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Abstract: The central role of modeling discrete bivariate data in enhancing understanding, facilitating informed decision-making,

and advancing knowledge spans various fields. This modeling allows the depiction of the intricate relationship between two variables

and finds applications in diverse domains. The focus of this study is on introducing a novel statistical model, specifically the bivariate

discrete Burr distribution, an unexplored entity in existing statistical literature. This model is presented as the discrete counterpart of the

Burr distribution, and we explore its essential statistical characteristics. This exploration includes the derivation of the joint probability

mass function, joint survival function, joint hazard rate function along with its reversed counterpart, conditional expectations, and

positive quadrant dependence. For parameter estimation of the model, maximum likelihood estimation is employed. Additionally, an

extensive simulation study is conducted to evaluate the bias and mean square error of the maximum likelihood estimators. Finally, two

real-world datasets are examined to demonstrate the practical applicability of the model.

Keywords: Statistical model; Discrete bivariate distributions; Joint hazard rate function; Positively quadrant dependent; Simulation;
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1 Introduction

Given the crucial role of probability distributions in characterizing natural accidents and phenomena, as well as in
modeling diverse real-world data across various fields like engineering, medicine, biological and industrial studies,
insurance, and economics, researchers have increasingly directed their efforts towards unveiling numerous discrete and
continuous statistical distributions that precisely capture these phenomena. In recent decades, there has been a notable
shift in focus towards introducing distributions that can effectively represent the intricacies of real-life data, including
truncated, asymmetric, skewed, and upper-recorded data. This research specifically aims to enhance flexibility and
adaptability in lifetime distribution modeling. The emphasis is on proposing an extension to the Burr distribution to
address the diverse forms and types of real-world data. This extension is designed to provide a more suitable way of
describing such data. The Burr distribution is particularly significant due to its capacity to encapsulate the characteristics
found in various types of continuous distributions. Several authors have proposed it as a suitable model for lifetime data,
with Gupta et al. [1] analyzing failure time data using the Burr distribution. Various studies, such as those by Wingo [2],
have delved into maximum likelihood estimation (MLE) of Burr distribution parameters and techniques for fitting this
distribution to life test data. Ghitany and Awadhi [3] provided examples of survival studies involving different leukemia
treatments, incorporating censored data from the Burr distribution. The Pareto distribution can be regarded as a specific
case within the Burr distribution framework and was initially introduced by Pareto to describe income distribution across
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a population. This distribution finds wide applications in economic studies, particularly when modeling phenomena with
long-tailed random variable distributions. Notably, Arnold [4], and Kotz et al. [5] have applied the Pareto distribution to
various naturally occurring phenomena. The Burr XII distribution, first introduced by Burr [6], encompasses distributions
such as exponential, Weibull, and log-logistic for specific parameter values and provides insights into the curve shape
characteristics of distributions like normal, lognormal, gamma, logistic, and several Pearson-type distributions.
Rodriguez [7] extensively explored the relationship between the Burr XII distribution and other continuous distributions.
Krishna and Pundir [8] introduced the discrete Burr (DB) and discrete Pareto (DP) distributions. The survival function
(SF), say S(x; .), and probability mass function (PMF), say f (x; .), of the DB distribution are presented as follows

SDB(x;β ,θ ) = θ log(1+xβ ); x = 0,1,2, ..., (1)

and

fDB(x;β ,θ ) = θ log(1+xβ )−θ log(1+(1+x)β ); x = 0,1,2, ..., (2)

where 0 < θ < 1 and β > 0. The DP distribution is a special case of the DB when putting β = 1. Over the past two
decades, several papers have emerged in the literature focusing on discrete distributions derived from the discretization
of continuous distributions. Many researchers have shown interest in identifying bivariate distributions that possess
specific characteristics, allowing them to apply these novel lifetime distributions to predict and describe the lifespans of
various devices. Bivariate discrete and continuous distributions find applications across diverse fields, including
engineering, reliability analysis, sports, meteorology, drought studies, and more. Notable references include Lee and Cha
[9], Nekoukhou and Kundu[10], Kundu and Nekoukhou [11-12], Ali et al. [13], Eliwa and El-Morshedy [14-15], Tahir et
al. [16], Eliwa et al. [17], Lee and Cha [18], El-Morshedy et al. [19], Nekoukhou et al. [20], Alotaibi et al. [21],
El-Morshedy et al. [22], Barbiero [23], Mohammed et al. [24], El-Sherpieny et al. [25-27], Al-Essa et al. [28], among
others. In recent years, numerous methods have been proposed for the development of new discrete distributions. One of
the most significant approaches involves discretizing well-established continuous distributions. Consider f (x1;x2) and
S(x1;x2) as the joint probability density function (PDF) and joint survival function of a given bivariate continuous
distribution over the domain (0;∞)2. In this context, a new discrete bivariate distribution can be created using the
following method

Pr(X1 = x1,X2 = x2) = S(x1,x2)− S(x1+ 1,x2)− S(x1,x2 + 1)+ S(x1+ 1,x2 + 1). (3)

The primary objective of this paper is to introduce a novel bivariate distribution derived from the discrete Burr
distribution, which we refer to as the ”bivariate discrete Burr distribution”. Importantly, this new distribution exhibits
marginal distributions consistent with the discrete Burr. The bivariate discrete Burr distribution is a versatile tool for
examining and interpreting various data shapes across multiple domains, particularly data that exhibits extreme
observations, also known as a ”heavy-tailed model”. Moreover, its bivariate hazard rate function can be employed to
simulate diverse failure patterns.

The paper is organized as follows: Section 2 covers the derivation of the joint SF, joint PMF, and various associated
functions. Section 3 introduces several statistical and reliability properties. In Section 4, the focus shifts to the estimation
of model parameters. Section 5 involves a simulation to evaluate the effectiveness of the estimation method. The practical
applicability of the proposed model is demonstrated through the analysis of two real datasets in Section 6. Finally, in
Section 7, the paper concludes with some closing remarks.

2 The BDB Distribution: Description and Clarifications

Let’s consider independent random variables M1 ∼ DB(β ,θ1), M2 ∼ DB(β ,θ2), and M3 ∼ DB(β ,θ3). Now, if we define
X1 as the minimum of M1 and M3, and X2 as the minimum of M2 and M3, the bivariate vector X = (X1,X2) follows
a BDB distribution with the parameter vector τ = (β ,θ1,θ2,θ3)

T . This bivariate discrete distribution is referred to as
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BDB(β ,θ1,θ2,θ3). If X ∼ BDB(β ,θ1,θ2,θ3), then the joint SF is given by

SX1,X2
(x1,x2) = Pr(X1 ≥ x1,X2 ≥ x2)

= Pr(min{M1,M3} ≥ x1,min{M2,M3} ≥ x2)

= Pr(M1 ≥ x1,M2 ≥ x2,M3 ≥ max{x1,x2})

= SDB(x1;β ,θ1)SDB(x2;β ,θ2)SDB(z;β ,θ3)

= θ
log(1+x

β
1 )

1 θ
log(1+x

β
2 )

2 θ
log(1+zβ )
3

=





S1(x1,x2) if x1 < x2

S2(x1,x2) if x2 < x1

S3(x) if x1 = x2 = x,
(4)

where x1,x2 ∈N, z = max{x1,x2} and S1(x1,x2), S2(x1,x2), S3(x) are given by

S1(x1,x2) = SDB(x1;β ,θ1)SDB(x2;β ,θ2θ3),

S2(x1,x2) = SDB(x1;β ,θ1θ3)SDB(x2;β ,θ2)

and
S3(x) = SDB(x;β ,θ1θ2θ3).

The discrete joint SF is a critical tool for understanding and quantifying the joint behavior of multiple random variables,
making it valuable in fields ranging from risk assessment and reliability to decision-making and data analysis. The
marginal SF of Xi ;(i = 1,2) is given by

SXi
(xi) = SDB(xi;β ,θiθ3); xi ∈ N◦, (5)

where

SXi
(xi) = Pr(min{Mi,M3} ≥ xi) = (θiθ3)

log(1+x
β
i ).

The joint cumulative distribution function (CDF) can be derived using the following relationship

FX1,X2
(x1,x2) = FX1

(x1)+FX2
(x2)+ SX1,X2

(x1,x2)− 1, (6)

Here, FX1
(x1) and FX2

(x2) correspond to the marginal distributions of the random vector X. The discrete joint CDF is a
fundamental tool for understanding and quantifying the combined behavior of multiple random variables. Its significance
extends to various fields, making it an essential component of statistical and probabilistic analysis in both practical
applications and theoretical research.

Another crucial statistical concept is known as the joint PMF. The importance of the joint PMF lies in its ability to
provide crucial information about the simultaneous occurrence of multiple events in a discrete random variable system.
Here are some key points highlighting its significance:

–Multivariate Probability Analysis: Joint PMF is used to analyze the joint probability of multiple random variables. It
provides a complete description of the probability distribution for all possible combinations of outcomes in a
multivariate system.

–Event Dependency: It helps in understanding the dependency between different random variables. By examining how
their joint PMF behaves, we can assess whether events are independent, positively correlated, or negatively correlated.

–Statistical Inference: Joint PMF plays a fundamental role in statistical inference and hypothesis testing involving
multiple variables. For instance, it is crucial in chi-squared tests for independence and analysis of contingency tables.

–Risk Assessment: In various fields like finance and insurance, the joint PMF is used to model and analyze the risk
associated with multiple events occurring simultaneously. This is vital for portfolio risk management and actuarial
calculations.

–Engineering and Reliability: Engineers use joint PMF to assess the reliability of complex systems where the failure of
multiple components can lead to system failure. It helps in modeling and analyzing the reliability of such systems.

–Decision Making: In decision theory and optimization problems, understanding the joint PMF can aid in making
informed decisions when multiple random factors are involved.

–Machine Learning and Data Analysis: Joint PMF is essential in machine learning and data analysis, especially when
dealing with multiple correlated variables. It helps in modeling, feature selection, and dimensionality reduction.

–Quality Control: In quality control and manufacturing, joint PMF is used to analyze the occurrence of defects or faults
at multiple points in a production process, allowing for process improvement.
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–Social Sciences: In the social sciences, joint PMF is used in survey analysis, especially when studying relationships
between multiple variables, like income, education, and employment.

–Diverse Applications: Joint PMF finds applications in various fields such as epidemiology, environmental science,
genetics, and more, where understanding the joint occurrence of events or variables is essential for research and
decision-making.

In summary, the joint PMF is a fundamental concept in probability theory and statistics that enables a comprehensive
understanding of the relationships and interactions between multiple random variables, leading to valuable insights and
informed decision-making across a wide range of disciplines. If the random vector X ∼ BDB(β ,θ1,θ2,θ3), then the joint
PMF can be formulated as

fX1,X2
(x1,x2) =





f1(x1,x2) if x1 < x2

f2(x1,x2) if x2 < x1

f3(x) if x1 = x2 = x,
(7)

where

f1(x1,x2) =

(
θ

log(1+x
β
1 )

1 −θ
log(1+(1+x1)

β )
1

)(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)

log(1+(1+x2)
β )

)

= fDB(x1;β ,θ1) fDB(x2;β ,θ2θ3),

f2(x1,x2) =

(
(θ1θ3)

log(1+x
β
1 )− (θ1θ3)

log(1+(1+x1)
β )

)(
θ

log(1+x
β
2 )

2 −θ
log(1+(1+x2)

β )
2

)

= fDB(x1;β ,θ1θ3) fDB(x2;β ,θ2)

and

f3(x) = p1

(
(θ1θ3)

log(1+xβ )− (θ1θ3)
log(1+(1+x)β )

)
− p2

(
θ

log(1+xβ )
1 −θ

log(1+(1+x)β )
1

)

= p1 fDB(x;β ,θ1θ3)− p2 fDB(x;β ,θ1).

where p1 = θ
log(1+xβ )
2 , p2 = (θ2θ3)

log(1+(1+x)β ). We can derive the expressions f1(x1,x2), f2(x1,x2) and f3(x) by using
the following relation

fX1,X2
(x1,x2) = SX1,X2

(x1,x2)− SX1,X2
(x1 + 1,x2)− SX1,X2

(x1,x2 + 1)+ SX1,X2
(x1 + 1,x2 + 1).

Figure 1 displays graphical representations of the joint PMF for varying parameter values in the context of the BDB
distribution.
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Figure 1. The PMFs of the BDB distribution.

Remarkably, the PMFs can be employed to examine and assess non-symmetric data exhibiting various forms of kurtosis.
Moreover, it can serve as a heavy-tailed distribution to address outlier observations. The marginal PMF of Xi,(i = 1,2),
corresponding to (5) is

fXi
(xi) = (θiθ3)

log(1+iβ )− (θiθ3)
log(1+(1+i)β )

,xi ∈ N◦

= fDB(xi;β ,θiθ3). (8)
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The following interpretations can be proved for BDB distribution. It’s important to observe that when β equals 1, the
random variables (X1,X2) exhibit discrete Pareto marginal distributions. This scenario gives rise to a bivariate discrete
Pareto distribution characterized by parameters θ1, θ2 and θ3, with its joint SF as follows

SX1,X2
(x1,x2) = θ

log(1+x1)
1 θ

log(1+x2)
2 θ

log(1+z)
3 , (9)

where x1,x2 ∈ N and z = max{x1,x2}. Suppose (Xm1,Xm2) ∼ BDB(β ,θm1,θm2,θm3) which m = 1,2, ...,n and they are
independently distributed. If C1 = min(X11,X21, ...,Xn1) and C2 = min(X12,X22, ...,Xn2), then

(C1,C2)∼ BDB

(
β ,

n

∏
m=1

θm1,

n

∏
m=1

θm2,

n

∏
m=1

θm3

)
. (10)

3 Distributional Characteristics and its Attributes

3.1 Positive quadrant dependent

Positive quadrant dependent (PQD) is a term used in statistics to describe a specific type of dependence between random
variables. When random variables are said to be PQD, it means that they tend to increase or decrease together in the
positive direction. In other words, when one variable takes on a higher value than its expected or average value, the other
variable is more likely to also take on a higher value than its expected or average value. Similarly, when one variable
takes on a lower value than its expected or average value, the other variable is more likely to take on a lower value as
well. This positive dependence implies that there is a positive correlation between the variables in the first quadrant of a
Cartesian coordinate system (where both variables are positive). It suggests that when one variable experiences an extreme
positive deviation from its mean, the other variable is more likely to also exhibit a positive deviation from its mean. PQD
is commonly encountered in various fields, including finance, economics, and environmental science. For example, in
finance, PQD may be observed when the stock prices of two companies tend to rise or fall together due to similar market
conditions or industry trends. Understanding PQD is important in statistical modeling, risk assessment, and decision-
making, as it can impact the analysis of joint probabilities, correlations, and dependencies between variables. Researchers
and analysts often use different statistical tools and models to account for PQD when working with data that exhibits this
type of relationship. If X1 = min{M1,M3} and X2 = min{M2,M3}, then X1 and X2 are PQD where

Pr(X1 > x1,X2 > x2)≥ Pr(X1 > x1)Pr(X2 > x2), for all x1 and x2,

where M1 ∼ DB(β ,θ1), M2 ∼ DB(β ,θ2), and M3 ∼ DB(β ,θ3). Or, equivalently, if and only if

Pr(X1 ≤ x1,X2 ≤ x2)≥ Pr(X1 ≤ x1)Pr(X2 ≤ x2), for all x1 and x2.

3.2 Joint probability generating function

The joint probability generating function (PGF) is a mathematical concept used in probability theory and statistics to
describe and analyze the joint probability distribution of multiple random variables. It is a powerful tool for understanding
the behavior and relationships between these variables. Its versatile applications span across various fields. In actuarial
science, the joint PGF can be employed to model the joint distribution of claims and assess risk in insurance portfolios
(insurance and risk assessment). In queueing systems, the joint PGF helps analyze the number of customers in a queue at
different time points (queueing theory). In reliability analysis, it is used in reliability theory to study the number of failures
in a system over time. In statistics and data analysis, it is used to compute moments and correlations between multiple
random variables, which is valuable in statistical analysis. In economics, it can be used to model and analyze the joint
distribution of economic variables. If the random vector X ∼ BDB(β ,θ1,θ2,θ3), then the joint PGF can be expressed as

G(u,v) =
∞

∑
k=0

∞

∑
l=0

P(X1 = k,X2 = l)ukvl

=
∞

∑
k=0

∞

∑
l=k+1

fDB(k;β ,θ1) fDB(l;β ,θ2θ3)u
kvl +

∞

∑
l=0

∞

∑
k=l+1

fDB(k;β ,θ1θ3) fDB(l;β ,θ2)u
kvl

+
∞

∑
k=0

θ
log(1+kβ )
2 fDB(k;β ,θ1θ3)(uv)k −

∞

∑
k=0

(θ2θ3)
log(1+(1+k)β ) fDB(k;β ,θ1)(uv)k

,

where |u|< 1 and |v|< 1. The joint PGF allows us to extract the marginal PGFs for individual random variables.
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3.3 Conditional distribution and expectation

These concepts are widely used in fields such as probability theory, statistics, finance, economics, machine learning, and
engineering, where understanding the impact of one variable on another in the presence of specific conditions is essential
for modeling, analysis, and decision support. The conditional PMF of (X1 | X2 = x2), say fX1|X2=x2

(x1 | x2), is given by

fX1|X2=x2
(x1 | x2) =





f1(x1 | x2) if 0 ≤ x1 < x2

f2(x1 | x2) if 0 ≤ x2 < x1

f3(x1 | x2) if 0 ≤ x1 = x2 = x,
(11)

where

f1(x1 | x2) = fDB(x1;β ,θ1),

f2(x1 | x2) =
fDB(x1;β ,θ1θ3) fDB(x2;β ,θ2)

fDB(x2;β ,θ2θ3)

and

f3(x1 | x2) =
θ

log(1+xβ )
2 fDB(x;β ,θ1θ3)− (θ2θ3)

log(1+(1+x)β ) fDB(x;β ,θ1)

fDB(x;β ,θ2θ3)
.

The conditional SF of (X1 | X2 ≥ x2), say SX1|X2≥x2
(x1), can be reported as

SX1|X2≤x2
(x1) =





θ
log(1+x

β
1 )

1 if 0 ≤ x1 < x2

(θ1θ3)
log(1+x

β
1 )θ

− log(1+x
β
2 )

3 if 0 ≤ x2 < x1

θ
log(1+xβ )
1 if 0 ≤ x1 = x2 = x.

(12)

Thus, the conditional expectation of (X1 | X2 = x2), say E(X1 | X2 = x2), can be listed as

E(X1 | X2 = x2) =
∞

∑
x1=0

x1 fX1|X2=x2
(x1 | x2)

=
x2−1

∑
x1=0

x1 f1(x1 | x2)+
∞

∑
x1=x2+1

x1 f2(x1 | x2)+
∞

∑
x1=0

x2 f3(x1 | x2).

=
x2−1

∑
x1=0

x1

(
θ

log(1+x
β
1 )

1 −θ
log(1+(1+x1)

β )
1

)
+

(
θ

log(1+x
β
2 )

2 −θ
log(1+(1+x2)

β )
2

)

(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)log(1+(1+x2)β )

)

×
∞

∑
x1=x2+1

x1

(
(θ1θ3)

log(1+x
β
1 )− (θ1θ3)

log(1+(1+x1)
β )

)

+
x2θ

log(1+xβ )
2

(
(θ1θ3)

log(1+x
β
2 )− (θ1θ3)

log(1+(1+x2)
β )
)

(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)log(1+(1+x2)β )

)

−

x2(θ2θ3)
log(1+(1+x)β )

(
θ

log(1+x
β
2 )

1 −θ
log(1+(1+x2)

β )
1

)

(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)log(1+(1+x2)β )

) . (13)

3.4 Joint hazard rate function

The joint hazard rate function (HRF) provides insights into how the risk of a concurrent event involving multiple variables
changes with the values of those variables. It is often used in reliability analysis to understand the likelihood of system
failures, where X1 and X2 might represent the lifetimes of different components or subsystems. Understanding the joint
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hazard rate function is valuable for assessing and mitigating risks in situations where multiple factors or components
interact to influence the occurrence of events or failures. If the random vector X ∼ BDB(β ,θ1,θ2,θ3), then the joint HRF
can be expressed as

hX1,X2
(x1,x2) =





h1(x1,x2) if x1 < x2

h2(x1,x2) if x2 < x1

h3(x) if x1 = x2 = x,
(14)

where

h1(x1,x2) =

(
θ

log(1+x
β
1 )

1 −θ
log(1+(1+x1)

β )
1

)(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)

log(1+(1+x2)
β )
)

θ
log(1+x

β
1 )

1 (θ2θ3)
log(1+x

β
2 )

,

h2(x1,x2) =

(
(θ1θ3)

log(1+x
β
1 )− (θ1θ3)

log(1+(1+x1)
β )
)(

θ
log(1+x

β
2 )

2 −θ
log(1+(1+x2)

β )
2

)

(θ1θ3)
log(1+x

β
1 )θ

log(1+x
β
2 )

2

,

and

h3(x) =
θ

log(1+xβ )
2

(
(θ1θ3)

log(1+xβ )− (θ1θ3)
log(1+(1+x)β )

)

(θ1θ2θ3)
log(1+x

β
1 )

−
(θ2θ3)

log(1+(1+x)β )
(

θ
log(1+xβ )
1 −θ

log(1+(1+x)β )
1

)

(θ1θ2θ3)
log(1+x

β
1 )

.

Figure 2 exhibits visual depictions of the joint HRF with varying parameter values within the framework of the BDB
distribution.
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Figure 2. The joint HRFs of the BDB distribution.

Notably, the utilization of joint HRFs allows for the exploration and evaluation of diverse failure patterns across multiple
domains.
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3.5 Joint reversed hazard rate function

The ”reversed hazard rate function” or ”inverse hazard rate function” is a concept used in survival analysis and reliability
theory. It represents the expected time or survival time until an event occurs, given that the event has not occurred until
time t. The reversed hazard rate function is used to describe the remaining life expectancy, conditional on the event not
occurring up to time t (see Bismi, [29]). If the random vector X ∼ BDB(β ,θ1,θ2,θ3), then the joint HRF can be listed as

RX1,X2
(x1,x2) =





r1(x1,x2) if x1 < x2

r2(x1,x2) if x2 < x1

r3(x) if x1 = x2 = x,
(15)

where

r1(x1,x2) =

(
θ

log(1+x
β
1 )

1 −θ
log(1+(1+x1)

β )
1

)(
(θ2θ3)

log(1+x
β
2 )− (θ2θ3)

log(1+(1+x2)
β )
)

1− (θ1θ3)
log(1+x

β
1 )+(θ2θ3)

log(1+x
β
2 )

(
θ

log(1+x
β
1 )

1 − 1

) ,

r2(x1,x2) =

(
(θ1θ3)

log(1+x
β
1 )− (θ1θ3)

log(1+(1+x1)
β )
)(

θ
log(1+x

β
2 )

2 −θ
log(1+(1+x2)

β )
2

)

1− (θ2θ3)
log(1+x

β
2 )+(θ1θ3)

log(1+x
β
1 )

(
θ

log(1+x
β
2 )

2 − 1

) ,

and

r3(x) =
θ

log(1+xβ )
2

(
(θ1θ3)

log(1+xβ )− (θ1θ3)
log(1+(1+x)β )

)

1+θ
log(1+xβ )
3

(
(θ1θ2)log(1+xβ )−θ

log(1+xβ )
1 −θ

log(1+xβ )
2

)

−
(θ2θ3)

log(1+(1+x)β )
(

θ
log(1+xβ )
1 −θ

log(1+(1+x)β )
1

)

1+θ
log(1+xβ )
3

(
(θ1θ2)log(1+xβ )−θ

log(1+xβ )
1 −θ

log(1+xβ )
2

) .

The reversed hazard rate at any time t is the reciprocal of the hazard rate at the same time. This relationship allows you
to derive one function from the other. If you know one function, you can easily calculate the other. Both the hazard rate
and reversed hazard rate functions are valuable tools in analyzing survival data, reliability, and risk assessment in various
fields, such as medicine, engineering, finance, and more. They provide a comprehensive view of how events or failures
occur over time and how survival probabilities change as time progresses.

4 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method used in statistics and machine learning to estimate the parameters of a
statistical model. The main idea behind MLE is to find the parameter values that maximize the likelihood of the observed
data, given a specific probabilistic model. The likelihood function is a function of the model parameters and is used to
describe how well the model explains the observed data. It is denoted as l(δ |x), where δ represents the parameter(s) of
the model, and x represents the observed data. The likelihood function is often transformed into its natural logarithm,
creating the log-likelihood (L) function . This transformation simplifies the optimization process and does not change the
parameter values that maximize the likelihood. The goal is to find the parameter values δ that maximize the L function.
This is typically done using optimization techniques, such as gradient descent, the Newton-Raphson method, or other
numerical optimization algorithms where

δ̂ = argmaxL(δ |x). (16)

One of the attractive features of MLE is its efficiency and asymptotic properties, which means that as the sample size
increases, the MLE estimates become increasingly accurate and tend to follow a normal distribution. However, MLE can
also be sensitive to the choice of the initial parameter values, and in some cases, it may not have unique solutions or
closed-form solutions, requiring the use of numerical optimization techniques. In this section, the unknown parameters
β , θ1, θ2 and θ3 of the BDB distribution are estimated by using the method of maximum likelihood. Suppose that, we
have a sample of size t, of the form {(x11,x21),(x12,x22), ...,(x1t ,x2t)} from the BDB distribution. We use the following
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notations: I1 = {x1 j < x2 j}, I2 = {x2 j < x1 j}, I3 = {x1 j = x2 j = x j}, I = I1 ∪ I2 ∪ I3, |I1| = t1, |I2| = t2, |I3| = t3 and
t = t1 + t2 + t3.Derived from the collected observations, the likelihood function takes the form of

l(β ,θ1,θ2,θ3|x) =
t1

∏
j=1

f1(x1 j,x2 j)
t2

∏
j=1

f2(x1 j,x2 j)
t3

∏
j=1

f3(x j). (17)

The log-likelihood function transforms into

L(β ,θ1,θ2,θ3|x) =
t1

∑
j=1

ln
(
m1(x1 j;θ1)

)
+

t1

∑
j=1

ln
(
m1(x2 j;θ2θ3)

)

+
t2

∑
j=1

ln
(
m1(x1 j;θ1θ3)

)
+

t2

∑
j=1

ln
(
m1(x2 j;θ2)

)

+
t3

∑
j=1

ln

(
θ

log(1+x
β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)

β )m1(x j;θ1)

)
, (18)

where

m1(x;γ) = γ log(1+xβ )− γ log(1+(1+x)β )
.

To find the maximum likelihood estimates (MLEs) for the parameters β , θ1, θ2 and θ3, you can calculate the first partial
derivatives of (18) with respect to each of these parameters and then set these derivatives equal to zero. This process yields
the likelihood equations in the following format

∂L

∂β
=

t1

∑
j=1

m2(x1 j;θ1)−m2(1+ x1 j;θ1)

m1(x1 j;θ1)
+

t1

∑
j=1

m2(x2 j;θ2θ3)−m2(1+ x2 j;θ2θ3)

m1(x2 j;θ2θ3)

+
t2

∑
j=1

m2(x1 j;θ1θ3)−m2(1+ x1 j;θ1θ3)

m1(x1 j;θ1θ3)
+

t2

∑
j=1

m2(x2 j;θ2)−m2(1+ x2 j;θ2)

m1(x2 j;θ2)

+
t3

∑
j=1

θ
log(1+x

β
j )

2 (m2(x j;θ1θ3)−m2(1+ x j;θ1θ3))+m2(x j;θ2)m1(x j;θ1θ3)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

−
t3

∑
j=1

(θ2θ3)
log(1+(1+x j)

β ) (m2(x j;θ1)−m2(1+ x j;θ1))+m2(1+ x j;θ2θ3)m1(x j;θ1)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

,

(19)

∂L

∂θ1
=

t1

∑
j=1

m3(x1 j;θ1)−m3(1+ x1 j;θ1)

m1(x1 j;θ1)
+

t2

∑
j=1

θ
log(1+x

β
1 j)

3 m3(x1 j;θ1)−θ
log(1+(1+x1 j)

β )

3 m3(1+ x1 j;θ1)

m1(x1 j;θ1θ3)
+

t3

∑
j=1

θ
log(1+x

β
j )

2

(
θ

log(1+x
β
1 j)

3 m3(x j;θ1)−θ
log(1+(1+x j)

β )
3 m3(1+ x1 j;θ1)

)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

−
t3

∑
j=1

(θ2θ3)
log(1+(1+x j)

β )(m3(x1 j;θ1)−m3(1+ x1 j;θ1))

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

, (20)
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∂L

∂θ2

=
t1

∑
j=1

θ
log(1+x

β
2 j)

3 m3(x2 j;θ2)−θ
log(1+(1+x2 j)

β )

3 m3(1+ x2 j;θ2)

m1(x2 j;θ2θ3)

+
t2

∑
j=1

m3(x2 j;θ2)−m3(1+ x2 j;θ2)

m1(x2 j;θ2)

+
t3

∑
j=1

m3(x j;θ2)m1(x j;θ1θ3)−θ
log(1+(1+x j)

β )
3 m3(1+ x j;θ2)m1(x j;θ1)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

, (21)

and

∂L

∂θ3

=
t1

∑
j=1

θ
log(1+x

β
2 j)

2 m3(x2 j;θ3)−θ
log(1+(1+x2 j)

β )

2 m3(1+ x2 j;θ3)

m1(x2 j;θ2θ3)
+

t2

∑
j=1

θ
log(1+x

β
1 j)

1 m3(x1 j;θ3)−θ
log(1+(1+x1 j)

β )

1 m3(1+ x1 j;θ3)

m1(x1 j;θ1θ3)
+

t3

∑
j=1

θ
log(1+x

β
j )

2

(
θ

log(1+x
β
j )

1 m3(x j;θ3)−θ
log(1+(1+x j)

β )
1 m3(1+ x1 j;θ3)

)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

−

t3

∑
j=1

θ
log(1+(1+x j)

β )
2 m3(1+ x j;θ3)m1(x j;θ1)

θ
log(1+x

β
j )

2 m1(x j;θ1θ3)− (θ2θ3)
log(1+(1+x j)β )m1(x j;θ1)

, (22)

where

m2(x;γ) =
lnxxβ lnγγ log(1+xβ )

1+ xβ
,

m3(x;γ) = ln(1+ xβ )γ log(1+xβ )−1
.

To determine the MLEs for the parameters β , θ1, θ2 and θ3, you can derive these estimates by solving the system of
four nonlinear equations presented in (19) through (22). Solving these equations is challenging, necessitating the use of a
numerical technique to obtain the MLEs.

5 Evaluating the Characteristics of the MLE Method Using Simulation Technique

Applying the Monte Carlo Markov Chain (MCMC) technique for the simulation of a bivariate discrete probability
distribution is a valuable approach widely employed across various domains, including statistics, machine learning, and
probabilistic modeling. MCMC stands out as a potent statistical method designed to generate random samples from
intricate probability distributions. Its particular strength comes to the forefront when dealing with probability
distributions that lack a closed-form expression but can be assessed pointwise. MCMC encompasses a suite of
algorithms, such as the Metropolis-Hastings algorithm and Gibbs sampling, which systematically sample from the target
distribution to approximate its key properties. This approach allows the simulation of complex and high-dimensional
probability distributions, rendering it relevant for tackling real-world challenges. It facilitates the estimation of
distribution characteristics, summary statistics, and other properties of interest.

Nevertheless, the task of selecting appropriate transition probabilities and proposal mechanisms can be intricate,
especially in scenarios featuring high-dimensional distributions. Addressing convergence and mixing concerns is
paramount in MCMC simulations, and diagnostic tools like the Gelman-Rubin statistic are often enlisted to scrutinize the
convergence of the chains. Shifting the focus to the evaluation of MLE within an MCMC framework, this endeavor plays
a pivotal role in the realm of statistical modeling. Ensuring the effective integration of MLE, a frequently used parameter
estimation method, within the context of MCMC, known for its capacity to sample from intricate probability
distributions, is of paramount importance. The procedure involves selecting an appropriate MCMC algorithm, with
common choices encompassing the Metropolis-Hastings algorithm, Gibbs sampling, and Hamiltonian Monte Carlo,
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tailored to the specific problem at hand. Generating synthetic data closely resembling real-world data is integral,
allowing control over the true parameter values. MLE is seamlessly incorporated within the MCMC framework, utilizing
MLE estimates as the initial values for the MCMC simulation. Running the MCMC algorithm with MLE-initialized
values yields posterior samples for the parameters of interest, along with the opportunity to obtain MLE estimates from
the MCMC procedure. Evaluation of MLE performance under MCMC encompasses various aspects, including
assessments of bias, variance, convergence, efficiency, and more. This rigorous evaluation procedure not only serves to
gauge the accuracy and reliability of parameter estimates but also sheds light on the synergy between MLE and MCMC
within the context of specific modeling tasks. In this section, we employ MLE techniques to estimate the parameters
θ1,θ2,θ3 and β of the BDB distribution. The population parameters are generated using the R-software package. We
obtain sampling distributions for various sample sizes, specifically, n = 40, 90, 120, 140, 200, and 300, based on 1000
replications. This section conducts an evaluation of the MLE technique by examining properties such as bias and mean
square error (MSE). A general approach for generating a bivariate vector X from the BDB distribution begins with the
generation of a value Y from the continuous DB distribution. Subsequently, this value is discretized to derive the variable
X . The estimated MLEs are presented in Tables 1 and 2 for two instances of the BDB distribution: BDB(0.7, 0.3, 0.3,
0.6) and BDB(0.8, 0.4, 0.5, 0.7).

Table 1. The bias and MSE values for the BDB(0.7,0.3,0.3,0.6).

Size θ1 θ2 θ3 β
Method n bias MSE bias MSE bias MSE bias MSE

25 0.098 0.075 0.097 0.056 0.081 0.029 0.068 0.074

40 0.055 0.033 0.072 0.037 0.044 0.017 0.047 0.046
90 0.038 0.029 0.069 0.029 0.037 0.014 0.034 0.030

MLE 120 0.025 0.021 0.064 0.022 0.024 0.012 0.025 0.026
140 0.022 0.019 0.052 0.014 0.021 0.011 0.022 0.017
200 0.015 0.015 0.034 0.010 0.017 0.009 0.016 0.015
300 0.006 0.011 0.013 0.007 0.013 0.004 0.014 0.010

Table 2. The bias and MSE values for the BDB(0.8,0.4,0.5,0.7).

Size θ1 θ2 θ3 ζ
Method n bias MSE bias MSE bias MSE bias MSE

25 0.076 0.058 0.083 0.074 0.039 0.061 0.053 0.066
40 0.049 0.037 0.066 0.039 0.028 0.036 0.034 0.040
90 0.042 0.031 0.053 0.024 0.022 0.027 0.031 0.036

MLE 120 0.039 0.022 0.042 0.019 0.016 0.014 0.026 0.029
140 0.030 0.014 0.030 0.013 0.009 0.012 0.021 0.016
200 0.022 0.012 0.019 0.008 0.002 0.007 0.018 0.012
300 0.011 0.007 0.010 0.002 0.001 0.006 0.009 0.005

Tables 1 and 2 yield the following insights: As the sample size, n, approaches infinity, the bias consistently diminishes to
zero. Similarly, the mean square errors (MSEs) exhibit a consistent trend of decreasing to zero as n → ∞. These findings
underscore the estimators’ consistency, implying that MLE is a robust and effective method for data analysis.

6 Examination of Data Fit

In this section, we analyze two real datasets to assess the efficacy of the BDB distribution. For each dataset, we perform
a comparative analysis by pitting the BDB distribution against several alternative distributions. The evaluation is based
on multiple criteria, including the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), and the maximized L.

6.1 Dataset I: Medical data

These data, as documented in Davis [30], pertain to the effectiveness of steam inhalation in alleviating common cold
symptoms. Figures 3-6 display nonparametric plots of data set I. Notably, the plots reveal the presence of some joint
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extreme values and outliers.
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Figure 3. Scatter (left panel) and box (right panel) sketches of data set I.
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Figure 4. Visualizing marginal distributions with scatter sketches: Data set I.
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Figure 5. Exploring data set I through QQ sketches for marginal distributions.
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Figure 6. Investigating marginal distributions in data set I using box and violin sketches.

Before embarking on the analysis of the bivariate data, the initial step involves the examination of the marginal
distributions. This assessment revealed that all p-values associated with the marginals exceeded 0.05. Subsequently, an
evaluation was conducted to gauge the suitability of the BDB distribution for modeling dataset I. The empirical results,
as shown in Table 3, include the proposed model and several robust competing models, such as the bivariate discrete
exponentiated (BDE), bivariate discrete inverse exponentiated (BDIE), bivariate discrete inverse Rayleigh (BDIR), and
bivariate discrete inverse Weibull (BDIW) distributions. It becomes readily apparent that the proposed model
outperforms all other competing distributions.

Table 3. The MLEs and goodness-of-fit for dataset I.

Distribution

Statistic BDE BDIE BDIR BDIW BDB

β̂ −− −− −− 2.453 7.612

θ̂1 0.846 0.501 0.262 0.192 0.886

θ̂2 0.792 0.622 0.405 0.337 0.924

θ̂3 0.693 0.383 0.363 0.360 0.828

−L 88.0 92.48 78.66 76.51 73.816

AIC 182.0 190.96 163.32 161.02 155.632

CAIC 182.92 191.88 164.24 162.62 157.230

BIC 186.20 195.16 167.52 166.62 161.240

HQIC 183.34 192.30 164.66 162.81 157.430

6.2 Dataset II: Engineering data

These data, as documented in Casiena [31]. Figures 7-10 showcase nonparametric data plots for data set II. It is evident
that there are some noteworthy joint extreme values and outliers.
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Figure 7. Scatter (left panel) and box (right panel) sketches of data set II.
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Figure 8. Representing marginal distributions using scatter plots: Data set II.

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

X1

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

X2

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Max(X1,X2)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 9. Examining marginal distributions in data set II with QQ plots.
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Figure 10. Analyzing data set II’s marginal distributions with box and violin plots.

Before commencing the analysis of the bivariate data, the initial step involves scrutinizing the marginal distributions.
This assessment revealed that all p-values associated with the marginals exceeded 0.05. Subsequently, an evaluation
was carried out to assess the appropriateness of employing the BDB distribution for modeling dataset II. The empirical
findings, presented in Table 4, encompass the proposed model and several robust competing models, namely, the bivariate
discrete Rayleigh (BDR), bivariate discrete Weibull (BDW), BDIE, BDIR, BDIW and BDB distributions. It becomes
evidently clear that the proposed model surpasses all other competing distributions.

Table 4. The MLEs and goodness-of-fit for dataset II.

Distribution

Statistic BDE BDR BDW BDIE BDIR BDIW BDB

β̂ −− −− 2.125 −− −− 2.738 7.698

θ̂1 0.652 0.790 0.807 0.669 0.493 0.420 0.736

θ̂2 0.812 0.872 0.882 0.388 0.212 0.141 0.922

θ̂3 0.713 0.905 0.917 0.514 0.561 0.587 0.855

−L 75.35 63.99 63.89 78.54 64.10 61.96 60.62

AIC 156.70 133.98 133.78 163.07 134.21 131.82 129.24

CAIC 157.79 135.07 134.87 163.99 135.29 133.82 131.14

BIC 160.47 137.75 137.55 167.28 137.98 136.95 134.27

HQIC 157.79 135.07 134.87 164.42 135.29 133.37 130.69

7 Summary and Findings

This investigation centered on the introduction of an innovative statistical model, namely the bivariate discrete Burr
distribution. Following the proposal of the mathematical structure for this novel model, a comprehensive exploration of
its statistical properties ensued. The results revealed the model’s potential applicability to assess a wide range of data
types, particularly those featuring outlier observations. Moreover, its adaptability to address various forms of failures was
highlighted, attributable to the flexibility inherent in its hazard rate function. Furthermore, the introduced bivariate
distribution showcased a noteworthy property known as positive quadrant dependence, thereby augmenting its relevance
and applicability across diverse fields. In the realm of parameter estimation, the study employed the maximum likelihood
estimation method. To gauge the effectiveness of this approach under different circumstances, an extensive simulation
study was conducted, evaluating both bias and mean square error of the maximum likelihood estimators. Finally, the
practical utility of the model was underscored through the examination of two real-world datasets. This served to
illuminate the model’s versatility and relevance in real-world scenarios, further establishing its potential as a valuable
tool in statistical analysis and decision-making contexts.
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