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Abstract: In this paper, we investigate the optical soliton solutions for a fractional weakly nonlinear ion-acoustic wave in a magnetized

electron–positron plasma using the fractional modified Korteweg–deVries–Zakharov–Kuznetsov (f-mKdV-ZK) model. The fractional

calculus framework is employed to describe the non-local effects arising from the long-range interactions and memory effects in

the plasma medium. The presence of a magnetic field introduces additional complexities to the dynamics of ion-acoustic waves in

electron–positron plasmas. We derive the governing equations for the f-mKdV-ZK model and employ the reductive perturbation method

to obtain the corresponding optical soliton solutions. The obtained soliton solutions reveal the influence of fractional order, weak

nonlinearity, and magnetic field on the characteristics of the ion-acoustic waves. The results demonstrate the formation and propagation

of stable optical solitons in the magnetized electron–positron plasma and provide insights into the fundamental behavior of such

systems. This study contributes to the understanding of nonlinear wave dynamics in fractional plasmas and offers potential applications

in various plasma physics and astrophysical scenarios.
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1 Introduction

Due to its importance in comprehending a broad range of
physical processes in laboratory and astrophysical
plasmas, the study of nonlinear waves in plasma physics
has attracted considerable attention [1,2]. The interaction
between ions and charged particles, which characterizes
plasma systems, is defined by ion-acoustic waves, which
are one of these. Due to its applications in laboratory
experiments and astrophysical conditions, such as pulsar
magnetospheres and compact star objects, the study of
ion-acoustic waves in magnetized electron-positron
plasmas has gained attention recently. Nonlinear partial
differential equations (PDEs) that represent the
interaction of diverse physical processes, such as
dispersion, nonlinearity, and dissipation, are frequently
used to describe the behavior of ion-acoustic waves in
plasmas [3,4]. The Zakharov-Kuznetsov (ZK) equation,
see [5,6], and the Korteweg-deVries (KdV) equation, see
[7,8], are two basic models for weakly nonlinear
ion-acoustic waves in plasma systems. These equations
have shed important light on how solitons, or single

waves, develop and move across plasmas. Traditional
KdV and ZK equations, however, ignore several
significant physical factors, including memory effects in
plasma systems and fractional-order derivatives resulting
from long-range interactions. These non-local and
memory effects in various physical systems have been
captured using the framework of fractional calculus,
which extends the idea of differentiation and integration
to non-integer orders. The dynamics of waves and
solitons in fractional plasmas have been studied using
fractional calculus in the context of plasma physics
[9-11].

The optical soliton solutions for a fractional weakly
nonlinear ion-acoustic wave in a magnetized
electron-positron plasma are the main topic of this
research. The fractional modified
Korteweg-deVries-Zakharov-Kuznetsov (f-mKdV-ZK)
equation that we suggest incorporates fractional calculus
operators is a modified version of the KdV-ZK equation.
The f-mKdV-ZK equation was created by taking into
account a homogeneous magnetized component of an
electron-positron plasma made up of cool and hot
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electrons as well as positrons with equal temperatures
[12]. The density of the positrons with hot electrons and
similar temperatures is given by [12]:

np = PhExp

(

−
eg

KEh

)

,ne = EhExp

(

eg

KEh

)

, (1)

where K is the Boltzmann constant, e is the electron
charge, Ph and Eh are hot positrons and hot electrons,
respectively, while g(t,x,y,z) is the electric field potential.
The difference in the number density of hot electrons and
positrons of equal temperatures can be expressed as [12]:

np − ne =−2Ph sinh

(

eg

KPh

)

=−
1

4πe
▽

2g, (2)

where Poisson’s equation has been utilized to get the
second equality. In this paper, we deal with the following
space-time f-mKdV-ZK equation [13]:

D
η
t g+mg2

D
η
x g+D

η
x D

η
x D

η
x g

+D
η
x D

η
y D

η
y g+D

η
x D

η
z D

η
z g = 0,

(3)

where D
η
τ is the local fractional derivative of order

0 < η < 1, x,y and z are the scaled space variables, t is
the temporal variable and m is a dispersion coefficient.
The amount of work required to move an electric unit

charge from a reference point in an electric field
−→
E to a

particular spot is known as the electric field potential. The

electric potential in the electric field
−→
E at a location r can

be expressed as following from line integrals [14]:

g =−

∫

C

−→
E dl, (4)

where C is an arbitrary path from some fixed reference
point to r. We utilize the gradient theorem to obtain:

−→
E =−▽g =−

∂g

∂x

−→ex −
∂g

∂y

−→ey −
∂g

∂ z

−→ez . (5)

The Maxwell-Faraday equation states that a
non-conservative and spatially variable electric field is
accompanied by a time-varying magnetic field. In the

Maxwell-Faraday equation, the electric field
−→
E can be

used to determine the magnetic field
−→
B [15]:

▽×
−→
E =−

∂
−→
B

∂ t
, (6)

where ▽× is the curl operator. With the help of this
model, we can explore how the non-local and memory
effects in the plasma medium affect the properties of
ion-acoustic waves. The dynamics of ion-acoustic waves
in electron-positron plasmas are further complicated by
the presence of a magnetic field. The dispersion and
nonlinearity of the waves are impacted by the interaction

between charged particles and the magnetic field, creating
novel wave shapes and occurrences [16,17]. We study the
combined impacts of fractional calculus, weak
nonlinearity, and magnetic field on the production and
propagation of solitons by considering the fractional
weakly nonlinear ion-acoustic wave in a magnetized
electron-positron plasma.

The paper is organized to be an introduction as a first
section. An overview of key ideas that are important to
our work will be presented in Section 2. In Section 3, we
present a mathematical analysis of the governing equation
by utilizing a suitable transformation to translate the
fractional equation into a nonlinear integer-order ordinary
differential equation. Section 4 presents the main results
of this work, where we will construct the optical soliton
solution for the governing equation and introduce the
study of some physical concepts that are related to the
governing equation. Finally, some conclusions are listed
in Section 5.

2 Preliminaries

By offering a potent mathematical framework to describe
phenomena involving non-locality, memory effects,
power-law behavior, and fractal features, fractional
calculus plays a significant role in physics. Its uses are
diverse and include wave propagation, power-law
correlations, anomalous diffusion, and quantum
mechanics. Fractional calculus can help scientists better
comprehend complex processes and open new lines of
inquiry by being incorporated into the modeling and
analysis of physical systems [18,19]. This section is
dedicated to providing an overview of key ideas that are
important to our work. The definition of local fractional
derivative (LFD) is given along with a few of its crucial
features. For a function g(τ) ∈ Cη (a,b) , we have
|g(τ)− g(τ0)| < εη , where |τ − τ0| < δ , for ε,δ > 0 and
ε,δ∈ R [19].

Definition 1 [20]. Let g(τ) ∈ Cη (a,b). Then LFD of
order η ,0< η < 1, of the function g(τ) at the point τ = τ0

is defined as

D
η
τ g(τ0) =

dη g(τ0)

dτη
= lim

τ→τ0

∆ η (g(τ)− g(τ0))

(τ − τ0)
η , (7)

where

∆ η (g(τ)− g(τ0))∼= Γ (1+η)∆ (g(τ)− g(τ0)) . (8)

The following theorem presents the substantial
properties of the LFD.

Theorem 1 [20]. Let g1 (τ) ,g2 (τ) ∈ Cη (a,b). Then
the attached properties are attained:
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(p1)Dη
τ [g1 (τ)±g2 (τ)] =D

η
τ g1 (τ)±D

η
τ g2 (τ) .

(p2)Dη
τ [g1 (τ)g2 (τ)] =D

η
τ (g1 (τ))g2 (τ)+g1 (τ)D

η
τ g2 (τ) .

(p3)D
η
τ

[

g1(τ)
g2(τ)

]

=
D

η
τ (g1(τ))g2(τ)−g1(τ)D

η
τ g2(τ)

(g2(τ))
2 ,g2 (τ) 6= 0.

(p4)Dη
τ [g1 (τ)◦g2 (τ)] = g

(1)
1 (g2 (τ))D

η
τ g2 (τ) .

(p5)Dη
τ τnη = Γ (1+nη)

Γ (1+(n−1)η)
τ(n−1)η .

The reader can refer to [21-24] for more details about
local fractional calculus.

3 Mathematical analysis

Here, we convert the model (3) into a nonlinear ordinary
differential equation (ODE) of integer order by use of an
appropriate traveling wave transformation. In order to
achieve this, we take into account the following complex
fractional traveling wave transformation:

g(t,x,y,z) = G(ξ ) ,

ξ =
β1

Γ (1+η)
xη +

β2

Γ (1+η)
yη

+
β3

Γ (1+η)
zη −

α

Γ (1+η)
tη
,

(9)

where β1,β2,β3 and α are constants. The constant α
refer to the speed of the traveling wave. The function
G(ξ ) is the wave shape. Using the chain rule of the LFD,
p4 in Theorem 1, and transformation in (9), the following
relations are obtained:

−α
dG

dξ
+β1mG2 dG

dξ
+
(

β 3
1 +β1β 2

2 +β1β 2
3

) d3G

dξ 3
= 0.

(10)
By integrating (10) with respect to ξ and considering

the integrating constant be zero, we have:

−αG+
β1m

3
G3 +

(

β 3
1 +β1β 2

2 +β1β 2
3

) d2G

dξ 2
= 0. (11)

We are using this nonlinear ODE to construct the
desired optical soliton solutions for the governing model
(3).

4 Optical soliton solutions

Self-sustaining wave packets known as optical solitons
keep their shape and speed while traveling through a
medium. These extraordinary things are very important in
physics because of their special characteristics. First of
all, optical solitons have exceptional stability, which
enables them to travel over great distances without
dispersion or distortion. Due to their durability and ability

to transmit information without deterioration, they are
essential in high-capacity optical communication
systems. Second, optical solitons have a balance between
nonlinearity and dispersion, which enables them to
self-focus and self-trap. Due to this characteristic, they
are able to combat light’s inclination to diffuse naturally
and create powerful, locally focused pulses. Additionally,
the study of nonlinear phenomena, including nonlinear
dynamics, nonlinear wave propagation, and nonlinear
optics, has been aided by the use of optical solitons. They
give researchers a base for analyzing complicated wave
interactions, nonlinear scattering, and pattern generation.
Also, optical solitons are useful in many different
disciplines. They have been used to limit signal
degradation and enable effective signal processing in fiber
optics for long-distance data transfer. Ultrafast lasers,
all-optical switches, and optical data storage systems have
all used soliton-based devices [25,26]. In order to solve
the space-time fractional model precisely, we aim to
create bright and kink soliton solutions for the model (3)
using a suitable assumption of the solutions for ODE (11).

4.1 Bright soliton solutions

We assume that the nonlinear ODE (11) has a solution
in the form:

G(ξ ) =
Asech(kξ )

√

1+Bsech2 (kξ )
, (12)

where A,B and k are constants to be determined by
substitution the solution (12) into (11) and solve the
obtained algebraic system after some mathematical
simplifications. We construct it as:

α = k2β1

(

β 2
1 +β 2

2 +β 2
3

)

, (13)

A =±

√

−6k2
(

β 2
1 +β 2

2 +β 2
3

)

m
, (14)

B = 1, (15)

where k is arbitrary and provided that m < 0. Using
this results in (13-15), the wave profile can be given as:

G1,2 (ξ ) =
±

√

−6k2(β 2
1 +β 2

2 +β 2
3 )

m
sech(kξ )

√

1+ sech2 (kξ )
. (16)

For researching and forecasting the behavior of waves
in plasma systems, it is essential to comprehend how the
dispersion coefficient affects the governing equation.
Researchers can affect wave propagation, soliton
dynamics, and wave interactions by regulating or
changing the dispersion coefficient, which advances
knowledge and the creation of plasma physics
applications. The wave profile (16) is plotted in Figure 1.
We consider the constants βi = 1 for i = 1,2,3, while the
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parameter k and the dispersion coefficient m have
considered in different values to show their impact on the
behavior of the obtained bright wave. We clearly notice
that the waveform is affected by the change in both

parameters, whether by expanding or narrowing the wave
packets during their propagation. The electric field
potential can be given using the obtained wave profile
(16):

g1,2 (t,x,y,z) =±

√

−6k2(β 2
1 +β 2

2 +β 2
3 )

m
×

sech

(

k

(

β1

Γ (1+η)
xη + β2

Γ (1+η)
yη + β3

Γ (1+η)
zη −

(k2β1(β 2
1 +β 2

2 +β 2
3 ))

Γ (1+η)
tη

))

√

1+ sech2

(

k

(

β1

Γ (1+η)xη + β2

Γ (1+η)y
η + β3

Γ (1+η)z
η −

(k2β1(β 2
1 +β 2

2 +β 2
3 ))

Γ (1+η) tη

))

.

(17)

This electric field potential is depicted in Figure 2. We
consider the parameters
β1 = 0.2,β2 = 0.1,β3 = 1,m = 1,k = 1 at integer
derivative order η = 1. The fractional order directly
affects the shape of the implicit bright soliton (16). To
show this impact, we present Figure 3 at fractional
derivative order η = 0.99 and η = 0.9. The bright soliton
is not clearly shown in Figure 3 due to the effect of the
fractional derivative on it. It should also be noted here that
the definition used in this work, the LFD definition, its
effect differs from the effect of other definitions of the
fractional derivative such as the truncated M-fractional
derivative definition in [27], and this leads us to the fact
that the physical interpretation of the fractional derivative
may differ according to the definition used. For more
illustration, we depict the electric field potential
g(t,x,y,z) in the 2D plot at different fractional derivative
orders in Figure 4, while the dispersion coefficient m is
considered at m = 1 and m = 2.
The electric field

−→
E can be obtained using the electric

field potential g(t,x,y,z) in (17) with the aid of (5). It is
crucial to notice that the specific effects of the fractional
derivative on the electric field rely on the specific plasma
system being considered, including its unique features
and governing equations. With the addition of the
fractional derivative, the description of the electric field
dynamics becomes more flexible and complicated,
improving the ability to accurately depict non-local and
memory effects in some plasma systems. The electric

field
−→
E can be obtained using the electric field potential

g(t,x,y,z) with the aid of (5). It is crucial to notice that
the specific effects of the fractional derivative on the
electric field rely on the specific plasma system being
considered, including its unique features and governing
equations. With the addition of the fractional derivative,
the description of the electric field dynamics becomes
more flexible and complicated, improving the ability to
accurately depict non-local and memory effects in some

plasma systems. Figure 5 show the electric field
−→
E that

that related to (17) at
β1 = 1,β2 = 1,β3 = 1,m = 0.1,k = 0.1 such that the

fractional derivative order is consider η = 1 and η = 0.5.
Within the context of the mKdV-ZK equation in plasma
physics, the difference in the number density of hot
electrons and positrons of equal temperatures has a
significant bearing. This difference in number density
denotes a fundamental asymmetry in the plasma system,
which can result from a variety of physical causes, such
as different energy sources or different electron and
positron transport parameters. Understanding and
quantifying this asymmetry are essential steps in
understanding the plasma’s general behavior. Hot electron
and positron interactions are nonlinear because there is a
variation in number density between the two species.
These interactions might take the form of particle
entrapment, wave-particle interactions, or the creation of
brand-new waves and structures. The strength and form of
these interactions are directly influenced by the difference
in number density, which has an impact on the plasma’s
overall dynamics. The mKdV-ZK equation’s main focus,
the excitation and propagation of waves inside the plasma
system, is also influenced by the number density
differential. The difference in number density has an
impact on system-specific instabilities and wave
excitations. Mode conversion, parametric instabilities, or
the activation of electromagnetic or electrostatic waves
with specific properties are a few examples. Therefore,
understanding how the number density difference affects
these wave occurrences is essential for forecasting and
studying them. Additionally, the transit of hot electrons
and positrons inside the plasma is impacted by the
number density imbalance. This difference drives particle
fluxes, diffusion, and heat conduction, which in turn
affects plasma transport characteristics and overall energy
transfer. The system’s complex interplay between particle
dynamics, wave propagation, and energy redistribution is
influenced by the discrepancy in number density. The
difference in the number density of hot electrons and
positrons of equal temperatures can be obtained using (2).
We depict this difference in Figure 6 at
β1 = 1,β2 = 1,β3 = 1,k = 1 and the fractional derivative
order considered at different values to show its impact on
the constructed results. In Figure 6, we notice that the
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difference in the number of hot electrons and positrons
with equal temperatures is affected by the fractional
derivative when changing the order of the derivative.
Also, the dispersion coefficient m has a prominent role in
this change in general.

4.2 Kink soliton solutions

To construct a kink soliton solution for the f-mKdV-
ZK model (3), we assume that the ODE (11) has solution
in the form:

G(ξ ) =
Asinh(kξ )

√

B+ sinh2 (kξ )
, (18)

Substituting (18) into ODE (11) and some
mathematical simplification led us to obtain an algebraic
system. Solving the obtained algebraic system gives us
the following result:

α =−2k2β1

(

β 2
1 +β 2

2 +β 2
3

)

, (19)

A =±

√

−6k2
(

β 2
1 +β 2

2 +β 2
3

)

m
, (20)

B = 1, (21)

where k is arbitrary and provided that the dispersion
coefficient m < 0. The presence of anomalous dispersion
in the medium where the wave is propagating is indicated
when the dispersion coefficient is negative. Shorter
wavelength waves propagate more quickly than longer
wavelength waves, a phenomenon known as abnormal
dispersion. The dispersion coefficient describes the
relationship between the wave’s frequency and
wavenumber in terms of wave propagation. A negative
dispersion coefficient indicates that higher frequency
(shorter wavelength) waves travel farther through the
medium than lower frequency (longer wavelength) waves.
The effects of this behavior on wave phenomena are
significant. The negative dispersion coefficient in the case
of pulses or wave packets leads the higher frequency
wave components to advance before the lower frequency
wave components. As a result, over time, the pulse or
wave packet may spread or stretch.

Using result (19-21), the wave profile G(ξ ) can be
given as:

G1,2 (ξ ) =
±

√

−6k2(β 2
1 +β 2

2 +β 2
3 )

m
sinh(kξ )

√

1+ sinh2 (kξ )
. (22)

When using the traveling wave transformation, the
wave profile is crucial. It fulfills numerous essential
functions during the investigation, enabling a thorough
comprehension of the wave behavior and its
ramifications. The significance of the wave profile is
highlighted as: by providing a thorough description of the

wave’s shape, amplitude, and temporal and spatial
properties, the wave profile makes it possible to
characterize wave behavior. This thorough
comprehension of the wave’s characteristics assists in
comprehending the underlying physical events.
Additionally, the wave profile is crucial in determining
the various types of waves. Since each of these wave
types exhibits unique characteristics in their profiles, it is
possible to discern between solitons, kink waves, periodic
waves, and other wave types by looking at the profile. For
linking wave patterns with the corresponding physical
processes, this identification is essential. The
investigation of wave stability and propagation is made
easier by the wave profile. Determining whether the wave
maintains its form and amplitude over time is part of the
stability assessment process. One can learn more about
the factors that contribute to wave stability or cause
variations in its behavior by keeping an eye on how the
profile evolves. Moreover, the wave profile can be used to
check the precision of analytical conclusions made using
the traveling wave transformation. Figure 7 shows the
inferred kink waves at different values of the dispersion
coefficient m and the parameter k. We can notice that the
amplitude of the lattice wave is affected directly with the
change in the values of parameter k, while the amplitude
of the wave is affected inversely with the change in the
value of the dispersion coefficient m. The electric field
potential g(t,x,y,z) can be given using the obtained wave
profile (22):

g1,2 (t,x,y,z) =±

√

−6k2(β 2
1 +β 2

2 +β 2
3 )

m
×

sinh

(

k

(

β1

Γ (1+η)
xη + β2

Γ (1+η)
yη + β3

Γ (1+η)
zη −

(−2k2β1(β 2
1 +β 2

2 +β 2
3 ))

Γ (1+η)
tη

))

√

1+ sinh2

(

k

(

β1

Γ (1+η)x
η + β2

Γ (1+η)y
η + β3

Γ (1+η) zη −
(−2k2β1(β 2

1 +β 2
2 +β 2

3 ))
Γ (1+η) tη

))

.

(23)

To illustrate the kink soliton in (23), we present
Figure 8 which shows the electric field potential
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Fig. 1: The wave profile G1 (ξ )in (16) at β1 = 1,β2 = 1,β3 = 1:

(a) k = 1,2,3,4; (b) m = 1,2,3,4.

Fig. 2: The electric field potential g(t,x,y,z)in (17) at β1 =
0.2,β2 = 0.1,β3 = 1,m = 1,k = 1and derivative order η = 1such

that: (a) 3D plot; (b) 2D plot.

g2 (t,x,y,z) at derivative order η = 1 in 2D and 3D. It is
certain that the fractional derivative affects the behavior
of the inferred soliton, so we show in Figure 9 the electric
field potential g(t,x,y,z) in (23) by considering the
fractional derivative at different orders. Figure 10 presents
the behavior of the kink soliton in (23) in a 2D plot,
where different orders of the fractional derivative and
different values of the dispersion coefficient m were

Fig. 3: The electric field potential g(t,x,y,z)in (17) at β1 =
0.2,β2 = 0.1,β3 = 1,m = 1,k = 1such that: (a) fractional

derivative order η = 0.99; (b) fractional derivative order η = 0.9.

Fig. 4: The electric field potential g(t,x,y,z)in (17) at β1 =
0.2,β2 = 0.1,β3 = 1,k = 1such that: (a) dispersion coefficient

m = 1; (b) dispersion coefficient m = 2.

considered. We notice that the soliton is affected by the
change in the order of the fractional derivative in Figure
10, as the amplitude of the wave is less the lower the
order of the fractional derivative, with the need to note
that its shape has not changed. The dispersion coefficient
m also has a role in the amplitude of the inferred wave.
As we mentioned earlier, the fractional derivative affects
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Fig. 5: The electric field overrightarrowE1at β1 = 1,β2 = 1,β3 =
1,m = 0.1such that: (a) fractional derivative order η = 0.9, k =
0.1; (b) fractional derivative order η = 0.5, k = 0.1.

the behavior of the solution in a certain way, but this
effect is linked to several factors, the most important of
which is the definition used for the fractional derivative,
as we notice in [27] the ruling model has been studied
considering another definition of the fractional derivative,
and the effect of the fractional derivative of the solutions
they derived was in [27] somewhat different. With the

help of (5), the electric field
−→
E may be constructed using

the electric field potential g(t,x,y,z).
We show the electric field in (23) in Figure 11 in

different fractional derivative orders. Using (2) and (23),
we can obtain the difference in the number density of hot
electrons and positrons of equal temperature. It is
depicted in Figure 12. Figure 12(a) shows the difference
in the number density of hot electrons and isothermal
positrons np − ne when the dispersion coefficient
m = −0.1 by which this difference is somewhat larger
when compared to Fig. 12(b) when the scattering
coefficient is considered m =−0.5.

5 Discussion and Conclusions

The investigation of the fractional modified
Korteweg-deVries-Zakharov-Kuznetsov (f-mKdV-ZK)

Fig. 6: The difference in the number density of hot electrons and

positrons of equal temperatures np − neat β1 = 1,β2 = 1,β3 =
1,k = 1such that: (a) dispersion coefficient m = 1; (b) dispersion

coefficient m = 5.

Fig. 7: The wave profile G1 (ξ )in (22) at β1 = 1,β2 = 1,β3 = 1:

(a) k = 1,2,3,4; (b) m =−0.1,−0.2,−0.3,−0.4.

model utilizing the local fractional derivative has been the
main subject of this paper. We built bright and kink
soliton solutions within this framework by using the
traveling wave transformation. Our research covered a
wide range of topics, including wave profile analysis,
electric field potential investigation, electric field
examination, and comparison of the number density of
hot electrons and positrons at equal temperatures. The
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Fig. 8: The electric field potential g2 (t,x,y,z)in (22) at β1 =
1,β2 = 1,β3 = 1,m =−0.5,k = 1and derivative order η = 1such

that: (a) 3D plot; (b) 2D plot.

Fig. 9: The electric field potential g2 (t,x,y,z)in (23) at β1 =
1,β2 = 1,β3 = 1,m = −0.5,k = 1such that: (a) fractional

derivative order η = 0.99; (b) fractional derivative order η =
0.98.

data were represented graphically using instructive
figures, which facilitated comprehension of our
conclusions. The use of the fractional derivative, which
added non-local and memory effects to the model, is one
of the study’s standout features. We were able to better
capture the nuances of plasma behavior by integrating the
fractional derivative, which also allowed us to go beyond
the conventional integer-order models in terms of our
comprehension of plasma dynamics. It was thoroughly
investigated how the fractional derivative affected the

Fig. 10: The electric field potential g1 (t,x,y,z)in (23) at β1 =
0.1,β2 = 2,β3 = 1,k = 1such that: (a) dispersion coefficient m =
−1; (b) dispersion coefficient m =−5.

outcomes, shedding light on the importance of using
fractional calculus in plasma physics research. By
carrying out this study, we have improved our
comprehension of the complex dynamics present in the
f-mKdV-ZK model as well as our knowledge of
applications of fractional calculus in plasma physics.
These findings serve as a starting point for additional
research and serve as a model for future studies looking at
the effects of fractional derivatives in different plasma
systems. In the end, this research advances plasma
modeling, wave propagation analysis, and our general
understanding of complicated plasma phenomena. It also
contributes to the subject of plasma physics.
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Fig. 11: The electric field overrightarrowE1at β1 = 2,β2 =
1,β3 = 1,m =−0.1such that: (a) fractional derivative order η =
0.9, k = 0.1; (b) fractional derivative order η = 0.7, k = 0.1.
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