves are important applications for the first incomplete moments. These curves are
useful in many fields such as medicine, insurance, reliability, demography and economics. The Lorenz, Bonferroni and
Zenga curves are defined, respectively, as follows:

_ 1z _m@ _ LF@)
L(F(2)) = E) oo xf(x)dx = U B(F(2)) = o)
and A(z)=1- :;Zi
“(2) = — (* tz)= L _(®
where M~(z) = ) d-oo xf(x)dx, M*(z) = ) [ xf(x)dx

Therefore, using Equations (15) and (13), we obtain the Lorenz curve as follows

1-2) 2;’20 vi(@)B(z,i+2,a)+22 2?20 wi(a)B(z,i+2,2a) (17)
A=) X2, vi(@B(i+2,0)+2A X2 w;(@)B(i+2,2a) '

L(F(2) =

From Equations (17) and (5), we find the Bonferroni curve as

1-2) Zz?io vi(@)B(z,i+2,a)+22 21920 wi(a)B(z,i+2,2a)

(1+A)(1—( 1z )a)—/l(l—( 1-2 )“)1(1—702?20 vi(@B(i+2,a)+2A 2  w;(@)B(i+2,2a)

B(F(2)) =

, (18)

1+az 1+az

Hence, the Zenga curve can be defined as follows

{1— [(1+l)(1—( 1-z )a>—1(1—( 1z )a>2]}(1—7\) 3R o Vi(@)B(z,i+2,0)+22 T2 o wi(a)B(z,i+2,2a)

1+az 1+az.

A(z)=1- Z ’
A )(1-(222))-2(1-(222)) |10 52, vi(@)[B(i+2.0)-B(2i+2,2)]+24 T2, w;(a)[B(i+2,20)~B(z,i+2,24)]
1+az 1+az =0 i=0
(19)

where
M~(z) = (1-0) 22, vi(@)B(z,i+2,0)+2A X2 w;(@)B(z,i+2,2a)

- N NN

|aen(1-(52))-2(-(52)) |

and M+ (Z) — 1-20) 22 vi(@)[B(i+2,0)-B(z,i+2,0)]+22 L2, wi(a)[B(i+2,2a)-B(z,i+2,2a)]

[ fonlo-Ga2) a2

}

The entropy of a random variable represents the amount of variation of the uncertainty.
The Rényi entropy has broad applications in different areas such as statistics, physics and ecology as the index of
diversity. Rényi [27] entropy of X is described by;

Jr() = 5 1log(I1(9),

where 1(§) = [ f(x)dx, € >0,and & # 1.

4.6 Rényi entropy

Using this notion, we deduce the Rényi entropy of a random variable following the QT-MSBL-II pdf (6), in Theorem 4.
Theorem 4:

Let X be a continuous random variable following the QT-MSBL-II distribution given by Equation (6). The Rényi entropy
of X is given by

Ja(®) = (=) {£1og(@) + £ logla + 1) + log[f, T,V (0,4, E)B( + Léa +ai — & + 1))} (20)
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where

i j —Ca+ai+
Vij(@,2,8) = (1 - )5 2D)ial (f) ( ¢ j f))-
Proof:
Setting the pdf of QT-MSBL-II (6) in the definition of Rényi entropy given above, we have
1—x )ll ¢ (1 _x)Eot—E
1+ ax (1 + ax)¥+s

FE0) = o (a+ 1)f<1—,1+21(

The last equation can be written by following the binomial expansion in Equation (8) and it given as follows

§ o
- - + ai + . .
F@ =@+ nf Y > a-aitya () (T TY) - g
i=0 j=0 l J
1) = af (a+ 1F B, Bo(1 — D @A) e (§) (TEe+9) 1 i (1 — myberei-td
1(8) = o (a+ DETL_, T2o(1 - D1 2)ial (6) (‘““*1.“”0) B(+1,éa+ai—&+1)
Then
1) = & (a+ DEXE_ T2V (@, 4, ) B( + LEa +ai — & + 1)
Finally, the Rényi entropy can be expressed as in Equation (20).

5 Order statistics

In reliability analysis and life testing of a component in quality control, order statistics and its moments are considered
worthy measures. Let X, < X, < -+ < X.nbe the order sample from a continuous population with pdf f(x) and
cdf F(x). The pdf of X, the k™ order statistic is given by

frem @ = G fIF O L = FEOI™™ 5k =12,..,m. 1)

The pdf of the k**order QT-MSBL-II random variable Xj.,,,can be obtained using Equations (9) and (11) in (21),
_ mla(a+1) 1 (l—x)“ 1+}\(1—x>“ 1
fx’“m(x)_(k—l)!(m—k)! 1+ax 1+ax
1-|(1 (1_x)a 1+A(1_x)a P k) PP k)il
1+ ax 1+ ax ( ) (1 + ax)ot? (1 + ax)?et?
Using the binomial expansion (8), we obtain

© _ _ an k+i-1 _ an k+i-1
Ftim (%) = (kn_l! 10)('(?1:—11)12 (m i k) (-1 (1 B (11+ ;x) ) (1 + 7\(11+ (:x) )

(1 _ x)a—l (1 _ x)Za—l ]

[(1 ) (1 + ax)@+? +22 (1 + ax)2o+1

Therefore by using the binomial expansion (8), we have the pdf of the k" order QT-MSBL-II random variable X.,,, is as
follows

fe () = m! a(a+1) i (m - k) (k + l - 1) (k +i- 1) (_1)”]/15( 1—x )a(j+s)

(k—1)!'(m—-k)! < i j s 1+ ax
1,j,s=0
(l_x)tx—l (l_x)za—1
* [(1 - /1) (1+ax)a+1 +24 (1+ax)2°‘+1] (22)

Then, the pdf of the k" order QT-MSBL-II random variable X,.,,, in Equation (22) can written as

© 2023 NSP
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_ _mia(a+1) m-kY (k+i-1) (k+i-1 i+ (1-x)*UFst-1
F0) = ety o7 () (DR - ) S
1 x)zz(j+s+2)—1

257 U(mi k) (k+]i'—1) (k+si—1) (—1)itips+1 m (23)

Also, the n*"moment for the k" order statistic with pdf fxp.m (%) 1s given by

ue = f X" frm () dx

Then , the nt"moment for the k**order QT-MSBL-II random variable X,,.,,,can be obtained using Equation (23)

! ; ; P _a(+s+1)—
i = Gy [E =) (47 (DM = ) e i +

(k—1)!(m—k)! (1+ax)2U+s+D+1
)a(j+s+2)—1
d

kY (k+i-1\ (k+i-1 i+j 1 (1-x
225 U(mi ) ( Jl ) ( ; )(_I)HMSH fo x" (1+ax)2U+s+2)+1 d
By using the binomial expansion (8), we have

o~ e [0 T () (IR [ (=0
km T (k—1)1(m—k)! +2 Zl] . O(mi—k) (k+]i.—1) (k+si—1) (—a(j+]s]+2)—1) (_1)i+j/15+1a,1/ fol X" (1 — x)a(j+s+2)—1dx

th

which yields the n**moment of X, .,,, given by

L) _ ity (1=2) Xm0 Nijsi L) B(n+ 1+ La(+s+1))
fem = k=Dim=it [ 42 Yis=0Yijsw(A a)B(n+v+1a(+s+2))

where Ni,j,s,l(/L Q) = (mi—k) (k+]i'—1) (k+;'—1)(—a(j+7+1)—1)(_1)i+j/15a1 and
Vean @) =("7) () (DO DA
6 Estimation of Parameters

In this section, we describe the maximum likelihood estimators (MLEs) and the observed information matrix of the QT-
MSBL-II distribution. Let X;, X5, ..., X;, be an independent random sample from the QT-MSBL-II distribution, then the
log-likelihood function is given by

[ = nLog[a] + nLog[a + 1] + YI-, Log [1 — 1421 (11—:;) ] +(@—1)Y% Log[l —x;] — (e + 1) X, Log[1 + ax;]
(24)
Then

a
£=E+ﬁ+ > Log[l—x;] — ¥, Log[l+ ax;] — (@ + 1) I}

a

21 1-x; ax; )
n 1+ax g1+axi 1+ax;

i=1 T\
_ i
RE=T)

=17 rax; 1+ax;

(25)

0 g ol 6)

H i=1 1-x;
()

The MLEs (&, /T)of the parameters (o, 1) are obtained by solving the system of nonlinear Equations (25) and (26). These
equations cannot be solved analytically, but can be solved using numerical techniques such as Newton-Raphson method.
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7 Applications

In this section, we use real data sets. The data collected from type 2 diabetic patients on oral hypoglycemic medications
(ionized Mg levels) of a random sample of 60 patients given by Walaa Reda Badr et al. [28] as: 0.74, 0.93, 0.799, 0.95,
0.84, 0.815, 0.93, 0.96, 0.815, 0.894, 0.86,0.95, 0.85, 0.68, 0.93, 0.95, 0.77, 0.77, 0.894, 0.62, 0.84, 0.71, 0.91, 0.76, 0.76,
0.77, 0.83, 0.894, 0.776, 0.574, 0.78, 0.87, 0.95, 0.934, 0.776, 0.618, 0.85, 0.91, 0.776, 0.894, 0.736, 0.776, 0.89, 0.62,
0.65, 0.776, 0.58, 0.81, 0.94, 0.73, 0.81, 0.77, 0.89, 0.85, 0.89, 0.934, 0.93, 0.776, 0.76, 0.91.

We use this data set to compare the fit of the new distribution, Quadratic Transmuted modified size-biased Lehmann
Type-II distribution (QT-MSBL-II) with Lehmann Type-I and II distributions (L-I-II) (Lehmann [29]). First, we obtain the
maximum likelihood estimates (MLEs) for the unknown parameters of each distribution and then compare the results of
different criteria like AIC (Akaike information criterion), AICC (corrected Akaike information criterion), CAIC
(consistent Akaike information criterion) and BIC (Bayesian information criterion),

where,
AIC = 2K — 21

2k(k+1)
n—k-1’

-2l

AICC = AIC +

CAIC = 22

n—k-1

BIC = klogn — 21,

where [ denotes the log — likelihood function evaluated at MLEs, k is the number of parameters and n is the sample size.
The best model corresponds to the lowest AIC, AICC, CAIC and BIC values.

Table 2: MLEs for QT-MSBL-II, L-1, L-II models and the statistics AIC, AICC, CAIC, BIC for the data set

Model a i —f AIC AICC CAIC BIC

QT-MSBL-II | 0.329608 | 0.35967 | -7.40141 | -10.8028 | -10.5922 | -10.5922 | -11.2465

L-I 482299 |  ------ 738.345 | 1478.69 | 1478.75 | 1478.75 | 1478.468

L-II 0.530826| --—---- 37.2163 | 76.4326 | 76.536 76.501 76.2107

The minimum value of the goodness-of-fit is the criteria of the better fit mode that QT-MSBL-II distribution perfectly
satisfies. Hence, we support that the QT-MSBL-II distribution is a better fit model among all of its competitors.

8 Simulation
In this section, a Monte Carole simulation that evaluates the MLEs of the QT-MSBL-II distribution by the following
algorithm is presented.
Step -1 We generate a random sample of sizes n = 50, 100, 200, 400, and 500, respectively.
Step -2 Each sample is simulated 1000 times and results are listed in Tables 3.
Step -3 Table 3 presents the summarized results of bias and Mean squared error.

Step -4 The required results are obtained based on the different combinations of the model parameters place in SET-1
(e =1,1=1), SET-2 (a = 1,A = —-1), SET-3 (a = 3,1 =0.5), and SET-4 (a = 0.5,1 = —0.3), which are shown in
Tables 3.

Step -5 It can be observed from Table 3 that there is a gradual decrease in bias and Mean squared error, with the increases
in sample size, respectively.

The measures including bias and Mean squared error are given as follows:

Bias(9) =~ %Y, (6 — 6) and M.S.E(d) =~%X, (6 - 6)2.
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Table 3: Bias and Mean squared error.
SET-1 (x=1,1=1)
N @ i Bias(@) Bias(2) M.S.E(@) M.S.E(2)
50 1.13989 0.803667 0.139888 —0.196333 0.0744805 0.184603
100 1.08668 0.868989 0.08668 —0.13101 0.042988 0.0973812
200 1.05446 0.924913 0.0544587 —0.075087 0.0239708 0.0467917
400 1.03986 0.944435 0.0398578 —0.055565 0.0172618 0.0334385
500 1.0447 0.938066 0.0447021 —0.0619339 0.023843 0.0454068
SET-2 (a=1,1=-1)
50 0.986414 —0.944316 —0.013586 0.0556837 0.0093107 0.020277
100 0.993006 —0.96459 —0.00699399 0.03540589 0.00422739 0.00836895
200 0.9937 —0.975558 —0.00629527 0.0244417 0.002057 0.0025218
400 0.99472 —0.98603 —0.00527763 0.0139698 0.001012 0.00085
500 0.995359 —0.984758 —0.00464141 0.0152419 0.0007997 0.000904529
SET-3 (a=3,1=0.5)
50 2.70896 0.747128 —0.291041 0.247128 0.264761 0.131166
100 2.78981 0.673823 —0.210186 0.173823 0.185555 0.103622
200 2.88248 0.594385 —0.117514 0.0943852 0.151014 0.082047
400 2.84906 0.61598 —0.150938 0.11598 0.12095 0.0695848
500 2.88129 0.596686 —0.118708 0.0966863 0.10485 0.0602663
SET-4 (x=0.5,A=-0.3)
50 0.506003 —0.300229 0.0060034 —0.000229 0.010928 0.182535
100 0.496222 —0.270325 —0.0037779 0.0296753 0.00702077 0.124515
200 0.501236 —0.301525 0.00123577 —0.0015247 0.003172 0.0529802
400 0.502113 —0.305801 0.0021127 —0.00580139 0.00138801 0.0240069
500 0.501223 —0.304957 0.00122311 —0.0049571 0.00106207 0.0160509

9 Conclusion

In this article, we proposed a new distribution namely the Quadratic Transmuted modified size-biased Lehmann Type-II
(QT-MSBL-II) distribution which is considered as a new extension of the modified size-biased Lehmann Type-II
distribution. We provide a mathematical treatment of the new distribution including the density, hazard rate functions,
quantile function, mode, n** moment, moment generating functions, incomplete moment, Lorenz, Bonferroni and Zenga
curves, Rényi entropy and the moments of order statistics. The parameters of the new distribution are estimated by using
the method of maximum likelihood. Real data set is applied to demonstrate that the Quadratic Transmuted modified size-
biased Lehmann Type-II (QT-MSBL-II) distribution can provide a better fit than the Lehmann Type-I and II distributions.
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