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Abstract: In this study, we employ Holder’s inequality and the chain rule formula to deduce some Opial fractional inequalities. As a
result, for o¢ = 1, we derive numerous classical Opial type inequalities.
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1 Introduction

Opial in [1], showed that if ¥ € C' [g], ¢] where ¥ (§) >
Oand ¥ (¢) =¥ (g) =0, then

/j = /g (¥ ©) ¢z m

where the constant ¢ /4 is the best one, and if ¥ is real
absolutely continuous on (0, &) with ¥ (0) = 0, then

9] / G [ , 2
[rovele2 ["(¥e) e o
0 0
Also Opial in [1], proved that if ¥ is absolutely

continuous on [0, ;] with ¥(0) =0, 6 >0 and 8 > 1,
then

S1 s ,
[reer|e @
Wherever if ¥ (0) =

[reery @) dé_sﬁﬁ(gl)

6+B

></ v e @

Hua in [2], proved an extension of the inequality (2) as
follows

/gl P )d5<Tg11)/gl

P (&)Y )d5<

B B Sy 5+B
d5<5+ﬁgl/ @ " ag

3)
Y(¢)=0,8>0andf > 1, then

!

v() ds,

(&)

’54-1

where & is a positive integer and ¥ is an absolutely
continuous function with ¥(¢g;) =0, and if d = 1, then
the inequality (5) becomes
[ /
2 1

2 2
L@l @ag < 255 [Pl @) ag @

Yong in [3], generalized the inequality (2) as follows

[wer|e e -

B s [
srpe o)),

where W is absolutely continuous on [g;, & ] with W (¢) =
0.

/

!

v &) ag fors p1, )

Boyd and Wong in [4], proved a generalization of the
inequality (5) as follows

[leew

—HO(QH)/O%(@)W’(&

where ¢ and 6 € C' [0, ¢|] are non-negative functions and
Mo is the smallest eigenvalue of the boundary value
problem

°|¥(&)|ae <

5+1
)) dE, for§>0, (8)
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Beesack and Das in [5], obtained the inequality

[Fo@ P |¥ )| a <

v 61
28 [To@)]¥ @)

where 0, ¢ are non-negative measurable functions on
[61,], ¥ is absolutely continuous on [¢1,&], 65 > 0
and 6+ <0or 6+ > 1, where £ (5,B) is a sharp
constant which depends on ¢, 6, 6 and J3.

Yong in [6], proved that if ¥ is absolutely continuous
on [61,6] with ¥ (g) =0 and ¢ (&) is bounded positive
function then for § > 0 and § > 1, then

dé)

[Fo@mwer|y el s

/

’5+ﬁ

@-a) [Co@]r @ e o

B
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Opial inequality and its extensions have become
currently an important tool in proving the uniqueness and
existence of initial and boundary value problems for
ordinary, partial differential equations and difference
equations, for more details about Opial inequality see;
(121, [41, [71, (81, [91, [10], [11], [12]).

During the last few years, by using the conformable
calculus, authors proved some integral inequalities such
as Hermite-Hadamard type inequalities ([13], [14], [15]),
Chebyshev type inequality [16], Hardy type inequality
[17] and Steffensen type inequality [18].

In this paper, we will prove some conformable
integral inequalities of Opial type. The paper contains two
parts, the first part consists of an introduction about
fundamentals of fractional calculus and the second part
contains the main results.

2 Preliminaries And Basic Lemmas

In this section, we will present briefly some basic
definitions and lemmas on conformable fractional
calculus which can help us to obtain our results; for more
details see; ([4], [19], [20]).

Definition 1.7he conformable derivative of order o of a
Sfunction ¥ : [0, o) — R is defined by

Y(0+e0!—©
Do () = lim 210 +207)
£e—0 &

—¥()

,0<a <.
(10

Definition 2.The conformable integrals of order o of a
Sunction ¥ : [0, o) — R is defined as following

(5w) @)= [

S1

¥ (0)d,0

g
= [ 0% 'Ww(0)de, 0<a<l1, (11)
9

Theorem 1.Let ¥ and Q2 are o.-differentiable with respect
10 g >0, then for o € (0, 1]

1.Do (1 + Q) (q) = 61Da¥ (9) + ©2Da(q) .
2.Dq (¢°) = 8¢°~ %, forall § € R.

3.Dq () =0, for all constant functions ¥(q)=n.
4.Dq (¥Q)(q) = ¥YDaf2 (q)+2Da¥ (q) .

5.Dq (%) (q) = W_

6.Dg¥ (q) =q'~ “dlp ,if ¥ is differentiable.

Lemma 1.Ler Q (q) is o-differentiable with respect to g
and W is differentiable with respect to 2. Then the
fractional derivative chain rule is defined as:

Da¥ (R (q)) = 2% (q) (D¥) (2 (q)) Daf2 (q). (12)

Lemma 2.Let ¥ and Q are o-differentiable with respect
to q on [G1,6], then the fractional integration by parts is
defined as

/g g (Do (4)) @ () durq =

(%))
¥ (q) 2 (q)|2 /g V(@) (DeR (@) deg. (1)

Lemma 3.Let 0 < o < 1 and ¥, Q : [G1, 6] — R. Then the
Holder inequality is defined as

/: ¥ (q)Q ()| daq <

(/:ZHI(CI)PdaCI)%(/:2|.Q(q)|ﬁdaq)%7 (14)

where 1/6+1/B=1and 6 > 1.

3 Main Results

Theorem 2.Let g1, @ € R, 8, B be positive real number
with 8§ > 1, ¢, 8 be non-negative continuous functions on

(61, @), if [C 93P daq < oo and T :[g, @] R is

o-differentiable and Y does not change its sign in (G, ®).
Then we have

(i)/gwf'?(é)lT(ﬁ)laIDaT(i)Iﬁdaé <

1

Z(a, o, 6, ﬁ)/g“’mé)war(éﬁ dot

+25*'|r<g1>|5/:e(é>|Dar<é>|’*da5, (15)
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where

;ZH(gh , 6) ﬁ)

£ | S+B—a ﬁ
X </ aidaq> Aol . a6
Sgoihe (g)

(i) If = O, then

/:Mé)|r(é>|5|Dar<é>|’3daé
E;;za(gla @, 87 B)

< [70(€)1Dat ) du
Sl

+251|r<g1>|5/f¢<é>|Dar<é>|ﬁdaé, (17)
where

cs/ﬂZ(gla , 67 ﬁ)

¥ 1 S+p—o ﬁ
><</ aidaq> A& . as)
T 98- (g)

(iii) If ¢ = 1, then
/:|r<é>|5|0ar<é>|ﬁdaé

< #(5.0.5.8) [ 1Dar (€))7 dat

+257 T (a)° [ IDaY (§)IP dat, (19)
Sl
where
53(9; , 67 ﬁ) =
B
25*'% (w—¢)°. (20)
(6+pB) 5+

Proof.(i) Since Dy 1 does not change sign in (g, @), we
have

T (S =T (el <Y (5)—T(c)l

¢
DqY (q)daq

¢
< |DaY ()| dag- (21)
1

From (21), we get

¢
T ()l < : [DaX (q)|dag+ [T (61)

¢ 1
S 9 (g)

Since ¢ is non-negative on (gj, ®), and using Holder

inequality (14) with indices ngé - and % and where

058 (q)|DaX (q)|daq+|T (g1)].

then

S+B—o
& 1 5+B
T )= (/g mdaq>

& 548 5P
x < o) I0ar @) daq> Tl
v 61
(22)

Since § > 1, by taking the power & for both sides of (22),
we deduce

rE)°
Egﬁﬁa
4 1 +
Sy—
</€1 PP (q)

. (/;mq) DY ()] daq>ﬁ ()

)
. (23)

Applying the inequality

F+ed <(a+a)<
281 (;fﬂf),ifgl, ©>0,8>1.

on the right hand side of (23), we deduce

4
()P <25 (/g —¢;()daq>
1 0+f—a q

ad

< +

([ o@per @ aug)”
G

+257 1 ())°.

3(6+p—a)
5+B

Setting

5 S5+
2(8) = /g | 0(0)|DaX (@)% dag,  (24)
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we see that z(g;) = 0 and

o+

Duz(§) =9 (§)[DaX (§) 7@ > 0. (25)

From (25), we have

58 Dgz(8)

af
Do (g)f = <D¢§—S)) S

From (26), and since 0 is non-negative on (g,

0.(&)|Y (6)|°|DaY (£)IP
<2519 (&) |DaY (£)|F

and

), we get

3(6+p—a)

& 1 5+pB
@ dg
) </€ 0T (g) q)

4 548 %
x < 00 u ()" daq>

+25710 (&) Do (&)P 7 (6)|°

=00 i)

5(5+B-a)

€ | 5+B
dy
: </€ 57 (q) q)

% % (&) (Daz(£)) 77
B

+2710) (222)) .

Integrating the above inequality from ¢; to @, we get

[ 0@ M@ IDar ()P du

o [ [<—>

ad
x 25%F (§) (Daz (&
5(5+ﬁ ] *%

¢
8 (/g. ¢6+ﬁ a

D 5+
+27 1 (g |/ & (%) s

Applying Holder inequality (14) with indices (8 + 3)/6
and (6 + B)/B on the right side of the above integral
inequality, then

/:e@)mé)ﬁ|Dar<é>|‘*daé

= |[o 0 (xg)

<| [ @ 0w a]”

1

+25! |T<c:1>|5_/:9(€> (Dgéf)) ‘%%daé. @7)
Using chain rule (12), we obtain
Dy (zé_EE (5))
—0u (1) (@) Dule(£) ' €)
- DS D) @
2L @ate. (8)

Substituting (28) into (27) and since z(g;)

/:e@)mé)ﬁ|Dar<é>|ﬁdaés

=0, we have

£ ) 0+p—a 5+B
X </ o dtx‘]) dab z(@)
s 95 (q)

s [“oe (P ) T s
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From the above inequality, (24) and (25) , we get then
® ® 5 B
4
[ 6@ @I It (6) dut o [T 1Dal (S)F dat
<1 .
@ 8+ 5P
SZ] (gla , 87ﬁ) ¢(§)|D(XT(§)| “ docé §2571B7(W7€1)6
ol B+
(6+pB)°F

421 () [ 0(8) DT (€)P det.

which is the desired inequality (15).
(i) The proof follows from (i) at ¢ = 0.
(iii) From the chain rule (12), we have

D ((q - €1)5+ﬁ)
=(8+B)(q—)°"P " Da(q—c1)
=(3+B)(g—c)° P g—)" "
=(8+B)(g—a)>P e,

then

/ L.

_C)oh
7(5633); . (29)

From (17) and (18) (where ¢(q) = 1) and using (29), we
get

/:|r<é>|5|0ar<é>|ﬁdaé

. [ [ E-ar e

1)
] 5+B
1

w
x [ DY (&)°*P dgé
Sl

F2 ()P [ IDaY (€)1 du
JG1

(©-)8]
o+p

x /g DT ()PP dyé

+20 ()P [ IDaY €)1 dat,
JG1

® 5+
x /g DY (€)1 dyé
+2571r (g))° : IDaY (&)P dok.

which the required inequality (20).

Corollary 1.In Theorem 3.1, if Y(g1) = 0, the inequality
(15), reduces to

[T @@ per (@) dut <
Zi(e. 0.5.8) [ 9()IDar (£)°F dut.

ifY(c)=0and ¢ = 0, the inequality (17), reduces to

76T @1 ey (€)1 dat <

/Gl

2. 0.8, ﬁ)/f¢<é>|oar<é>|5—5édaé,

and if Y(g1) =0 and ¢ = 0 = 1, the inequality (19),

reduces to

gwlT(é)IS DT ()P dot <

(G, 0, 5, ﬁ)/g“’ DY (8)]°F do,

Corollary 2.In Theorem 3.1, if a = 1, the inequality (15),
reduces to

/:e<5>|r<5>|5\r‘<é>\ﬁdé
§$4(g1a , 5) ﬁ)

< [To@ @) P ag
JG1
+2 @) [T e @) ae.
¢l

where

B
5P

Zi(a, , 8, B)=2%" ((J%ﬁ)
B
x V@%)(ﬁ)
5+B—1 508
: </f mda dé] |
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Based on Theorem (3.1), we obtain the following
result by replacing [g;, ®] by (o, ¢].

Theorem 3.Let @, ¢ € R, 8, B be positive real number
with 8 > 1, ¢, 6 be non-negative continuous functions on

(@, Q). if [£ 0T adyq < oo, and T : [0, G2 — R* be
o-differentiable and Y does not change its sign in (o, G).
Then
2 s B
[ 0@ M )P Ipar &) du
9] S+B
<250, 8.8) [ 9(E)DaT (E)F dat
+2 @) [T I @ dut,  GO)

where
9B

P (0, ¢, 8, B) =251 <%) 545
: {/f@%é)(ﬁ)

. | 5+B—a 5oF
——dqg do ) 31
’ <[é 65574 (q) q) 5] o

Corollary 3.In Theorem 3.2, if Y(g) = 0, the inequality
(30) reduces to

(%) s B
/w 0(&)|Y (&) |DaY ()P dyt <
L(.0.8.5) [ 0(6) DT ()P et

Corollary 4.In Theorem 3.2, if o = 1, the inequality (30)
reduces to

[Feer

62
< L0288 [ 0E[rE

L2 (@) [To@)r @) e,

where
55)

&P &) dg

‘m‘

Zs(0, ¢, 8, B)=25"" (

: [/fe%a ()
) 1 +p-1 5t

() 4

o O,

B
=

Let 2% (8,0) =21 (¢1, 0,8, B) = Z5(0, 6,8, B) <
oo such that % (g1, @, 8, B) and Z5(, 6, 6, B) are given
in Theorems 3.1 and 3.2 and @ is the unique solution of the
equation % (¢, @, 8, B) = %(0, ¢, 8, B). Therefore,

./:29<5>|r<5>|5|0ar<é>|’3da5
— [T 0@ T @) IDaT ()]F dut
+/ E)I° DT (&) dok.

Now we can combine Theorems (3.1) and (3.2) and obtain
the following result.

Theorem 4.Let ¢, € R, 8, B be positive real number
with 8 > 1, ¢, 6 be non-negative continuous functions on

(61, &) provided that fgglquﬁgﬁ%adaq <ooand T :[g,
6] — RT is a-differentiable and T does not change its
signin (61, & ). Then

(i)/:29(~’§)IT(5)|5IDaT(é)Iﬁdai
<z (S,B)/;2¢(§)IDJ(§)I%E o
227 (I @)+ (@))
2
< [T8(©)IDaT (B ot (32)

S1

(ii) If = 6 = lin (32), we have
[ @1 par ) du
<2660 8.B) [ 1DaT ()7 det
#2711 ()P +11 (@)P) [ 1Dal (€)P du
(33)

where

37 (gl; QZ; 5) ﬁ) =
28 5
yo-1_ B (gz—g)_

a5 ip
+p)ot \ 2

(iii) If 6 = B =1 in (33), we have

[T @Dt @)ldu

Q=61 [2
< S /g DT (&)]dot

+<|r<g1>|+|r<gz>|>/:2|Dar<5>|da5. (34)
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Corollary 5.In Theorem 3.3, if Y (1) =0 and Y (&) =0, Applying Holder’s inequality (14) on | (¢)| with indices

the inequality (32) reduces to d0=r1/(t—1)and = 7, we find that
[T 0@ E)P 1T (©)F dut < ‘
Ja o *e = 12(q)| = DeR(0)de6|< | |Daf2(6)|dy6
258 [ 0(6)IDar () dat T or0r 018
LN A o *% =/ (0)9 7 (6)|DaR(0)|de®
fY(G)=01(x) =0 6=06=1, the i lity (33 4L =1 =
lr];du(cils)to (22) ¢ e inequality (33) < (/ (¢n+f (9)) daG)
[ @ par @F aut < <(['or @b ©)Fdu0)
% 5+B 1
Z ’ ’ 65 DOCT Tdoc ) Tl
(01008 B) [ 1D (O du <47 (>(/ 9)
and if Y (61) =Y () = 0, then the inequality (34) reduces < ¢n+r )| Do2 (6 )|Td069>- (37)
fo
%]
I @1Dar (©)]da < As Do (%) = 1. then

2

j(;j; /g g IDaT ()| do.

Corollary 6./n  Theorem 3.3, if a = 1 and 0u[? g% o
Y (1) =Y (g) =0, then inequality (34) reduces to = [? = Tl. (38)
G
L@ @laz < 225 [ @) Pag
G From (38), we get
which is the inequality (6). o1
q s 1 = EE
201= ([ (07 @) auo)
Now, we give some integral inequalities as special wel |
cases from Theorems (3.1), (3.2) and (3.3). </q T . %
07 (6)1Du2 (6)/ "
Sl ’ ’
Theorem S.Let ¢ be a non-negative non-increasing on 1 g% — g = 1
61, ®], T>1, ¢, ® €R, and Q : ¢, ®] — R with <07 (q) “a ut (q),
Q(¢1) =0, then for a € (0, 1] and n > 0, we have
q0) . . then
[ 0@12@1"1Paf (4) deg
1
(1)
T 0% —g*\" re g% —ct\ T g
<(75:) (" o @le@rs (To5) T . o
w
< [ 6(@IPaf @™ " dag. ()
ol Applying chain rule (12), we obtain
ProofLet u(q) = [4 977 (6)|Da(6) deb, for e, it -
2¢ Lo, o] Then Do (" (9)) = (Dat™*) (w(9)) (Dt (4)) u*~" ()
+7\ 1
" . = <" > (¢)Dau(q). (40)
Dou(g) = 977 (q) |Daf2 (q)|" > 0 and u(g1) = 0. (36) t
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Therefore, from (36), (39) and (40), we have

/g "0(9)12 (@) IDa® (9)| dug

O n .t .
=, 077 (q) |2 (q)]" 977 |Da 2 (q)|" dag
1
n(-1)

<[ (@) " it () Dot (q)dag

o

n(-1)

g(“’“‘gla) " [ @ban(a)du

<
i
)

(w).  (41)

_ T 0% —gf* =
n+7t o

Applying (38) and Holder’s inequality (14) on u (®) with
indices 0 = (n+17)/n and B = (n + 1) /7, we find that

u(®) = /g ]“’W(q)waa (@)] dag

o pi
S1

X IA
N
T

e
/N
<

=

+

2l

S

N~—

o)

Q

o)

—

=
—

QU

IS

(N
N——

=
+
2l

IN
7N
S o
IS
Ry |
"2
i~
~~_
=
+
2l

x < R <q>|"”daq) T @
1

Then from (41) and (42), we get

/g I‘°¢<q>|:z (@) 1D (¢)) dag

_ T waigloc n
T\nN+r7T (04

1)
<J. 9(9)|1Da2(q)|""" dag,
1

which the required inequality (35).

Corollary 7.In Theorem 3.4, if a =1, then we obtain

[e@ie@r e @) <

T(w—g)"

- /g1 ¢ (q)]|2'(q)|"" " dq,

which is the inequality (9), if & =1 =n =1, then

[ o102 @)]dg <

Sl
0—q

3 /:¢(q)|9‘(q)\2dq-

and if § (q) =n =1t=0 = 1, then we get

w _ ~ ()
/ 12(q)||2"(q)|dg < wzg / 12\ (q)|* dg,
Gl J Gl

which is the inequality (6).

Theorem 6.Let ¢ be a non-negative and non-decreasing
onlw, @], ®,o R, t>1,andif Q : [0, &] — R with
Q () =0, then for a € (0, 1] and n > 0, we have

G2
|7 9@12 (@) P (@) dug

<(75:) (52%)
“\n+r o

S
x /de’(q) 1D (q)|" " dag. (43)

ProofLet u(g) = [2¢7%(8)|DaQ(6)|"ded, for
g € [@, &]. Then

Dqu(q) = —¢T7 () |Daf2 (q)|° <0 and u(g:) = 0.
(44)
Using (38) and Holder’s inequality (14) on |Q (¢)| with
0=1/(t—1)and =, we obtain

2= | [*Dut2 (0)dus

al—

Therefore

o @le@r < (£51) 7wt @
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Using (44) and chain rule (12), we obtain
Do (' (g)) = — (DE"F ) (u(q))
x (Dau(q))u*"" (q)

__ (’7 ”) u} (@) Dau(q).  (46)

T

Then, from (44), (45) and (46), we get

&2
| 0@12@)I"10e2 (@) dug

- /:2 ¢"J+LT (q) |2 (‘I)|n ¢ﬁ |Do Q2 (51)|Tda51

n(z-1)

<[(55) T @ Dani)dug

g — % N n
<(52%) 7 [ (v @pwi@) g

[0)
n(z—1)
<(70:) (57)
T \n+r a
5] T
X —Dg (u% (q)) dogq
(0]
n(-1)
T G — 0%\ T ni
= T . 4
=) (525) T e @

Applying (38) and Holder’s inequality (14) on u (@) with
indices 6 = (n+1)/n and B = (n+ 1) /7, we have

(S z
u(@) = [7 07 (@) |Paf ()" dug
o\
§</w da97>
%2 T ﬂ# ﬁ
(7 (o7 @ @F) 7 dua)
o =
(557
(04
([o@p@aa) . @

Then from (47) and (48), we get

%2
|6 @I2@)I" 1D ()] dug

<(7) (55%)
T \nN+r7 a

8 /:2 ¢ (q)|Da® (9)|" " dag,

which the required inequality (43).

Corollary 8.In Theorem 3.6, if o = 1, then we have

"2 T
[Te@e@ e @] dg <

(0 — )"

1) p
e @2 @) da.

which is the inequality (9), if T = & = 1, then we have
&2 P
[Te@ie@e @] <

—o)" 2
9 Pot (@) a0

and if ¢ (q) = T = a = 1, then we have

S, — S
12 ()] 12\ (9)]|dg < 222 [T @' (9)|da,
w

“n+1lJo

which is the inequality (5).
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