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Abstract: Requirement engineering is a critical step in software engineering, influencing software development outcomes. The manual
classification of software requirements into Functional Requirements and Non-Functional Requirements is a laborious and costly
process with varying accuracy. Errors in classification can lead to misunderstandings and incomplete products. Arabic requirements
pose additional challenges due to their structural and semantic characteristics, contributing to inherent ambiguity. In addition to the lack
of Arabic Studies as well as the public datasets for requirements written in Arabic.This study proposes combining machine learning
and deep learning algorithms, including K-nearest neighbors (KNN), Support Vector Machines (SVMs), Random Forest, XGBoost, and
the Arabert model, with optimization techniques to streamline the categorization of Arabic requirements. Optimal configurations for
several classifiers are identified and examined by stemming techniques. In addition, an Arabic data set for requirements was collected.
The results demonstrate the effectiveness of the proposed approach, enhancing productivity and mitigating risks. The SVM classifier
achieves an F1-Score of 0.93, while combining it with ISRIStemmer improves the score to 0.95. The Arabert model achieves the highest
F1-Score of 0.97, highlighting its performance in classifying Arabic requirements accurately.

Keywords: Deep Learning, Functional Requirement, Machine Learning, Non-Functional Requirement, Arabic Requirements
Classification.

1 Introduction [5]. Non-Functional Requirements (NFRs), on the other
hand, focus on attributes that shape how the system
performs its functions. These attributes include aspects
like performance, security, usability, and reliability. NFRs
complement FRs by outlining the quality criteria that the
system must meet to ensure its effectiveness, safety, and
user satisfaction[4,5]. In the realm of software
requirements engineering, classifying these FRs and
NFRs can be a labor-intensive and costly task. Manual
classification can introduce errors and inconsistencies,
potentially leading to misunderstandings and incomplete
product development [6]. While efforts have been made
to classify English-written requirements [7] and [8], there
remains a significant research gap in the classification of
Arabic software requirements using supervised learning
techniques. The Arabic language presents unique
challenges for classification due to its structural,
syntactic, and semantic complexities, making it inherently

Software engineering is a systematic process comprising
multiple phases, including requirements gathering,
design, development, testing, and maintenance. This
structured approach aims to create software that is
dependable, of high quality, and easy to maintain [1, 2].
Central to this process are software requirements, a
critical phase involving the identification, description, and
categorization of two fundamental types of requirements:
Functional Requirements (FRs) and Non-Functional
Requirements (NFRs) [3, 4]. Functional Requirements
(FRs) encompass the core services and functions that a
software system must provide. They define what the
system should do, specifying its intended behavior,
operations, and features. FRs serve as the building blocks
that outline the system’s primary functionalities, such as
user interactions, data processing, and system responses
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more ambiguous than other languages [10]. Furthermore,
the scarcity of resources and publicly available datasets
for Arabic requirements hampers the development of
accurate models capable of handling the language’s
nuances and variations. This study aims to address these
challenges by introducing an automated classification
approach based on supervised learning for Arabic-written
software requirements. The approach seeks to categorize
these requirements into the two vital categories of FRs
and NFRs. To the best of current knowledge, no prior
research has undertaken the classification of Arabic
software requirements using supervised learning
techniques. The primary hurdle faced in this endeavor is
the lack of publicly available Arabic language datasets for
software requirements classification. To overcome this
challenge, the approach intends to construct a dataset by
sourcing software requirements documents from diverse
Arabic-speaking sources, including academic
publications, industry standards, and online repositories.
The dataset will be meticulously labeled by domain
experts to ensure accuracy and consistency. The approach
will then employ a range of supervised learning
classifiers, such as K-nearest neighbors (KNN), Support
Vector Machines (SVMs), Random Forest, XGBoost, and
deep learning algorithms like the Arabert model, to
perform the classification. The objective is to evaluate the
performance of these classifiers and feature selection
techniques, ultimately identifying the most efficient
approach for classifying Arabic language requirements.
This proposed method holds the potential to significantly
enhance the precision and effectiveness of software
requirements categorization in Arabic-speaking regions,
ultimately leading to improved software development
outcomes. The remainder of this paper is organized as
follows: Section Two reviews the relevant literature,
Section Three outlines the method, Section Four presents
the experimental data and findings, Section Five discusses
the results, and Section Six concludes the paper with
recommendations for further research.

2 LITERATURE REVIEW

This section provides an overview and summary of past
research on the classification of software requirements
through the application of machine learning and deep
learning algorithms. Specifically, this research has
focused on  distinguishing between  Functional
Requirements and Non-Functional Requirements.

English Requirements Classification

Dave and Anu [7] utilized machine learning algorithms to
categorize software requirements into Functional
Requirements, Non-Functional = Requirements, or
Non-Requirements. This was done by analyzing both

Mobile App Reviews and formal Software Requirements
Specification documents. By using Stochastic Gradient
Descent (SGD), The Support Vector Machine (SVM), and
Random Forest (RF) ML algorithms, combined with the
term frequency-inverse document frequency (TF_IDF)
natural language processing technique, developers can
improve their application without wasting time and better
respond to customer needs. Based on the results, SGD
had the highest accuracy rate at 83% for identifying FRs,
NFRs, and NRs. A recent study [11], created a method to
classify software requirements using the BoW technique
in conjunction with machine learning algorithms. The
data used for this method was obtained from
PROMISE_exp, and KNN and SVM were utilized to
categorize requirements into two types: functional and
non-functional. In addition, the NFR requirements were
further classified into 11 sub-categories to address the
issue of manual classification, which can be both costly
and time-consuming. The results indicate that the SVM
with BoW produces better outcomes than KNN
algorithms, with an overall F-measure average of 0.74.
Dave, et al [12] proposed three data models that utilize
different machine learning algorithms, namely SVM,
SGD, and RF, combined with the TF_IDF NLP technique.
The aim was to classify FRs, NFRs, and their
corresponding sub-categories from SRS documents
containing formal software requirements in order to
improve the requirements classification process and
reduce manual effort. The results indicated that SVM
with TF_IDF had the highest F1 score of 0.88 when
identifying FRs. Meanwhile, SGD had the highest F1
score of 0.92 when identifying NFRs. Additionally, SVM
with TF_IDF proved to be the best method for identifying
NFR types related to Availability, Look & Feel,
Maintainability, Operational, and Scalability. On the other
hand, SGD with TF_IDF produced better results for
NFR-types Security, Legal, and Usability. Khatian, et al
[13] created a method to classify non-functional
requirements using supervised machine learning
algorithms. This was followed by a study comparing five
different ML algorithms: random forest classifier (RFC),
k-nearest neighbor (KNN), decision tree, and logistic
regression (LR), as well as naive Bayes. The performance
of each algorithm was evaluated using four different
metrics: recall, precision, confusion matrix, and accuracy.
The results indicate that the logistic regression algorithm
has the highest prediction rates and a 75% accuracy,
making it the best algorithm among the five studied.
Talele and Phalnikar [8] conducted a systematic review to
examine the ML algorithms utilized in classifying
software requirements as functional or non-functional.
The goal was to identify the most effective algorithm for
prioritizing and classifying requirements, as well as how
to evaluate them. The results reveal that SVM and DT
algorithms outperform other ML algorithms in terms of
accuracy, with a 2% improvement. Additionally, the study
found that Drank is the best algorithm for prioritizing
requirements. Shah, et al [14] suggested a new method for
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automatically categorizing software requirements using
machine learning techniques such as Naive Bayesian,
Support Vector Machine, and Recurrent Neural Networks.
This approach is combined with natural language
processing using TF_IDF to distinguish functional
requirements from non-functional requirements. The goal
is to prevent the misclassification of software
requirements, which can cause ambiguities and ultimately
lead to bugs and failures. The algorithms employed in this
study produced results with an accuracy rate of 91%,
90%, and 92%, respectively. Chatterjee, et al [15]
conducted research to pinpoint and categorize the
requirements that hold the most weight when it comes to
designing the architecture of software systems. The
research team utilized a Bidirectional Long Short-Term
Memory Network (Bi-LSTM) to extract pertinent
information from the Software Requirement Specification
(SRS) document. Their process included gathering
information from individual words within the SRS
document, which was then combined for final
classification. The outcome of the research revealed that
the identification of Architecturally Significant Functional
Requirements (ASFRs) had an f-score of 0.86, while
classification had an f-score of 0.83. Haque, et al [16]
conducted experimental studies aimed at identifying the
optimal pair for Non-functional Requirements
classification. We used seven machine learning algorithms
(GNB, BNB, KNN, SVM, SGD SVM, and DTree) and
four feature extraction methods (BoW, TF_IDF (3)) to
assist developers in creating high-quality software. Our
findings indicate that the SGD, SVM classifier achieved
the highest accuracy score of 0.76. Additionally, the
TF_IDF feature extraction technique outperformed the
other methods. Li, et al. [17] conducted an experiment to
determine the accuracy of classifying requirements into
functional and non-functional categories, the machine
learning algorithms of gradient boosting and random
forest were compared. The results indicated that the
gradient boosting algorithm was more effective in
accurately classifying non-functional requirements.
Binkhonain and Zhao [18] conducted an investigation to
classify NFR using several machine-learning algorithms
and four feature selection techniques. The findings
indicated that the combination of TF_IDF for feature
extraction and the SGD or SVM algorithm resulted in the
most precise NFR classification. Baker, et al [19]
conducted a study using a combination of fully connected
artificial neural networks (ANNs) and convolutional
neural networks (CNNs), to classify non-functional
requirements (NFRs). The researchers utilized random
vectors to represent requirement sentences as input for
CNN, focusing on five NFR categories: operability,
performance, security, maintainability, and usability. They
conducted their experiments using the PROMISE dataset,
which included 1165 NFRs that spanned over ten
categories. The experiment was divided into five stages,
including data pre-processing, ANN model construction,
CNN model construction, and evaluation. The study’s

evaluation results revealed a precision level ranging from
82% to 90% and recall ranging from 78% to 85% in the
ANN model. In contrast, the CNN model achieved a
precision level ranging from 82% to 94% and recall
ranging from 76% to 97%, resulting in a high F-score of
92%. Wang, et al [20] conducted a study to analyze how
app change logs impact the automatic categorization of
requirements from app reviews using supervised machine
learning algorithms, including Naive Bayes, Bagging,
J48, and KNN. The accuracy of requirements
classification was compared across the four algorithms,
and it was found that Naive Bayes performed the best for
categorizing app reviews. Lu and Liang [21] developed an
approach using machine learning algorithms such as
Naive Bayes, J48, and Bagging, combined with four
classification techniques including BoW, TF_IDF, CHI2,
and AUR-BoW, to automatically categorize user reviews
into four types of NFRs (reliability, usability, portability,
and performance), FRs, and Others. This approach helps
developers gain a better understanding of the user’s needs
and wants. The results of this approach have shown an
F-measure of 71.8% through the combination of
AUR-BoW with Bagging.

Arabic Requirements Classification

Alzanin, et al [22] presented a system for classifying
Arabic tweets into five separate categories based on their
linguistic traits and content. The authors looked at two
different textual representations: stemmed text using the
term frequency-inverse document frequency (TF_IDF)
and word embedding using Word2vec. Support Vector
Machine (SVM), Gaussian Naive Bayes (GNB), and
Random Forest (RF) were the three classifiers
investigated in the study, each with its own set of
hyperparameters. The scientists manually annotated a
dataset of about 35,600 Arabic tweets for the
experiments. With stemming and TF_IDF, the
performance of the RF and SVM classifiers with radial
basis function (RBF) kernel was comparable, resulting in
macro-scores between 98.09% and 98.14%. However, the
performance of GNB with word embedding was
disappointingly ~ poor. = Notably, the outcomes
outperformed the current benchmark score of 92.95%
obtained using a deep learning algorithm specifically
RNN-GRU (recurrent neural network-gated recurrent
unit). Al-Hagree and Al-Gaphari [23] analyzed user
feedback on mobile banking services applications and
used that data to inform future improvements and fixes.
To achieve this goal, a dataset consisting of comments
made by Google Play Store users about financial mobile
apps was compiled. The researchers annotated the
reviews by hand, assigning ratings of favorable, negative,
and neutral to each. Naive Bayes (NB), K-nearest
neighbor (KNN), Decision Tree (DT), and Support Vector
Machine (SVM) models were used for Arabic sentiment
analysis, all of which are machine learning approaches.
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The results of the evaluation showed that the NB model
was superior to the DT, KNN, and SVM algorithms. The
NB model outperformed all others in terms of sentiment
analysis for mobile banking services with respect to
accuracy (89.65%), recall (88.08%), precision (88.25%),
and F-score (88.25%). This study demonstrates how
machine learning methods may be applied successfully to
the problem of mobile banking service user sentiment
analysis. Atwan, et al [24] evaluated the effectiveness, of
three widely used classification algorithms - K-nearest
neighbor, Naive Bayes, and decision tree - were employed
to classify Arabic text, both with and without the use of a
light stemmer in the preprocessing phase. The experiment
involved classifying a dataset from Agency France Persse
(AFP) Arabic Newswire 2001, which contained 800 files
categorized into four groups. The results revealed that the
decision tree, in conjunction with the light stemmer,
achieved the highest accuracy rate of 93% among the
three classifiers. The study’s primary objective was to
simplify the process and reduce costs for users and
developers seeking and utilizing such data. Ibrahim, et al
[25] proposed standard scraping techniques, they
collected a dataset from various sources and classified
Arabic short texts into specific categories based on their
titles. The texts were evaluated using three common
Naive Bayes classifiers: Multinomial Naive Bayes,
Complemented Naive Bayes, and Gaussian Naive Bayes.
The data underwent several preprocessing steps, such as
removing punctuation and stop words, as well as space
vectorization. During the testing phase, the
Complemented Naive Bayes Classifier demonstrated the
highest accuracy of 0.84 for feature extraction. These
results suggest that this method could potentially be
applied to various brief text classification applications.
Al-Tamimi, et al [26] made a demonstration of how active
learning can enhance an Al agent’s proficiency in text
classification of Arabic news articles. The findings
indicate that active learning outperforms passive learning
by achieving the desired classification accuracy with
minimal data processing. The study employed three
different iterations of the NADA dataset. The importance
of using augmentation techniques to increase the sample
size of under-represented categories in unbalanced
datasets was emphasized to improve the system’s overall
accuracy. Furthermore, active learning enables the
integration of machine learning into more complex
Arabic language challenges by reducing the time and cost
involved in training Al agents on complicated datasets.
Shehadeh, et al [9] created Natural language processing
(NLP) technologies to provide a semi-automated
approach to categorizing Arabic software requirements as
either functional or non-functional. The proposed method
involved extracting data from the software requirements
and utilizing a set of heuristics that relied on fundamental
Arabic language constructions to carry out the
classification task. The researchers utilized their findings
to assist software engineers in manually classifying
software needs with less effort and cost. the results show

that the average recall of functional is equal to 83.33%
while the average recall of non-functional is equal to
93.33%. Al-Smadi, et al [27] presented two advanced
neural networks that utilize long short-term memory
(LSTM) to introduce aspect-based sentiment analysis of
reviews for hotels in the Arabic language. The first model,
a bidirectional LSTM with a conditional random field
classifier (Bi-LSTM-CRF), was used to extract aspect
opinion target expressions (OTEs), while the second
model, an aspect-based LSTM, was used to determine
aspect sentiment polarity. The aspect-OTEs were treated
as attention expressions to aid in identifying sentiment
polarity. The models were assessed using a benchmark
dataset of reviews for Arabic hotels, with the first model
achieving an F1 Score of 69.98% and the second model
achieving an accuracy of 82.6%. Dahou, et al [28]
developed an innovative technique for categorizing
Arabic sentences utilizing the differential evolution
algorithm and the convolutional neural network. This
novel approach incorporates the CNN architecture and
network parameters to automatically search for the
optimal configuration using the DE algorithm. The
proposed method, known as DE-CNN, takes into account
five CNN parameters and was tested on five Arabic
sentiment datasets. The performance of DE-CNN was
evaluated and compared to other advanced algorithms.
The experimental results indicate that DE-CNN achieved
a high accuracy rate of 93.28% and was faster and more
precise than the state-of-the-art algorithms. Hmeidi, et al
[29] performed a study to compare the classification of
Arabic text. The researchers utilized a dataset consisting
of 2700 Arabic articles, each corresponding to a distinct
category. To prepare the texts for analysis, the authors
implemented stemming and cleaning techniques and then
employed five common text classification methods. The
findings of the study revealed that the SVM classifier
outperformed the other classifiers that were evaluated. As
far as we know, there is a notable absence in the literature
regarding the classification of Arabic requirements. The
literature on the classification of Arabic requirements has
a few drawbacks that have hindered a satisfactory
resolution to the problem. To begin with, there is not
much research that concentrates particularly on Arabic
needs, which limits our knowledge of the specific
challenges and characteristics of Arabic language
requirements. The shortage of research has restricted the
creation of effective and specialized systems to accurately
categorize them. Additionally, the present research often
employs techniques and strategies developed for
languages other than Arabic, neglecting to consider the
language’s cultural and linguistic nuances. As a result of
these oversights, inadequate performance, and inaccurate
classification results ensue. Due to the absence of
comprehensive and standardized datasets required for
Arabic, it is challenging to evaluate and compare different
classification algorithms effectively. These shortcomings
underscore the need for more concentrated research
initiatives aimed at tackling the distinct challenges of
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Arabic requirement categorization and developing
dependable models tailored to the Arabic language.

3 METHODOLOGY

In this study, we propose an automatic classification
method for software requirements written in Arabic to
solve the limitations highlighted in the literature review
section. Our method divides requirements into functional
and non-functional categories using supervised learning
techniques. To achieve this, we formulated a
comprehensive methodology consisting of five steps for
both machine learning and deep learning to attain the
goal. The proposed automated classification method for
software requirements in Arabic combines the strength of
supervised learning techniques with the richness of
Arabic language processing. We want to use machine
learning methods to create a robust and accurate model
that can successfully classify requirements into functional
and non-functional categories. This method is especially
useful in the software development process because
understanding the nature of requirements is critical for
developing and implementing software systems. We want
to increase the efficiency and accuracy of requirement
analysis in Arabic-speaking situations by using this
method. Moreover, by combining deep learning
techniques into our methodology, we hope to capitalize
on neural networks’ innate capacity to capture complex
patterns and correlations within the Arabic text.
AraBERT, a deep learning model, has shown excellent
performance in natural language processing challenges
[30]. We intend to attain even greater accuracy and
generalization skills in categorizing functional and
non-functional requirements by constructing a suitable
architecture on a large-scale dataset of Arabic software
requirements. The use of deep learning techniques in our
methodology offers another level of sophistication and the
possibility of increased performance in automated
requirement classification. In this study, the following
algorithms were employed: Algorithm 1: Training
classifier for Arabic Functional and Non-Functional
Requirements and Algorithm 2: Classification of Arabic
Requirements using classifier.

Table 1 Algorithm 1 Training classifier for Arabic Functional
and Non-Functional Requirements

Algorithm 1
01 Input: Dataset, Classifier
02 Output: Trained Model
03 Data pre-processing to begin cleaning the requirements.
04 Tokenize text using *word_tokenize function from the Python nltk library.
05 Stopwords removal using "stopwords.words’arabic’* function
06 Normalization to transform the text into a standardized format.
07 Apply count vectorizer and TE.IDF transformer
08 Apply feature selection using the chi-square
09 Apply Scaling using Min-Max scaling method
10 Train Classifiers using the preprocessed dataset and different parameters.

The algorithm starts by preprocessing the Dataset,
which involves tokenizing the text in the Dataset,
removing stopwords, and applying normalization
techniques. After that, the data is transformed using a
count vectorizer and a TF_IDF transformer to convert the
tokenized text into numerical features. Relevant features
are then selected through feature selection, and scaling is
applied to ensure consistent feature values. The model
training phase begins by specifying the classifier and
different parameters. The algorithm outputs the Trained
Model, which is now ready for further evaluation and
testing.

Table 2 Algorithm 2 Classification of Arabic Requirements
using classifier

Algorithm 2
01 Input: Trained model and Testing Arabic Requirements.
02 Output: Classification of Arabic Requirements.
03 Pre-processing the testing Arabic requirements.
04 Tokenize text using ‘word_tokenize* function from the Python nltk library.
05 Stopwords removal using *stopwords.wordsarabic’* function.
06 Normalization to transform the text into a standardized format.
07 Apply count vectorizer and TF_IDF transformer.
08 Apply feature selection using the chi-square.
09 Apply Scaling using Min-Max scaling method.
10 Apply evaluation metrics such as precision, recall, F1-score.

Upon completion of the training process, the
algorithm produces a trained model that is ready for
further evaluation and testing. The algorithm for the
classification of Arabic requirements using a classifier
begins with preprocessing the testing of Arabic
requirements. The Arabic requirements designated for
testing are subjected to tokenization, which involves
breaking them down into individual words. This is
followed by the removal of stopwords, or common words
that do not carry significant meaning, and normalization
to ensure consistent representation. Once the
preprocessing is completed, the data undergoes
transformation using a count vectorizer and TF_IDF
transformer. These techniques capture the importance and
frequency of words within the requirements. Furthermore,
feature selection and scaling techniques are applied to
choose relevant features and maintain consistent values.
The trained model is then employed to predict the
preprocessed testing Arabic requirements. Lastly, the
algorithm assesses the accuracy of its predictions by
comparing them with the actual labels and utilizing
evaluation metrics such as precision, recall, and F1-score
to measure the model’s performance. The methodology
used to achieve this goal is described below. Figure 1
shows the steps

Stepl: Data Gathering

The initial phase of our methodology involved an
extensive and meticulous effort to gather a diverse and
comprehensive dataset of Arabic software requirements.
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Fig. 1 The proposed Methodology.

Our approach was designed to encompass a broad
spectrum of requirements from various sources and
domains, ensuring the dataset’s representativeness and
relevance to real-world scenarios. To achieve this, we
adopted a multifaceted strategy for data collection:

—Industry Standards: We explored industry-specific
standards and guidelines, a valuable source of
requirements documentation. These standards provide
detailed insights into domain-specific software
requirements, contributing to the dataset’s richness
and applicability.

—Academic Publications: A thorough review of
academic papers and journals in the fields of software

engineering and requirements engineering was
conducted. These publications often contain
well-documented software requirements, making

them an invaluable source of data.

—Online Repositories: Recognizing the prevalence of
software projects hosted on online platforms, we
systematically searched repositories such as GitHub
and SourceForge. These platforms host a multitude of
projects with publicly available requirements
documents, offering a wealth of real-world data. Our
overarching objective throughout the data collection
process was to capture the heterogeneity and
complexity inherent in Arabic-written software
requirements. By sourcing requirements from diverse
domains and a variety of reputable platforms, we
aimed to construct a dataset that reflects the
multifaceted nature of software requirements in
Arabic-speaking contexts. Following the compilation
of the dataset, a stringent validation process was
initiated. This critical step involved comprehensive
checks to ensure the accuracy and reliability of the
collected data. Our validation procedures were
designed to identify and rectify any discrepancies,
errors, or inconsistencies within the dataset.

This validation phase served as a safeguard to maintain
data integrity and quality. It underscored our commitment
to delivering a meticulously curated dataset that serves as
the cornerstone of our research. The data collection
process encountered several challenges and limitations.
These included the limited availability of Arabic software
requirements documents, potential variations in quality
and consistency among collected requirements, concerns

about domain representation balance, the inherent
linguistic complexity of Arabic, potential privacy and
copyright restrictions on certain sources, the possibility of
data bias favoring specific domains or regions, the need
for domain expertise in the annotation process, and the
resource-intensive nature of data collection and
validation. Despite these constraints, our methodology
aimed to address these challenges to create a robust and
representative dataset for our research, recognizing the
importance of data quality and diversity in training
effective machine learning models for Arabic software
requirements classification. In summary, Step 1 was
marked by a meticulous and exhaustive effort to amass a
diverse and representative dataset of Arabic software
requirements. This dataset, drawn from a variety of
trusted sources, is not only extensive but also subject to
rigorous validation to uphold the highest standards of data
quality and reliability.

Step2: Data Annotation

The dataset underwent a meticulous annotation process
carried out by three domain experts. These specialists
have a thorough understanding of software engineering
principles, which enables them to distinguish between
functional and non-functional aspects of the requirements
and to classify them. The domain specialists carefully
examined each requirement, examining its elements and
labeling them according to their knowledge and
experience. The participation of domain specialists in a
certain field during the annotation procedure is of utmost
importance in guaranteeing the precision and
dependability of the dataset. Their extensive
comprehension of software necessities and familiarity
with the Arabic dialect empower them to make
knowledgeable judgments while classifying the
requirements. Their proficiency assists in surmounting
obstacles, such as uncertainty or slight variations that
might occur during the annotation process.

Step3: Data Selection

A subset of the classified data was selected for further
processing based on the availability of labeled data.

Step4: Data Preprocessing

This study uploaded the dataset in Text format to Python
language, followed by a series of steps to begin cleaning
the requirements. To prepare the data for machine
learning algorithms, a set of preprocessing steps were
performed. These steps encompassed tokenization, stop
word elimination, and normalization, all of which were
vital in converting the raw data into a more sophisticated
and organized structure.
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—Tokenization
Tokenization is an essential initial step in text analysis
and natural language processing. Its main objective is
to break down the textual data into individual words
or tokens, which is critical for a more precise analysis
of the requirements [31]. Through the segmentation of
the text into tokens, we can scrutinize the connections
between words and capture the specific patterns that
contribute to the meaning and context of the
requirements. The text undergoes tokenization by
following predefined rules or algorithms, which
typically involve dividing the text using whitespace or
punctuation marks. A common illustration of this
process is breaking down a sentence such as

fL\:'d.w\N L~ 41y rU'a;.U 055 Ol w2, would be

tokenized into the following individual tokens:

‘./\_79._..&‘ LLVW 4_6_>b, u)_i_/ Q‘

. Each token is a distinct umt of meamng that may be
analyzed and processed further. Tokenizing the phrase
allows us to examine the words’ distinct meanings. For

example, _ translates to “should,” O! translates to
“that,” jﬁi translates to “’be,” be&U translates to “’for
the system,” Lp‘j translates to “’interface,” U—Vw

translates to “easy,” and »lasc Y| translates to “to
use.” The Arabic software requirements were
tokenized in this study by utilizing the
‘word_tokenize()¢ function from the Python nltk
library.

—Stopword removal

Stopword removal is an essential step in the
preprocessing phase of the Arabic language. Stop
words are common words that have no important
meaning and do not contribute to the categorization

process. Examples of stop words in Arabic include _$

(in), J.c(on) u.o(from) J‘(to) and & (then). These
words are common in the language but give no useful
information for classification tasks. Eliminating stop
words from the data reduces text dimensionality and
highlights informative content words. This method
enhances the accuracy and efficiency of subsequent
analysis and machine learning models. Removing
these irrelevant words enables the models to capture
vital features and patterns that differentiate between
various requirements [32]. For example, consi@er the
sentence »lax ¥ dn 4z ly Pl 055 Ol e,
(The system should have a user-friendly interface).

After stopword removal, the sentence would be

simplified to »laxiu¥l Apn 4aly slal 06K 2
(system should have user-friendly interface‘). The
removal of stop words eliminates words like (! (that),

JJ (for the), and J! (the), It does not contribute
significantly to the meaning of the text. Eliminating
stop words allows us to concentrate on the words that
hold greater semantic significance and are essential
for classification purposes. This simplified version of
the text amplifies the efficiency of subsequent analysis
and empowers the machine learning models to capture
the relevant information for correct classification
more accurately. In this study, the Arabic stopwords
list provided by the nltk library was utilized.
Specifically, the ’stopwords.words(’arabic’)’ function
was used to obtain a set of Arabic Stopwords.
—Normalization

Normalization is critical in transforming the text into
a standardized format. Several procedures are
performed in this stage to improve the efficacy of the
machine learning algorithms in the classification task.
Firstly, diacritics like accents and vowel signs are
removed from the text. Diacritics are employed in
Arabic to signify short vowels and pronunciation,
although they do not contain important information
for text classification. Removing diacritics simplifies
the text and minimizes the data’s dimensionality.
Secondly, Punctuation signs such as commas, periods,
and question marks are removed. These symbols are
useless for classifying software requirements and can
create noise or discrepancies in the data. We guarantee
that the attention is only on relevant content words by
deleting punctuation marks. Furthermore, deleted are
non-alphanumeric characters like emoticons or other
symbols. These characters might affect learning since
they do not contribute to the text’s semantic meaning.
By getting rid of them, we provide a clearer and more
accurate representation of the requirements [33].
Additionally, normalization includes translating
letters to their basic forms while accounting for
changes in spelling and morphology. Words in Arabic
can have several forms due to prefixes, suffixes, and
other grammatical structures. We unify words with
comparable meanings and minimize the vocabulary
size by reducing letters to their basic forms, which
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increases the learning process for machine learning
algorithms [34]. For example, the word {l_~ (easy)

may appear in different forms such as 4~ (feminine

singular) and (masculine singular). Through
normalization, these variations are reduced to their
base form, (easy), allowing the algorithms to
consistently handle them.

Normalization techniques are applied to standardize
and maintain consistency in text data for efficient
machine-learning algorithm processing. This results
in improved accuracy and effectiveness of subsequent
classification procedures. Treating similar words and
forms equivalently through normalization leads to
more reliable and robust outcomes.
—Stemming

Stemming plays a critical role in information retrieval
and natural language processing. Applying stemming
to Arabic text requires the removal of prefixes,
suffixes, and other affixes from words to extract their
core or stem. This consolidation of related words with
comparable meanings through the process reduces
data complexity, enabling machine learning
algorithms to easily classify and process the text.
Arabic has multiple stemming algorithms at its
disposal, including ISRIStemmer and
ArabicLightStemmer. These algorithms are crafted to
manage Arabic’s distinct features and deliver efficient
stemming abilities [35]. We want to minimize the
variances in Arabic words and return them to their
stem forms by using these stemming techniques. This
approach assists in the simplification of text data and
the capture of the basic semantic meaning of words
while ignoring prefixes, suffixes, and other word
variants. These stemming techniques were chosen
because of their demonstrated performance and
established reputation in the field of Arabic text
processing. We guarantee that our preparation
pipeline effectively handles the linguistic intricacies
of the Arabic language by adding these algorithms
into our technique, allowing for enhanced text
categorization and analysis jobs. Here are some

examples of how stemming is performed in Arabic
text using the ISRI Stemmer: Original Text: « S|

LU (L Stemmed Text: oS (LS (LS~ In
this example, the original words S| (books),
< (book), and & LT (writing) are stemmed from

their root form gl.tf (book). The stemming process

removes the definite article () as well as other word
variants, yielding the common root word.

Step5: Data Transformation

Once the preprocessing phase is finished, the textual data
that has been processed goes through several steps of data
transformation to get ready for text classification. The
succeeding sections detail the implementation of
techniques such as TF_IDF vectorization, feature
selection, and scaling to achieve this.

-TF_IDF Vectorization

We use TF_IDF vectorization to convert processed
textual data into a numerical representation. Each
requirement in the dataset is transformed into a vector,
where the elements correspond to the TF_IDF values
of specific words [36]. For instance, the requifement
sentence 4.L1,w q.>j ?%_s Ua...” S 5L £ ol o2

The system should have a
user-frlendly 1nterface) would be represented as a

vector containing TF_IDF values for the words rUa..J‘

(system), »laziuNl A~ (user-friendly), and 4=y
(interface). This process enables us to capture the
relative importance of words in the entire dataset and
encode textual information in a suitable format for
further analysis. The TF_IDF score is calculated by
multiplying the TF value by the IDF value. The
TF_IDF equation (1) [37]

TF_IDF = TF(term,document) X IDF (term) (1)

where: TF(term, document) refers to the number of
times a specific term appears in a document. This
metric measures the term frequency within the
document, and IDF(term) represents the inverse
document frequency of the term. It assesses the rarity
and significance of the term across the entire
collection of documents. The purpose of this score is
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to identify terms that are both frequent within a
document and uncommon in the overall collection,
indicating their importance in describing the content
of the document.

—Feature Selection

Once the TF_IDF vectorization is complete, we
proceed with feature selection to decrease the data’s
dimensionality and concentrate on the most valuable
features. This stage entails selecting the leading
characteristics based on their relevance to the
classification task. By assessing the significance of
each feature, we can prioritize the most distinguishing
words that substantially contribute to differentiating
between functional and non-functional requirements.
This feature selection procedure guarantees that the
following classification models are trained on the
most pertinent and useful features. The objective of
this study is to identify the most important features
from the TF_IDF matrix through the process of
feature selection. This is achieved by using the
chi-square x? test as the scoring function in Python.
The chi-square test measures the statistical
dependence between each feature and the target
variable [38], allowing for the identification of the
attributes that have the strongest relationship with the
classification task.

—Scaling

To complete the data transformation process, it is
crucial to scale the features. This ensures that they all
have an equal impact on the machine-learning
algorithms. During this step, we use the scaling
method (the Min-Max scaling method). This scaling
method, implemented through the MinMaxScaler
function, ensures that the features are transformed to a
common scale, typically ranging from O to 1, to bring
all the features to a common range. By doing so, any
potential bias caused by differences in magnitude or
units of the features is eliminated. This process
enables fair and accurate comparisons between the
features and enhances the performance of the machine
learning models when classifying text. Applying
Min-Max scaling enables the normalization of feature
values, thereby maintaining their relative relationships
and placing them within a consistent range. This
process is especially crucial when dealing with
features that possess varying scales or ranges. By
doing so, it guarantees that all features contribute
proportionally to both the analysis and subsequent
modeling tasks [39].

Step6: Model Training

—Training using machine learning
This step involves the training of machine learning
models for text classification using preprocessed
datasets. To ensure dependable performance
evaluation and the selection of the best classifier for

our task, cross-validation with k-folds was used. The
dataset is equally divided into five parts, with each
part serving as the testing set while the remaining four
parts function as the training set. The succeeding
paragraphs will present an overview of the classifiers
utilized, each with distinct characteristics and
advantages that enable them to capture varying
patterns and relationships in the text datasets.
—Support Vector Machines (SVM)
Text classification tasks often use SVM, a potent
algorithm. SVM maps input data onto a
higher-dimensional feature space and then finds the
optimal hyperplane that separates the various classes
[40]. SVM is renowned for its ability to manage
high-dimensional data and handle complex decision
boundaries with effectiveness.
—Stochastic Gradient Descent (SGD)
SGD has been effectively utilized for addressing
machine learning problems that are both large-scale
and sparse, as frequently encountered in natural
language processing and text classification. Due to the
sparsity of the data, SGD is renowned for its
efficiency and rapid convergence [41].
—Random Forest (RF)
Random Forest is a method used in ensemble
learning, which combines several decision trees.
These trees are trained on different subsets of data,
and the final classification is based on the combined
predictions of all the trees. Random Forest has earned
a reputation for being robust, able to handle
high-dimensional data, and preventing overfitting
[42].
K-Nearest Neighbors (KNN)
KNN is a classification algorithm that doesn’t rely on
fixed parameters. Instead, it classifies data points by
comparing their distance to other data points within
the feature space. When a new sample is added, KNN
assigns it a label based on the majority class among
its k closest neighbors [43]. This approach is
particularly useful when dealing with non-linear
boundaries, and the algorithm is both straightforward
to implement and effective.
—Extreme Gradient Boosting (XGBoost)
The XGBoost algorithm has become popular due to
its excellent performance in a variety of machine
learning tasks. It achieves high predictive accuracy by
utilizing both decision trees and gradient boosting
techniques. XGBoost is highly regarded for its
scalability, speed, and proficiency in handling
intricate feature interactions [44].
—Logistic Regression (LR)
Logistic Regression is a popular binary classification
approach. It stimulates the link between the input
features and the likelihood of belonging to a particular
class. Logistic Regression is well-known for its ease
of use, interpretability, and resilience when dealing
with noise and outliers [45].
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—Decision Trees (DT)

Decision Trees are hierarchical structures that divide
data into multiple feature values to make sequential
judgments define core nodes as decisions and leaf
nodes as class labels. Decision trees are simple to
learn and analyze, and they can handle numerical as
well as categorical data [46].

—Training using Deep learning

Our focus in this stage is to utilize a pre-existing deep
learning model called Arabert for text classification.
Arabert is a model that was specifically designed to
handle Arabic text and has already undergone
extensive training on a large corpus. This allows it to
effectively capture the wunique nuances and
characteristics of the Arabic language. By harnessing
the power of Arabert, we can achieve accurate text
classification without investing significant resources
into training from scratch.

—AraBERT model

Utilizing the Transformer architecture, the AraBERT
model has shown great success in numerous natural
language processing endeavors. By implementing
self-attention mechanisms, it can effectively
comprehend the dependencies and contextual nuances
present in the input text. With its advanced
understanding of Arabic language syntax, semantics,
and subtle intricacies, AraBERT stands as a prime
option for Arabic text classification. Utilizing the
AraBERT model in Arabic text classification presents
numerous benefits. This includes the ability to capture
specific linguistic features unique to the Arabic
language, manage contextual dependencies, and
achieve high accuracy in classification [30]. By
incorporating AraBERT into our classification task,
we can harness its pre-trained knowledge and
proficiency in Arabic language processing, ultimately
enhancing the precision and effectiveness of our
classification methodology.

Step7: Model Evaluation

Once the machine learning models and the Arabert
model have been trained using preprocessed data,
evaluating their performance becomes crucial in
determining their effectiveness in Arabic text
classification. This involves calculating significant
evaluation metrics such as macro-recall,
macro-precision, and macro-F1 scores to accurately
measure the model’s accuracy and overall
effectiveness.

4 EXPERIMENTS AND RESULTS

This section outlines the experiments that were
performed to measure the -effectiveness of our
automated classification method for software

requirements in Arabic. Our main aim was to evaluate
the accuracy of supervised learning techniques in
categorizing requirements as either functional or
non-functional.

Dataset

The study utilized a dataset comprising 400
requirements, which were evenly divided between
functional and non-functional categories. Each group
contained 200 requirements, ensuring a balanced
distribution of data. This balance was crucial to
prevent negative impacts on machine learning models
caused by imbalanced data. The distribution of Arabic
requirements into the functional and non-functional
categories is outlined in TABLE 3 where we show the
distribution of ARABIC requirements across the
functional and non-functional categories, highlighting
the equal split.

Table 3 ARABIC Requirements distribution

Algorithm 2

Category Count
Functional Requirements (FRs) 200
Non-Functional Requirements (NFRs) 200

Evaluation measurements

In this study, the efficacy of the suggested approach
for the classification of software requirements was
evaluated using three metrics that are quite common
in the field of evaluation: recall, precision, and the F1
score. These indicators offer extremely helpful
insights into the effectiveness and precision of the
classification models [47]. While implementing k-fold
cross-validation, we employed the macro-average of
Recall, Precision, and F1 score as the metric for
evaluation. This technique computes the metric for
each fold individually and then calculates the mean
value. Adopting the macro-average method assists in
addressing any possible imbalance in classes and
offers an extensive evaluation of the model’s
efficiency across diverse folds of the dataset. We
utilized macro Recall to evaluate the ability of the
model to accurately identify positive instances (true
positives) in all categories. This approach gave us a
comprehensive evaluation of the model’s capacity to
capture pertinent instances from every category,
regardless of their sizes or frequencies. Macro Recall
is computed as the mean of Recall values across all
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classes. Macro Recall equation (2).

MacroRecall = (Recall _class1 + Recall_class2 + - -

+ Recall_classN)/N
2

Similarly, we utilized macro Precision to evaluate the
accuracy of the model in detecting positive instances
across all categories. This approach enabled us to analyze
how well the model reduced false positive predictions
while giving equal consideration to all classes. Macro
Precision is obtained by averaging the Precision values
for all classes. Macro Precision equation (3).

MacroPrecision = (Precision_class1 + Precision_class2

+ -+ Precision lassN) /N

3)
Lastly, the model’s performance was assessed using the
macro F1 score, which provided a fair evaluation by
factoring in both Recall and Precision. This score
determined the harmonic mean of Recall and Precision
for every class, thus delivering a comprehensive overview
of the model’s ability to accurately classify instances
across all categories. The calculation of the Macro F1
score entailed averaging the F1 scores across all classes.
Macro F1 score equation (4).

MacroF 1score = (F1_score_class1 + F1_score_class2

+ -4 Fl_coreclassN)/N
“)
In the formulas presented above, ”N” stands for the total
number of classes involved in the classification issue,
while ”Recall_class,” ”Precision_class,” and
”Fl_score_class” are the individual values assigned to
each class [48].

Experimental settings

The experimental settings used in this study consisted of
the software and hardware configurations. The
experiments were conducted using Google Colab, a
website that offers unrestricted use of GPU and TPU
computing resources for the purpose of conducting
machine learning experiments [49]. The experiments
were implemented using Python programming language,
and several libraries were used, including scikit-learn,
pandas, numpy, and matplotlib. The hardware used for
running the experiments was a Dell laptop with a Core 17
processor and 16 GB of RAM.

D. Experimental Results

—Using machine learning

During this stage of the research, our primary focus was
on fine-tuning the classifiers’ parameters in order to
achieve the best possible results. In order to determine the
hyperparameters that should be used for each classifier,
the study investigated a wide variety of possible
combinations. For instance, change the kernel type and
regularization parameter in SVM, as well as the
maximum depth and number of trees in Random Forest.
In the KNN algorithm, we altered the number of
neighbors. In addition, we made adjustments to
XGBoost’s learning rate and the maximum depth, and we
took into account SGD’s loss function, penalty type,
learning rate, and maximum iterations. In the field of
logistic regression, we conducted research and
experiments including different forms of penalties,
varying degrees of regularization, and various solver
methods. The study investigated the criterion for dividing
nodes, the maximum depth that could be reached, the
minimum number of samples needed for splitting a node,
and the minimum number of samples needed for a leaf
node while working on the Decision Tree Classifier. Our
goal was to improve the performance of the classifiers by
accurately  classifying the preprocessed Arabic
requirements into functional and non-functional classes.
To achieve this, we systematically varied these parameters
and evaluated the results of our experiments. 5-fold
cross-validation to assess the performance of each
classifier was utilized. This method includes dividing the
preprocessed dataset into five equal parts, where four
parts are utilized to train the classifiers and the remaining
part for testing as mentioned by [50]. This procedure was
repeated five times, using each part as the testing set once.
The utilization of cross-validation provided us with a
reliable evaluation of the performance of each classifier
on the training data. The study utilized the macro-Recall
score, the macro-Precision score, and the macro-F1 score
metrics for the purposes of evaluation. After conducting
extensive experimentation and optimizing parameters, we
discovered that certain classifiers displayed the best
performance in categorizing preprocessed Arabic
requirements into functional and non-functional
categories. Among the tested classifiers, the KNN
classifier with k=3, the SVM classifier with an RBF
kernel and C=1, and the Random Forest (RF) classifier
with a maximum depth of 20 achieved remarkable results.
Additionally, the XGBoost classifier exhibited superior
performance with a maximum depth of 3. The Decision
Tree (DT) classifier when used without any specific
parameters, as well as the SGD classifier with a modified
Huber loss function, elastic net penalty, alpha=0.01, and a
maximum of 150 iterations, and the Logistic Regression
classifier with C=10, L2 penalty, and the liblinear solver
demonstrated the highest macro-Recall, macro-Precision,
and macro-F1 scores among the tested classifiers. TABLE
I presents the best performance achieved by Machine
learning algorithms when No stemmer is applied. In the
following table, we show the best performance achieved
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Fig. 2 Bar chart for the best performance achieved by Machine
learning algorithms when no stemmer is applied.

by machine learning algorithms when no stemmer is
applied.

Table 4 Performance Achieved by Machine Learning

Performance Measures Macro-Precision Macro-Recall Macro-F1-Score
KNN 0.92 0.91 0.91
SVM 0.94 0.93 0.93
RF 091 0.89 0.89
XGBoost 0.86 0.82 0.81
SGD 0.92 0.91 0.91
LR 0.92 0.91 0.91
DT 0.72 0.73 0.69

In Figure 2, you can see a Bar chart for the best
performance achieved by Machine learning algorithms
when no stemmer is applied. Not only the classifier was
evaluated, but we also examined how stemming
techniques affect the classification outcomes. The initial
approach involved the utilization of the ISRIStemmer
algorithm, which is a frequently applied stemmer for
Arabic texts. This algorithm worked by transforming
words into their base forms, effectively minimizing word
variations. We also tested the efficiency of the
ArabicLightStemmer, which is another commonly used
stemmer for Arabic. The main objective was to enhance
the accuracy of the classification results [51]. Fig. 2. Bar
chart for the best performance achieved by Machine
learning algorithms when no stemmer is applied The
results showed improved performance observed in
multiple classifiers, such as KNN, SVM, Random Forest,
XGBoost, Logistic Regression, and Decision Tree. Using
ISRIStemmer, which assists in reducing the
dimensionality of the text data and capturing root forms
of words, led to better feature representation and

improved classifiers’ ability to differentiate between
functional and non-functional requirements. To further
enhance performance, we experimented with the
ArabicLightStemmer algorithm and discovered that it had
a particularly positive impact on the SGD classifier’s
performance. Similar to ISRIStemmer,
ArabicLightStemmer aims to convert Arabic words into
their base forms, resulting in a more standardized
representation [35]. TABLE 5 illustrated the result of

machine learning with the implementation of
ISRIStemmer, TABLE 6 illustrated the result of machine
learning with the implementation of
ArabicLightStemmer.

Table 5 The result of machine learning with the implementation
of ISRIStemmer

Performance Measures Macro-Precision Macro-Recall Macro-F1-Score
KNN 0.93 0.92 0.92
SVM 0.96 0.95 0.95
RF 0.93 0.92 091
XGBoost 0.88 0.83 0.82
SGD 0.96 0.95 0.95
LR 0.95 0.94 0.94
DT 0.89 0.87 0.87

Table 6 THE RESULT OF MACHINE LEARNING WITH
THE IMPLEMENTATION OF ARABICLIGHTSTEMMER

Performance Measures Macro-Precision Macro-Recall Macro-F1-Score
KNN 0.92 0.90 0.90
SVM 0.95 0.94 0.94
RF 0.93 0.90 0.90
XGBoost 0.87 0.81 0.80
SGD 0.93 0.93 0.93
LR 0.94 0.94 0.93
DT 0.90 0.84 0.82

Figure 3 provides a bar chart for the best performance
of ML algorithms with and without the implementation of
stemming techniques, specifically focusing on the
F1-score metric.

—-Using deep learning

In the experiments involving deep learning, initially, we
employed the pre-trained Arabert model in our deep
learning experiments without any additional training.
However, the achieved results were not as expected. To
enhance the performance of the Arabert model, we
proceeded to fine-tune it using the split method by
training it on our specific dataset. Throughout the training
process, we conducted experiments with the Arabert
model, varying the random state values to observe the
impact on the outcome with epochs 5. The tests included
a range of random state values such as 32, 50, 52, 62, and
72. The variability in the random state values allowed us
to assess the model’s performance under diverse
conditions by obtaining different splits of the data for
training and testing. To evaluate the model’s performance,
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Fig. 3 Bar chart for the best performance of ML algorithms with
and without the implementation of stemming techniques.

metrics such as accuracy, macro-precision, macro-recall,
and macro-F1 score were utilized. The results were
impressive, revealing significant improvements in
classification accuracy and effectiveness. [52], [53] These
findings demonstrate the significance of training deep
learning models on data that is specific to their domain
since this enables the models to adapt and become more
specialized in the task at hand. The potential of deep
learning was demonstrated in Arabic text classification
through the combination of the pre-trained knowledge of
the Arabert model and the additional training on our
dataset, which resulted in excellent results. TABLE V
illustrated the results obtained through the Arabert model.

Table 7 THE RESULTS OBTAINED THROUGH THE
ARABERT MODEL

Performance Measures Macro-Precision Macro-Recall Macro-F1-Score
random._state=32 0.97 0.97 0.97
random_state=50 0.94 0.94 0.94
random_state=52 0.97 0.97 0.97
random_state=62 0.94 0.94 0.94
random_state=72 0.97 0.98 0.97
Average 0.96 0.96 0.96

The Arabert model has emerged as a leading
performer in the realm of deep learning, achieving an
impressive F1-score of 0.96. This score demonstrates the
model’s effective grasp of the intricacies of the data and
its ability to make precise predictions. The high F1-score
showcases the Arabert model’s proficiency in
understanding and analyzing Arabic text, making it
well-suited for various text analysis tasks. In terms of
classifiers without stemming, the SVM classifier has
proven to be exceptional with an Fl-score of 0.93. This

— F1-Score
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Fig. 4 Bar chart for the results of Deep Learning, Best ML
Algorithms: No Stemming, ISRI Stemmer, and Arabic Light
Stemmer.

underscores the SVM classifier’s capability to accurately
categorize data without relying on stemming techniques.
The classifier’s high Fl-score indicates a strong balance
between precision and recall, resulting in reliable
predictions and overall impressive performance. In
addition, the SVM classifier with the SGD classifier with
the ISRI stemmer displayed impressive results among the
classifiers that utilized stemming techniques. They
achieved an F1-score of 0.95, showcasing their ability to
effectively utilize stemming techniques. This improved
their comprehension of the stemmed text, resulting in
more precise and insightful predictions. TABLE VI
illustrated the results of Deep Learning, Best ML
Algorithms: No Stemming, ISRI Stemmer, and Arabic
Light Stemmer.

Table 8 RESULTS OF DEEP LEARNING, BEST ML
ALGORITHMS: NO STEMMING, ISRI STEMMER, AND
ARABIC LIGHT STEMMER

Classifiers F1- score
Arabert 0.96
The best classifier without Stemming (SVM) 0.93
The best classifier with ISRIStemmer (SVM), (SGD) 0.95
The best classifier with ArabicLi (SVM) 0.94

Figure 4 presents a comprehensive Bar chart that
showcases the performance of deep learning. And best
ML Algorithms in the context when no stemming is
applied, as well as when utilizing the ISRI stemmer and
the Arabic Light stemmer.

5 Conclusion

This study has made significant contributions to the field
of Arabic requirement classification, addressing a critical
research gap. An extensive and diverse dataset of Arabic
requirements was successfully collected, filling the void
of publicly available resources in this domain. This
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dataset serves as a valuable asset for researchers and
practitioners  involved in  Arabic  requirement
classification. The proposed method, which combines
machine learning and deep learning algorithms, provides
an efficient and accurate means of classifying Arabic
requirements into Functional Requirements (FRs) and
Non-Functional Requirements (NFRs). This automated
approach reduces the time, effort, and costs associated
with manual classification processes, enhancing
productivity in  software development projects.
Additionally, this study lays the groundwork for future
research in the field, offering a reference point for
specialists to explore alternative methods and further
streamline the manual classification process. In the
context of related studies, this approach aligns with
previous research on requirement classification, albeit
with a focus on the Arabic language, which poses unique
challenges due to its structural and semantic complexities.
While some studies have attempted to classify
English-written requirements, limited research has
addressed Arabic requirements. This work not only
addresses this research gap but also draws inspiration
from the broader field of requirement classification,
leveraging best practices and adapting them to the Arabic
language. VI. RECOMMENDATIONS AND FUTURE
WORK Regarding recommendations, several avenues for
further research are suggested. Firstly, the performance of
classifiers could be enhanced by incorporating more
advanced deep learning techniques or leveraging
transformer-based models specifically tailored for Arabic,
such as BERT. Secondly, expanding the dataset with a
larger volume of requirements from diverse domains
could improve model generalization. Additionally,
exploring the classification of other languages with
similar  structural challenges could broaden the
applicability of this methodology. Lastly, collaborating
with domain experts to refine the dataset and
classification process further could yield even more
accurate results. Overall, this study provides a solid
foundation for advancing the field of Arabic requirement
classification and offers valuable insights for future
research directions.
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