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Abstract: In this paper, we present a novel formula to solve well-known integral transforms (Laplace andFourier) as well as new

integral transform (Sumudu) and their inverses in a clear and practicalmanner. This formula is restricted to integrals that include a

derivable function multiplied by anexponential function. The proposed methodology is presented gradually in this article to dealwith

these integrals. Moreover, we give provide examples to illustrate the effectiveness of thenew formula.
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1 Introduction

Integral transform methods are powerful techniques for
solving differential equations (DEs).These methods can
be modeled as mathematical equations expressed in terms
of DEs[1,2,3,4,5] allowing for the transformation of DEs
into algebraic equations and obtaining exact solutions.
Scholars have developed and perfected these methods to
deal with various mathematical problems. The
widely-recognized examples comprise the Fourier,
Laplace, and numerous other transforms[6,7,8,9,10].

The Fourier Transform is a well-established and
effective tool used to transform signals between two
different domains, such as transforming a function of time
into a function of frequency domain with applications in
engineering, physics, signal processing, and RADAR [11,
12,13].

The Laplace transform is a mathematical tool that
changes one signal into another according to some fixed
set of rules or equations. Thus, it can be seen as a
converting means between time and the frequency
domain[14,15,16].The Laplace transform is the most
effective method for converting differential equations into
algebraic ones, and it also provides insight into many
other types of equations in the field of mathematics[17,
18].

Sumudu transforms is recent contributions to the
literature of integral transform[19]. In principle, this
transform can be applied to solve mathematical problems

in a manner that is similar to more established older
transforms[20,21,22]. Yet, it remains to be illustrated
how this transform can in fact solve problems that cannot
be solved through more well-known approaches[23].

This paper provides some examples of Fourier,
Laplace, and Sumudu transforms solved both in the
conventional manner as well as our novel formula
presented here. Although no examples of special
functions are furnished,such cases can be solved through
minor mathematical modifications either to the variable
used,or the technique itself.

2 Basic concepts

In this section, we introduce some concepts which are used
throughout this paper.

Definition 1. Exponential order[24]: A function f (t) is

called an exponential order c if there exist constants c,

M > 0, T > 0 such that for all t > T , | f (t)| ≤ Mect .

Definition 2. Laplace transform [25]: The Laplace

transform is defined by

L [ f (t)] = φ(s) =

∫ ∞

0
f (t)e−stdt (1)

where s is a complex variable and f (t) a real or complex

function of the real variable t, sets up a transformation

between functions φ(s), f (t).
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Definition 3. Sumudu transform[26]: Let f (t) be a func-

tion in the set B such as:

B= { f (t) : ∃ξ1,ξ2 > 0, | f (t)|<Me
|t|
ξi , if t ∈ (−1)i× [0,∞)}

The Sumudu transform (ST) of f (t) is defined by:

S[ f (t)] = G (u) =
1

u

∫ ∞

0
f (t)e−

t
u dt (2)

for all t ≥ 0 and u ∈ (ξ1,ξ2)

Definition 4. An Operator D is the symbol that indicates

a differential operator that acts on a function and returns

another function[27]. Let

w = f (t) (3)

Then, the derivatives of the function w in a general way,
D,D2,....,Dk can be shown as:

D =
dw

dt
, D2 =

d2w

dt2
, Dk =

dkw

dtk
(4)

Algebraic rules :

Let q,r and s be the order of the derivative and for
constants a,b, and c. The differential operator D satisfies
the following rules:

i. (aDq + bDr)u = aDqu+ bDru = (bDr + aDq)u
ii. (aDq + bDr)u = aDqu+ bDru = (bDr + aDq)u

iii. aDq ·bDru = aDq(bDru)
iv. (aDq) · (bDr)u = (bDq) · (aDr)u
v. [aDq +(bDr + cDs)]u = [(aDq + bDr)+ cDs]u

vi. aDq(bDr · cDs)u = (aDq ·bDr)cDsu

vii. aDq · (bDr + cDs)u = aDq ·bDru+ aDq · cDsu

Suppose that f (t) is a continuous and differentiable
function, then:

f (t)Dnw = f (t)
dnw

Dtn

Now, we use the above rules to construct the following
polynomial,

a0Dn + a1Dn−1 + · · ·+ an−1D1 + an

Where a0,a1, ...,an are constants and

(

a0Dn + a1Dn−1 + · · ·+ an−1D1 + an

)

w = a0
dnw

dtn

+a1
dn−1w

dtn−1
+ · · ·+ an.

3 Methodology

Examples of well-known integral transforms(Laplace,
Fourier) as well as new integral transform (Sumudu) that
have been solved using both the conventional and our new
method are provided below.

Theorem 1. Let L(D) be a polynomial in D, and H(t) =

e
t
M F(t) where M 6= 0 , if F(t) has all derivatives then

L(D)
(

e
t

M F(t)
)

= e
t

M L

(

D+
1

M

)

F(t) (5)

Proof
Since L(D) is polynomial, we suppose that

L(D) = Dn (6)

By substituting Eq.(6) in Eq.(5), we have

Dn
(

e
t

M F(t)
)

= e
t

M

(

D+
1

M

)n

F(t) (7)

Now, we will use the mathematical induction to prove
Eq.(7).
For n = 0

D0
(

e
t

M F(t)
)

= e
t

M

(

D+
1

M

)0

F(t)

⇒ e
t

M F(t) = e
t

M F(t)

For n = k

Dk
(

e
t

M F(t)
)

= e
t

M

(

D+
1

M

)k

F(t) (8)

Now, by derivative both side of Eq.(8), we get

D
[

Dk
(

e
t
M F(t)

)]

= D

[

e
t

M

(

D+
1

M

)k

F(t)

]

Dk+1
(

e
t
M F(t)

)

= D

[

e
t

M

(

D+
1

M

)k

F(t)

]

(9)

Dk+1
(

e
t
M F(t)

)

= e
t

M D

[

(

D+
1

M

)k

F(t)

]

+

[

(

D+
1

M

)k

F(t)

]

De
t

M

= e
t

M D

[

(

D+
1

M

)k

F(t)

]

+

[

(

D+
1

M

)k

F(t)

]

1

M
e

t
M

(10)
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Simplifying, reordering, and taking the common factor
from the right side of Eq.(10), we get

Dk+1
(

e
t
M F(t)

)

= e
t

M

(

D+
1

M

)k (

D+
1

M

)

F(t)

Finally, we have

Dk+1
(

e
t

M F(t)
)

= e
t

M

(

D+
1

M

)k+1

F(t)

Since Eq.(7) is valid for all n ≥ 0, thus the theorem has
been proved.

3.1 Inverse of operator D:

The inverse of the differential operator Dk is D−k, where
they do not change the function f (t) when both operate on
it. Hence,

DkD−k f (t) = f (t)⇒ DkD−k = 1, so D−k =
1

Dk

Now, by applying the inverse of operators D to Eq.(8) we
get

D−n
(

e
t

M F(t)
)

= e
t

M

(

D+
1

M

)−n

F(t)

or

(

e
t

M F(t)
)

Dn
=

e
t

M F(t)
(

D+ 1
M

)n

If n = 1, then D1 and 1
D

indicate the first derivative and
first integral respectively. In this case, we have,

(

e
t

M F(t)
)

D
=

e
t

M F(t)
(

D+ 1
M

)

Therefore,

∫

e
t

M F(t)dt = Me
t

M
1

(1+MD)
F(t)

∫

e
t
M F(t)dt =Me

t
M
[

1−MD+M2D2 −·· ·+MnDn
]

F(t)

(11)
Where 1

(1+MD) =
[

1−MD+M2D2 −·· ·+MnDn
]

.

Eq.(11) is our new formula. It can be used to solve integral
transforms and their inverses, for example, the Laplace,
Fourier, Sumudu, Transforms, as illustrated below.

4 Examples:

4.1 Laplace Transform:

Let f (t) = ewt , to find L [ f (t)] we are going to use:
(i) The traditional way Eq.(1):

L [ f (t)] =

∫ ∞

0
eωte−sdt

=

∫ ∞

0
e−(s−ω)tdt =−

1

s−ω
e−(s−ω)t

∣

∣

∣

∣

∞

0

=
1

s−ω

(ii) The new formula Eq.(11):

L [ f (t)] =

∫ ∞

0
eωte−sdt

=

∫ ∞

0
e−(s−ω)tdt

here we have

1

M
=−(s−ω) =⇒ M =

−1

s−ω

Now we use Eq.(11) with f (t) = 1 , we get

∫ ∞

0
e−(s−ω)tdt =

−1

s−ω

[

e−(s−ω)t
]t=∞

t=0
=

1

s−ω

4.2 Fourier Transform:

Let t ∈ R, iω ∈ C, f (t) a real function ( f (t) = 0 at t < 0),
F(iω) is a frequency function. Then to find F(iω) we are
going to use:
(i) The traditional way:

F(iω) =

∫ ∞

−∞
eiωt f (t)dt

f (t) =

{

0 t < 0
e−t t ≥ 0

F(iω) =
∫ 0

−∞
eiωt(0)dt +

∫ ∞

0
eiωte−tdt

=

∫ ∞

0
e−(1+iω)tdt (12)

=

[

e−(1+iω)t

−(1+ iω)

]∞

0

=
1

1+ iω

(ii) The new formula Eq.(11): From Eq.(12) we have

1

M
=−(1+ iω)⇒ M =

−1

(1+ iω)
, f (t) = 1

Hence

F(iω) =
−1

1+ iω

[

e−(1+iω)t
]t=∞

t=0
=

1

1+ iω
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4.3 Sumudu Transform

Let f (t) = eωt , to find S[ f (t)] we are going to use:
(i) The traditional way Eq.(2):

S[ f (t)] = G (u) =
1

u

∫ ∞

0
eωte−

1
u tdt

=
1

u

∫ ∞

0
e(ω− 1

u )tdt

=
1

u
lim

T→+∞

[

1
(

ω − 1
u

)e(ω− 1
u )t

]T

0

=
1

u
lim

T→+∞

e(ω− 1
u )T − 1

(

ω − 1
u

)

(13)

Considering that 1
u
> 0 and the integral converges then

G (u) =
−1

u
(

ω − 1
u

) =
1

1− uω

(ii) The new formula Eq.(11):
From Eq.(13) we have

1

M
= ω −

1

u
⇒ M =

1

ω − 1
u

, f (t) = 1

Now by using Eq.(11) on Eq.(13) with f (t) = 1, we get

G (u) =
1

u

∫ ∞

0
e(ω− 1

u )tdt =
1

u
(

ω − 1
u

)e(ω− 1
u )t

∣

∣

∣

∣

∣

t=∞

t=0

=
−1

uω − 1
=

1

1− uω

Also, by similarity, we can find Sumudu transform of
Trigonometric and Hyperbolic functions.

5 Conclusion

The advantage of this methodology is that utilizes only
those derivatives related to functions that can be
transformed through any integral transform. The new
formula is concerned with integrals that involve derivable
functions multiplied by exponential functions. An
application of this formula is direct and straightforward in
the case of polynomial functions. However, an indirect
result is produced when the method is applied to function
with infinite derivatives. In the case of exponential
function with indirect arguments, some change of
variables related to the argument is required to apply the
formula effectively.
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