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Abstract: The investigation of the reliability of any component tested in the field of life model is a challenge. Without a 
doubt, one of the most critical concerns is "stress “s” strength “S” reliability". This paper aims to discuss how the stress-
strength coefficient  from any statistical literature Can be estimated. System reshaping is subjected to a 
random force  in such a way that the system fails if the stress exceeds the force. The reliability of stress resistance is 
examined in this study when force  has a Monsef distribution “ME” and stress ( and  ) has an ME 
distribution, Lindley distribution “Lin”, Rayleigh distribution “Ray”, Exponential distribution “Exp”, Half-Normal 
distribution “HN” and Rayleigh Half-Normal distribution “RHN” respectively. Explicitly obtaining the maximum probability 
estimator for the unknown parameter is also possible. Additionally, the maximum likelihood estimation of “MLEs” 
asymptotic distribution obtained which can be used to construct a confidence interval for . The proposed model is 
compared with other existence models using simulations, and an illustrative data analysis was performed. Finally, we 
determined that the maximum product of the spacing method yielded the best results. 
 

Keywords: Stress-strength model, Monsef distribution; Maximum likelihood estimator, Monte Carlo simulation study. 

 

1 Introduction 

There are situations in which a system is not time-dependent and might continue functioning forever if 
all the inputs remain within their specified ranges. Various stressors may lead to a system's demise. They 
may work for a long time if the stresses are below a specific value; but, if the stresses are over that value, 
they may fail quickly. A system's performance or failure is largely determined by the amount of stress it 
is subjected to. The source of stress in an operating system of this type may vary. For instance, pressure, 
load, velocity, resistance, temperature, humidity, vibrations, and voltage may all influence the system's 
operation. Consequently, the strength of a system made of components of various strengths will be a 
random variable, as will the stress applied to it. When the stress exceeds the system's tolerance, the 
system will fail. These systems are referred to as "models of stress-strength reliability. 
Birnbaum (1956) offered the seed of this concept, which he and McCarty subsequently refined (1958). 
The official word "stress-strength" appears in Church and Harris's [1] book title (1970). 
Consequently, this component's reliability is determined by . Furthermore, with the 
complexity increasing and automation of industrial processes, the issue of improving system reliability 
has become increasingly important in a variety of industries, including transportation, communications, 
and manufacturing. Significant financial losses can result from overestimation or underestimation of 
reliability variables. 
The stress-strength model, estimates of 𝑃(𝑋 < 𝑌) were made for the most common distributions. such 
as normal derivative by Woodward and Kelley[2], Pareto derivative by Beg and Singh[3], Burr explain 
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by Awad and Gharraf[4] and Surles and Padgett[5,6], Asgharzadeh et al.[7,8,9] introduced the 
estimation of stress-strength reliability for Weibull distribution, logistic distribution and exponential, 
Valiollahi et al.[10] and Raqab and Kundu[11] estimate Weibull distribution, inverse Rayleigh 
distribution by Rao et al.[12], exponentiated Frechet distribution Rao et al.[13], estimators of 𝑃(𝑋	 <
	𝑌) were obtained for the majority of common distribution families for the situations when 𝑋 and Y are 
independent, by Saraçoğlu et al.[14], Mokhlis[15], Mirjalili et al.[16] Jia et al.[17], Nadeb et al.[18],. 
Alshenawy et al.[19], El- Sherpieny et al.[20], Nassr et al.[21], and Estimation of the reliability of a 
stress-strength system from poisson half logistic distribution by  Muhammad et al.[22] 
In this article, we examine the dependability of stress strength and argue that the strength variable 
follows finite mixture of 𝑴𝑬 distribution and stress variables follows Rayleigh , exponential, and a half-
normal distribution.  
The one-parameter 𝑴𝑬 distribution is a specific instance of the generalization of mixture Erlang 
distribution introduced by Abd El-Monsef [25] which provides a more versatile model for lifetime data. 
This study examines six scenarios in which 𝑴𝑬 is followed by stress and strength which is distributed 
differentially. 
Case 1: strength follows 𝑴𝑬 . 
Case 2: strength follows “𝑳𝒊𝒏” 
Case 3: strength follows “𝑹𝒂𝒚”. 
Case 4: strength follows “𝑬𝒙𝒑”. 
Case 5: strength follows “𝑯𝑵”. 
Case 6: strength follows “𝑹𝑯𝑵”. 
On the other hand, the 𝑴𝑳𝑬s of 𝑹 also can be obtained in explicit form which is the most reliable method 
can be used. The asymptotic distribution of the 𝑴𝑳𝑬s of 𝑹 can be easily obtained and based on that, the 
asymptotic confidence interval of 𝑹 can be found. confidence intervals of 𝑹 in proposed, which are also 
efficient to be used in practice. Additionally, the squared error loss function, although any other loss 
functions also can be easily incorporated. The Bayes estimator of 𝑹 which cannot be obtained in explicit 
form. for simulative Monte Carlo techniques is used to compute the Bayes estimate of 𝑹 and the 
associated credible interval. Different methods are compared using Monte Carlo simulations and one 
data set has been analyzed for illustrative purposes.  
The paper is organized as follows: we propose the dependability of stress strength and argue that the 
strength variable follows a finite mixture of 𝑀𝐸 distribution and stress variables follow Rayleigh, 
exponential, and a half-normal distribution. in Section 2, presents some characteristics for the density 
function of reliability. Computations were derived in Section 3. In Section 4, Estimation of Stress-
Strength Reliability by using Method of Moment (MOM) Estimation of 𝑅 and the maximum likelihood 
estimator of the distribution parameter was explored, and a simulation study was conducted to test its 
consistency. Finally, the paper is concluded in Section 6. 

2 Statistical Model 
The reliability 𝑅 = 𝑃(𝑌 < 𝑋) is determined in this section, where the random variables (𝑋) and (𝑌) are 
independent random variables, the strength 𝑋 follows 𝑴𝑬 distribution and the stress (𝑌)  consider 
different cases 
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when (X) represents "strength" and (Y) represents "stress". The joint pdf 𝑓(𝑥. 𝑦), thus the component 
reliability is: 

 𝑅 = 𝑃(𝑌 < 𝑋) = < < 𝑓(𝑥, 𝑦)𝑑𝑦	𝑑𝑥
?

@A
	

A

@A
 (1)  

In case that the 𝑟. 𝑣 are statistically independent, then 𝑓(𝑥, 𝑦) = 	𝑓D(𝑥)𝑔F(𝑦) can be expressed as: 

 𝑅 = < <𝑓D(𝑥)𝑔F(𝑦)𝑑𝑦	𝑑𝑥
?

@A

	
A

@A

 (2)  

where 𝑓D(𝑥) and 𝑔F(𝑦) are pdf’s of 𝑋 and 𝑌 respectively. 

3 Reliability Computations

 Let 𝑋 be the strength of the probability density functions𝑓D(𝑥). The pdf of 𝑋 which follows	𝑴𝑬 
distribution distributions parameters µ is defined by the following. 

 𝑓D(𝑥) =
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
, 𝑥, 𝜇 > 0	 (3)  

The stress 𝒀𝟏 follows 𝑴𝑬 

As 𝑌T follows 𝑴𝑬 distribution, pdf of 𝑌T is given by 

 𝑔FU(𝑦) =
𝜆TI(𝑦 + 1)L𝑒@WXU
2 + 𝜆T(2 + 𝜆T)

; 	𝑦, 𝜆T > 0	 (4)  

as 𝑋 and 𝑌T are independent then from (2), the reliability function 𝑅T can be found as: 

   					𝑅T = ∫ ∫ [XU
\(W]T)^_`abU

L]XU(L]XU)
c?

d
A
d [N

\(?]T)^_`ef

L]N(L]N)
c 𝑑𝑦𝑑𝑥 

and after the simplification, one of the ways to get it is: 

𝑅T =
1

(2 + 2𝜆T + 𝜆TL)(𝜆T + 𝜇)g(2 + 2𝜇 + 𝜇L)
	

×	𝜆TI [𝜆Ti(2(1 + 𝜇) + 𝜇L) + 2𝜆TI(2 + 7𝜇 + 6𝜇L + 2𝜇I) + 𝜇L(40(1 + 𝜇) + 20𝜇L + 6𝜇I + 𝜇i)

+ 2𝜆T𝜇(10 + 30𝜇 + 25𝜇L + 10𝜇I + 2𝜇i) + 𝜆TL(4 + 24𝜇 + 42𝜇L + 24𝜇I + 6𝜇i)c 

The stress 𝒀𝟐 follows 𝑳𝒊𝒏 . 

As 𝑌L follows 𝑳𝒊𝒏, pdf of 𝑌L is given by 

 𝑔F̂ (𝑦) =
𝜆LL(1 + 𝑦)𝑒@X^W^

𝜆L + 1
; 	𝑦, 𝜆L > 0	 (5)  

As 𝑋 and 𝑌L are independent then from (2), the reliability function 𝑅L is considered as: 

					𝑅L = < < p
𝜆LL(1 + 𝑦)𝑒@X^W

𝜆L + 1
q

?

d

A

d
p
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
q 𝑑𝑦𝑑𝑥 
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and after the simplification, it can be obtained as: 

𝑅L =
1

r2 + 𝜇(2 + 𝜇)s(1 + 𝜆L)(𝜇 + 𝜆L)i

× 𝜆LL p𝜇L(2 + 𝜇)r6 + 𝜇(3 + 𝜇)s

+ 𝜆L t𝜇 [8 + 𝜇r20 + 3𝜇(4 + 𝜇)sc + 𝜆Lr2 + 𝜇r10 + 3𝜇(3 + 𝜇)s + r2 + 𝜇(2 + 𝜇)s𝜆Lsvq 

The stress 𝒀𝟑 follows 𝑹𝒂𝒚 . 
As 𝑌I follows 𝑹𝒂𝒚, pdf of 𝑌I is given by 

 𝑔F\(𝑦) =
𝑦
𝜆IL
𝑒
@ a^

^b\
^; 	𝑦, 𝜆I > 0	 (6)  

As 𝑋 and 𝑌I are independent then from (2), the reliability function 𝑅I is 

					𝑅I = < < x
𝑦
𝜆IL
𝑒
@ a^

^b\
^y

?

d

A

d
p
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
q 𝑑𝑦𝑑𝑥 

and after the simplification, it can be expressed as: 

𝑅I =
4 + 4𝜇 + 2𝜇L − 4𝜇I𝜆IL + 2𝜇i𝜆Ii − 𝑒

U
^N

^X\^√2𝜋𝜇I𝜆I t−Erf �
NX\
√L
� + �

T
X\^
𝜆Iv (1 + (1 − 2𝜇)𝜆IL + 𝜇L𝜆Ii)

2r2 + 𝜇(2 + 𝜇)s
 

where erf(𝑢) is the Gauss error function which is defined as 

erfc	(𝑢) = 1 − erf(𝑢) =
2
√𝜋

< 𝑒@�^
A

�
𝑑𝑡 

The stress 𝒀𝟒 follows 𝑬𝒙𝒑. 
As 𝑌i follows 𝑬𝒙𝒑 , pdf of 𝑌i is given by 

 𝑔F�(𝑦) = 𝜆i𝑒@WX�; 	𝑦, 𝜆i > 0	 (7)  

as 𝑋 and 𝑌i are independent then from (2), the reliability function 𝑅i is 

					𝑅i = < < r𝜆i𝑒@WX�s
?

d

A

d
p
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
q𝑑𝑦𝑑𝑥 

and the simplification it can be found as:  

𝑅i =
𝜆ir𝜆iL(2 + 2𝜇 + 𝜇L) + 2𝜆i𝜇(3 + 3𝜇 + 𝜇L) + 𝜇L(6 + 4𝜇 + 𝜇L)s

(𝜆i + 𝜇)I(2 + 2𝜇 + 𝜇L)
 

The stress 𝒀𝟓 follows 𝑯𝑵 . 

 𝑔F�(𝑦) =
√2
𝜆g√𝜋

𝑒
@ a^

^b�
^; 	𝑦, 𝜆g > 0 (8)  
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As 𝑋 and 𝑌g are independent then from (2), the reliability function 𝑅g is obtained as” 

					𝑅g = < < p
√2
𝜆g√𝜋

𝑒
@ a^

^b�
^q

?

d

A

d
p
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
q𝑑𝑦𝑑𝑥 

and after the simplification, it can be given as 

𝑅g =
�L
�
𝜇𝜆g(2(1 + 𝜇) − 𝜇L𝜆gL) + 𝑒

U
^N

^X�^(5 + 𝜇(4 + 𝜇) − 𝜇L𝜆gL[1 + 2𝜇 − 𝜇L𝜆gL])Erfc[
NX�
√L
]

(2 + 𝜇)L + 1  

The stress 𝒀𝟔 follows 𝑹𝑯𝑵 . 

 𝑔F�(𝑦) =
2𝜆�	𝑒@W

^X�(1 + 𝑦)

1 + �𝜋𝜆�
; 	𝑦, 𝜆� > 0 (9)  

As 𝑋 and 𝑌� are independent then from (2), the reliability function 𝑅� is given by: 

𝑅� = < < p
2𝜆�	𝑒@W

^X�(1 + 𝑦)

1 + �𝜋𝜆�
q

?

d

A

d
p
𝜇I(𝑥 + 1)L𝑒@?N

2 + 𝜇(2 + 𝜇)
q𝑑𝑦𝑑𝑥 

𝑅� =
1

8r1 + √𝜋�𝜆�s𝜆g L⁄ r2 + 𝜇(2 + 𝜇)s
× 2√𝜆� [−6𝜆�𝜇I + 𝜇i + 4𝜆Lr2 + 𝜇(4 + 3𝜇)sc

− 𝑒
f^

�b�√𝜋 [2𝜆�(1 − 3𝜇)𝜇I + 𝜇g + 4𝜆�L𝜇L(1 + 3𝜇) − 8𝜆�Ir2 + 𝜇(2 + 𝜇)sc Erfc �
𝜇

2�𝜆�
� 

4 Estimation of Stress-Strength Reliability 

These specified distributions are abundant in the literature and are particularly useful for making 
predictions about the real world and developing models. In the past few decades, biomedical 
analysis and reliability engineering, economics, forecasting, astronomy, demography, and 
insurance have all heavily relied on classical distributions to model data. a discussion of the 
estimation 𝑅 = 𝑃(𝑌 < 𝑋)when random variables 𝑋 and 𝑌 are following the lifetime 
distributions. 

4.1 Method of Moment (MOM) Estimation of 𝑹 

The estimation of reliability is very common in the statistical literature. Now to compute 𝑅�, the 
parameters 𝜆 and 𝜆�, 𝑖 = 1, 2, 3, 4, 5 and 6 should be estimated in six cases of stress.  

Since the strength𝑠 𝑋 follow 𝑴𝑬 distribution (𝜇), and the stress have fiive cases: 

𝑌T follows 𝑴𝑬 with parameter λT, 
𝑌L follows 𝑳𝒊𝒏 with parameter 𝜆L, 
𝑌I follows 𝑹𝒂𝒚 with parameter 𝜆I, 
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𝑌i follows 𝑬𝒙𝒑 with parameter 𝜆i, 
𝑌g follows 𝑯𝑵 with parameter 𝜆g, 

 
and 𝑌� follows 𝑹𝑯𝑵 with parameter λ�, then their population means are given by: 

𝒙� = 𝟔]𝝁(𝟒]𝝁)
𝝁r𝟐]𝝁(𝟐]𝝁)s

,   𝒚�𝟏 =
𝟔]𝝀𝟏(𝟒]𝝀𝟏)

𝝀𝟏r𝟐]𝝀𝟏(𝟐]𝝀𝟏)s
,   𝒚�𝟐 =

𝟐]𝝀𝟐
𝝀𝟐]𝝀𝟐

𝟐,   𝒚�𝟑 = 𝝀𝟑�
𝟐
𝒎

,   𝒚�𝟒 =
𝟏
𝝀𝟒

, 

𝒚�𝟓 =
𝝀𝟓
√𝒏

    and   𝒚�𝟔 = [ 𝟐]√𝝅�𝝀𝟔
𝟐𝒏𝝀𝟔]𝟐𝒏√𝝅	𝝀𝟔𝟑 𝟐⁄ c

𝟎.𝟓
 

 

4.2 Maximum Likelihood of Stress-Strength Reliability 

In this subsection, the method of 𝑴𝑳𝑬s is derived to estimate the model parameter. 
 
Case 1: Maximum Likelihood for Stress follows 𝑴𝑬 with parameter 𝛌𝟏: 

Let 𝑋 = (𝑋T, 𝑋L, . . . , 𝑋£) be a random sample of size 𝑛 from 𝑴𝑬 distribution with parameters 
(𝜇) and 𝑌T = (𝑌TT, 𝑌TL, . . . , 𝑌T¥) with parameter (𝜆T). The 𝑴𝑳𝑬 of the reliability given that the 
sample is obtained. To compute the 𝑴𝑳𝑬 of the reliability, it is required to obtain the 𝑴𝑳𝑬 of 
(𝜇). and (𝜆T). The joint likelihood and log-likelihood function based on the above samples are 
respectively given as: 

𝐿T(N.XU;?.WU) = p
𝜇I

2 + 𝜇(2 + 𝜇)
q
£

𝑒@N ∑ ?¨©
¨ªU «(𝑥� + 1)L

£

�¬T

p
𝜆TI

2 + 𝜆T(2 + 𝜆T)
q
¥

𝑒
@XU WU®

¯

®ªU «r𝑦T° + 1s
L

¥

°¬T

 

𝐿𝑜𝑔𝐿T = 3𝑛𝐿𝑜𝑔(𝜇) − 𝑛𝐿𝑜𝑔r2 + 𝜇(2 + 𝜇)s − 𝜇𝑥�

£

�¬T

+ 2𝐿𝑜𝑔[𝑥� + 1]
£

�¬T

+ 3𝑚𝐿𝑜𝑔[𝜆T]

− 𝑚𝐿𝑜𝑔r2 + 𝜆T(2 + 𝜆T)s − 𝜆T𝑦T°

¥

°¬T

+ 2𝐿𝑜𝑔r𝑦T° + 1s
¥

°¬T

	

(10)  

Equating the partial derivative of Eq. (10) with respect to µ	 𝑎𝑛𝑑 𝜆Tto zero, then the following 
equation can be obtained: 

𝜕(𝐿𝑜𝑔𝐿T)
𝜕𝜇 =

3𝑛
𝜇 −

2𝑛(1 + 𝜇)
2 + 𝜇(2 + 𝜇) −𝑥�

£

�¬T

	 (11)  

 

𝜕(𝐿𝑜𝑔𝐿T)
𝜕𝜆T

=
3𝑚
𝜆T

−
2𝑚(1 + 𝜆T)
2 + 𝜆T(2 + 𝜆T)

−𝑦T°

¥

°¬T

 (12)  
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To find the estimators of µµ and 𝜆¶T, the following nonlinear Equations (11) and (12) need to be 
solved. These equations cannot be solved analytically, but it can be solved using numerical 
optimizations available in Mathematica, MATLAB, or R. 

The 𝑴𝑳𝑬 of µ	 𝑎𝑛𝑑 𝜆Tcan be obtained respectively as  

µµ =
nL − n	T + TL + 2T	Sº + 8n	Sº − 2	SºL

3T	Sº
	

where 𝑆D = ∑ 𝑥�£
�¬T  

𝑇 = p−𝑛I − 2(𝑆D)(6𝑛L + 24𝑛𝑆D + 5(𝑆D)L) + 3√6�(𝑆D)Lr𝑛i + 2(𝑆D)(7𝑛I + 27𝑛L𝑆D + 8𝑛(𝑆D)L + (𝑆D)I)sq
T I⁄

	

𝜆¶T =
𝑚L −𝑚	𝑍 + 𝑍L + 8	𝑚	S¾ + 2	𝑍	S¾ − 2	S¾L

3𝑍	S¾
	

where 𝑆F = 𝑦T°
¥

°¬T
 and  

𝑍 = (−𝑚I − 2𝑆F(6𝑚L + 24𝑚𝑆F + 5𝑆FL) + 3√6�𝑆FL(𝑚i + 2𝑆F(7𝑚I + 27𝑚L𝑆F + 8𝑚𝑆FL + 𝑆FI)))T I⁄  

Case 2: Maximum Likelihood for Stress follows 𝑳𝒊𝒏 with parameter 𝝀𝟐 

Let 𝑿 = (𝑿𝟏, 𝑿𝟐, . . . , 𝑿𝒏) be random sample of size 𝒏 from 𝑴𝑬 distribution with parameters 
(𝝁).and 𝒀𝟐 = (𝒀𝟐𝟏, 𝒀𝟐𝟐, . . . , 𝒀𝟐𝒎) be a random sample of size 𝒎 from 𝑳𝒊𝒏 with parameter (𝝀𝟐), 
the likelihood and log-likelihood function based on the above samples are respectively given as: 

𝐿L(𝜇. 𝜆L; 𝑥. 𝑦L) = p
𝜇I

2 + 𝜇(2 + 𝜇)q
£

𝑒@NÀ ?¨
©
¨ªU «(𝑥� + 1)L

£

�¬T

p
𝜆LL

1 + 𝜆L
q
¥

𝑒
@X^ W^®

¯

®ªU «(𝑦L° + 1)
¥

°¬T

 

𝐿𝑜𝑔𝐿L = 3𝑛𝐿𝑜𝑔(𝜇) − 𝑛𝐿𝑜𝑔(2 + 𝜇(2 + 𝜇)) − 𝜇𝑥�

£

�¬T

+ 2𝐿𝑜𝑔(𝑥� + 1)
£

�¬T

+ 2𝑚𝐿𝑜𝑔[𝜆L] − 𝑚𝐿𝑜𝑔[1 + 𝜆L] − 𝜆L𝑦L°

¥

°¬T

+𝐿𝑜𝑔Á𝑦L° + 1Â
¥

°¬T

 
(13)  

Equating the partial derivative of Eq. (13) with respect to 𝝀𝟐to zero, so the following equations 
can be found as: 

𝜕(𝐿𝑜𝑔𝐿L)
𝜕𝜆L

=
2𝑚
𝜆L

−
𝑚

1 + 𝜆L
−𝑦°

¥

°¬T

 (14)  
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To find the estimators of 𝝀�𝟐, the following nonlinear Equations (14) need to be solved using 
Mathematica. The 𝑴𝑳𝑬 of 𝝀𝟐can be obtained as  

𝝀�𝟐 =

𝒎− 𝒚𝒋
𝒎

𝒋¬𝟏
+ Ä𝒎𝟐 + 𝟔𝒎 𝒚𝒋

𝒎

𝒋¬𝟏
+ ( 𝒚𝒋

𝒎

𝒋¬𝟏
)𝟐

𝟐 𝒚𝒋
𝒎

𝒋¬𝟏

 

Then the 𝑴𝑳𝑬 of 𝑹 when the strength 𝑿 follows 𝑴𝑬 distribution and stress 𝒀 follows 𝑳𝒊𝒏 with 
parameter (𝝀𝟐) is given as 

𝑅�L =
1

(2 + �̂�(2 + �̂�))(1 + 𝜆¶L)(�̂� + 𝜆¶L)i
× rλ�LL(�̂�L(2 + �̂�)(6 + �̂�(3 + �̂�)) + 𝜆¶L(�̂�(8 + �̂�(20 + 3�̂�(4 + �̂�))) + λ�L(2 + �̂�(10 + 3�̂�(3
+ �̂�)) + (2 + �̂�(2 + �̂�))𝜆¶L)))s 

 

Case 3: Maximum Likelihood for Stress follows 𝑹𝒂𝒚 distribution with parameter 𝝀𝟑. 

Let 𝑿 = (𝑿𝟏, 𝑿𝟐, . . . , 𝑿𝒏) be a random sample of size 𝒏 from 𝑴𝑬 with parameters (𝝁). and 𝒀𝟑 =
(𝒀𝟑𝟏, 𝒀𝟑𝟐, . . . , 𝒀𝟑𝒎) be a random sample of size 𝒎 from 𝑹 with parameter (𝝀𝟑), the likelihood 
and log-likelihood function based on the above samples are respectively given as: 

𝐿I(𝜇. 𝜆I; 𝑥. 𝑦I) = p
𝜇I

2 + 𝜇(2 + 𝜇)q
£

𝑒@NÀ ?¨
©
¨ªU «(𝑥� + 1)L

£

�¬T

p
1
𝜆IL
q
¥

𝑒
@ U
^b\
^ W\®

^
¯

®ªU «𝑦I°

¥

°¬T

 

𝐿𝑜𝑔𝐿I = 3𝑛𝐿𝑜𝑔(𝜇) − 𝑛𝐿𝑜𝑔(2 + 𝜇(2 + 𝜇)) − 𝜇𝑥�

£

�¬T

+ 2𝐿𝑜𝑔(1 + 𝑥�)
£

�¬T

− 2𝑚𝐿𝑜𝑔(𝜆I) −𝐿𝑜𝑔(𝑦I°)
¥

°¬T

−
1
2𝜆IL

(𝑦I°L )
¥

°¬T

 
(15)  

Equating the partial derivative of Eq. (15) with respect to 𝝀𝟑to zero, then the following equation 
can be obtained 

𝜕(𝐿𝑜𝑔𝐿I)
𝜕𝜆I

=
2𝑚
𝜆I

+
 𝑦I°L

¥

°¬T

𝜆II
 (16)  
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To find the estimators of 𝝀�𝟑, the following nonlinear Equations (16) need to solved using 
Mathematica. The 𝑴𝑳𝑬 of 𝝀𝟑can be obtained as  

𝜆¶I =

⎝

⎜
⎛ 𝑦°L

¥

°¬T

2	𝑚

⎠

⎟
⎞

U
^

 

Then the 𝑴𝑳𝑬 of 𝑹𝟑 when the strength 𝑿 follows 𝑴𝑬 and stress 𝒀𝟑 follows 𝑹 distribution with 
parameter (𝝀𝟑) is given as 

𝑅�I =
4 + 4�̂� + 2�̂�L − 4�̂�I𝜆IL + 2�̂�i𝜆¶Ii − 𝑒

U
^NÌ

^XÍ\^√2𝜋�̂�I𝜆¶I [1 − Erf �
NÌXÍ\
√L
�c r1 + (1 − 2�̂�)𝜆¶IL + �̂�L𝜆¶Iis

2r2 + �̂�(2 + �̂�)s
 

 

Case 4: Maximum Likelihood for Stress follows 𝑬𝒙𝒑 with parameter 𝝀𝟒. 

Let 𝑋 = (𝑋T, 𝑋L, . . . , 𝑋£) be a random sample of size 𝑛 from 𝑴𝑬 with parameters (𝜇). and 𝑌i =
(𝑌iT, 𝑌iL, . . . , 𝑌i¥) be a random sample of size 𝑚 from 𝑬𝒙𝒑 with parameter (𝜆i), the likelihood 
and log-likelihood function based on the above samples are respectively given as: 

𝐿i(𝜇. 𝜆i; 𝑥. 𝑦i) = p
𝜇I

2 + 𝜇(2 + 𝜇)
q
£

𝑒@NÀ ?¨
©
¨ªU «(𝑥� + 1)L

£

�¬T

(𝜆i)¥𝑒
@X� W�®

¯

®ªU  

𝐿𝑜𝑔𝐿i = 3𝑛𝐿𝑜𝑔[𝜇] − 𝑛𝐿𝑜𝑔[2 + 𝜇(2 + 𝜇)] − 𝜇𝑥�

£

�¬T

+ 2𝐿𝑜𝑔[1 + 𝑥�]
£

�¬T

+ 𝑚𝐿𝑜𝑔[𝜆i] − 𝜆i𝑦°

¥

°¬T

 
(17)  

Equating the partial derivative of Eq. (17) with respect to 𝜆ito zero, then the following equation 
can be expressed as  

𝜕(𝐿𝑜𝑔𝐿i)
𝜕𝜆i

=
𝑚
𝜆i
−𝑦i°

¥

°¬T

 (18)  
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To determine the estimators of 𝜆¶i, so the following nonlinear Equations (18). Need to be solved 
using Mathematica. The 𝑴𝑳𝑬 of 𝜆ican be found as  

𝜆¶i =
𝑚

À 𝑦°
¥
°¬T

 

Then the 𝑴𝑳𝑬 of 𝑅i when the strength 𝑋 follows 𝑴𝑬 and stress 𝑌i follows 𝑬𝒙𝒑 with parameter 
(𝜆i) is given as 

𝑅�i =
𝜆¶i [𝜆¶iL(2 + 2�̂� + �̂�L) + 2𝜆¶i�̂�(3 + 3�̂� + �̂�L) + �̂�L(6 + 4�̂� + �̂�L)c

r𝜆¶i + �̂�s
I(2 + 2�̂� + �̂�L)

 

Case 5: Maximum Likelihood for Stress follows 𝑯𝑵with parameter 𝝀𝟓. 

Suppose 𝑋 = (𝑋T, 𝑋L, . . . , 𝑋£) is sample taken from 𝑴𝑬 with parameters (𝜇) and 𝑌g =
(𝑌gT, 𝑌gL, . . . , 𝑌g¥) be a random sample of size 𝑚 from 𝑯𝑵 with parameter (𝜆g), the likelihood 
and log-likelihood function based on the above samples are respectively given as: 

𝐿g(𝜇. 𝜆g; 𝑥. 𝑦g) = p
𝜇I

2 + 𝜇(2 + 𝜇)
q
£

𝑒@NÀ ?¨
©
¨ªU «(𝑥� + 1)L

£

�¬T

	t
1
𝜆g
v
¥

t
2
𝜋v

¯
^
𝑒
@ U
^b�
^ W�®

^
¯

®ªU  

𝐿𝑜𝑔𝐿g = −𝑛𝐿𝑜𝑔[2 + 𝜇(2 + 𝜇)] − 𝜇𝑥�

£

�¬T

+ 3𝑛𝐿𝑜𝑔[𝜇] + 2𝐿𝑜𝑔[1 + 𝑥�]
£

�¬T

+
𝑚
2 𝐿𝑜𝑔

[2] − 𝑚𝐿𝑜𝑔[𝜆g] −
𝑚
2 𝐿𝑜𝑔

[𝜋] −
1

2𝜆g
L𝑦g°L

¥

°¬T

 

(19)  

Equating the partial derivative of Eq. (19) with respect to 𝜆gto zero, then we derive the following 
equation. 

𝜕(𝐿𝑜𝑔𝐿g)
𝜕𝜆g

=
 𝑦g°L

¥

°¬T
− 𝑚𝜆gL

𝜆gI
 (20)  

To find the estimators of 𝜆¶g, the following nonlinear Equations (20) should be solved. using 
Mathematica. The 𝑴𝑳𝑬 of 𝜆gcan be obtained as  

𝜆¶g =

⎝

⎜
⎛ 𝑦°L

¥

°¬T

m

⎠

⎟
⎞

U
^
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Then the 𝑴𝑳𝑬 of 𝑅g when the strength 𝑋 follows 𝑴𝑬 and stress 𝑌g follows 𝑯𝑵 with parameter 
(𝜆g) is given as 

𝑅�g =
�L
�
𝜆¶g�̂�r2 + 2�̂� − 𝜆¶gL�̂�Ls + 𝑒

bÍ�
^fÌ^

^ r2 + 2�̂� − r−1 + 𝜆¶gLs�̂�L − 2𝜆¶gL�̂�I + 𝜆¶gi�̂�is𝐸𝑟𝑓𝑐 �
XÍ�NÌ
√L
�

2 + 2�̂� + �̂�L  

 

Case 6: Maximum Likelihood for Stress follows 𝑹𝑯𝑵 with parameter 𝛌𝟔. 

Suppose 𝑋 = (𝑋T, 𝑋L, . . . , 𝑋£) be a random sample of size 𝑛 from 𝑴𝑬 distribution with 
parameters (𝜇) and 𝑌� = (𝑌�T, 𝑌�L, . . . , 𝑌�¥) be a random sample of size 𝑚 from 𝑹𝑯𝑵 with 
parameter (𝜆�) then, the likelihood and log-likelihood function based on the above samples are 
respectively given as: 

𝐿�(𝜇. 𝜆�; 𝑥. 𝑦�) = p
𝜇I

2 + 𝜇(2 + 𝜇)
q
£

𝑒@N∑ ?¨©
¨ªU «(𝑥� + 1)L

£

�¬T

	p
2𝜆�

1 + √𝜋�𝜆�
q
¥

𝑒
@X� W�®

^
¯

®ªU «(1 + 𝑦�°)
¥

°¬T

 

𝐿𝑜𝑔𝐿� = 3𝑛𝐿𝑜𝑔[𝜇] − 𝑛𝐿𝑜𝑔[2 + 𝜇(2 + 𝜇)] − 𝜇𝑥�

£

�¬T

+ 2𝐿𝑜𝑔[1 + 𝑥�]
£

�¬T

− 𝑚𝐿𝑜𝑔Á1 + √𝜋�𝜆�Â

+ 𝑚𝐿𝑜𝑔[2𝜆�] − 𝜆�𝑦�°L
¥

°¬T

+𝐿𝑜𝑔Á1 + 𝑦�°Â
¥

°¬T

 
(21)  

Equating the partial derivative of Eq. (21) with respect to 𝜆� to zero, following equation can be 
achieved 

𝜕(𝐿𝑜𝑔𝐿�)
𝜕𝜆�

=
𝑚
𝜆�
−

𝑚√𝜋
2(�𝜆� + √𝜋𝜆�)

−𝑦�°L
¥

°¬T

 (22)  

To obtain the estimators of 𝜆¶�, we need to solve the following nonlinear Equations (22). using 
Mathematica. The 𝑴𝑳𝑬 of 𝜆�can be obtained as  

𝜆¶� =
𝑄L + 2𝑄𝑊(𝑚𝜋 +𝑊) +𝑊L(𝑚L𝜋L − 16𝑚𝜋𝑊 + 4𝑊L)

6𝜋𝑄𝑊L  

where 𝑊 = 𝑦�°L
¥

°¬T
  and 

𝑄 = (−𝑚I𝜋I𝑊I + 51𝑚L𝜋L𝑊i − 48𝑚𝜋𝑊g + 8𝑊�

+ 3√3𝜋I L⁄ �𝑚I𝑊Ò(−2𝑚L𝜋L + 71𝑚𝜋𝑊 − 16𝑊L))T I⁄  
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Then the 𝑴𝑳𝑬 of 𝑅� when the strength 𝑋 follows 𝑴𝑬 and stress 𝑌� follows 𝑹𝑯𝑵 with parameter 
(𝜆�) is given as 

𝑅�� =

2�𝜆¶�(�̂�i − 6�̂�I𝜆¶� + 4(2 + �̂�(4 + 3�̂�))𝜆¶�L) − 𝑒
!"#

$%&'√𝜋Erfc[ NÌ

L�XÍ'
](�̂�g + 2𝜆¶�(�̂�I − 3�̂�i + 2�̂�L(1 + 3�̂�)𝜆¶� − 4(2 + �̂�(2 + �̂�))𝜆¶�L))

8(2 + �̂�(2 + �̂�))(1 + √𝜋�𝜆¶�)𝜆¶�
g L⁄

 

4.3 Numerical Evaluation 

In different cases, the system reliability 𝑹 has evaluated for some specific values of the 
parameters involved in the expression of 𝑹. A system with two components is  analyzed using a 
graphical method for stated values of the reliability expressions in section 3. If the parameters 
for stress, strength, or probability is changed, the reliability of a two-component system will 
change in the same way. Since the strength𝑠 𝑋 follow 𝑴𝑬 distribution (𝜇), and the stress have 
in six cases of stress.: 
 

Case 1: Stress follows 𝑴𝑬 with parameter 𝛌𝟏: 

Table 1 and Fig 1 and 2 indicate that the reliability value decreases as the strength parameter 
values increase. these results show that the Increased reliability is correlated with the increased 
stress. 
Table 1: Iteration in 𝑅T when strength and stress follow 𝑴𝑬  
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 0.5000	 0.2100	 0.1038	 0.0582	 0.0359	 0.0237	 0.0165	 0.0120	 0.0090	 0.0069	
0.2	 0.7900	 0.5000	 0.3178	 0.2106	 0.1458	 0.1049	 0.0780	 0.0597	 0.0468	 0.0374	
0.3	 0.8962	 0.6822	 0.5000	 0.3685	 0.2766	 0.2120	 0.1658	 0.1321	 0.1071	 0.0882	
0.4	 0.9418	 0.7894	 0.6315	 0.5000	 0.3976	 0.3195	 0.2598	 0.2139	 0.1783	 0.1503	
0.5	 0.9641	 0.8542	 0.7234	 0.6024	 0.5000	 0.4165	 0.3493	 0.2952	 0.2517	 0.2163	
0.6	 0.9763	 0.8951	 0.7880	 0.6805	 0.5835	 0.5000	 0.4297	 0.3711	 0.3223	 0.2817	
0.7	 0.9835	 0.9220	 0.8342	 0.7402	 0.6507	 0.5703	 0.5000	 0.4395	 0.3878	 0.3436	
0.8	 0.9880	 0.9403	 0.8679	 0.7861	 0.7048	 0.6289	 0.5605	 0.5000	 0.4470	 0.4009	
0.9	 0.9910	 0.9532	 0.8929	 0.8217	 0.7483	 0.6777	 0.6122	 0.5530	 0.5000	 0.4530	
1	 0.9931	 0.9626	 0.9118	 0.8497	 0.7837	 0.7183	 0.6564	 0.5991	 0.5470	 0.5000	
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Fig 1: Alteration in 𝑅T for fixed strength Fig 2: Alteration in 𝑅T for fixed stress 

 

Case 2: Stress follows 𝑳𝒊𝒏 with parameter 𝝀𝟐 

Table 2 and Fig 3 and 4 indicate that the reliability value decreases as the strength parameter 
values increase. Increased reliability is correlated with increased stress. 

Table 2: Alteration in 𝑅L when strength has 𝑴𝑬 and stress has 𝑳𝒊𝒏 
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 0.6861	 0.4051	 0.2592	 0.1784	 0.1298	 0.0985	 0.0772	 0.0622	 0.0512	 0.0429	
0.2	 0.8870	 0.6827	 0.5182	 0.4001	 0.3158	 0.2546	 0.2092	 0.1748	 0.1482	 0.1273	
0.3	 0.9474	 0.8149	 0.6780	 0.5617	 0.4683	 0.3942	 0.3353	 0.2882	 0.2502	 0.2191	
0.4	 0.9712	 0.8826	 0.7752	 0.6725	 0.5824	 0.5059	 0.4418	 0.3882	 0.3434	 0.3056	
0.5	 0.9823	 0.9205	 0.8365	 0.7489	 0.6667	 0.5930	 0.5285	 0.4726	 0.4244	 0.3827	
0.6	 0.9883	 0.9433	 0.8768	 0.8027	 0.7293	 0.6606	 0.5983	 0.5427	 0.4934	 0.4499	
0.7	 0.9918	 0.9578	 0.9044	 0.8415	 0.7765	 0.7135	 0.6546	 0.6006	 0.5518	 0.5078	
0.8	 0.9939	 0.9676	 0.9238	 0.8702	 0.8127	 0.7553	 0.7003	 0.6487	 0.6011	 0.5576	
0.9	 0.9954	 0.9744	 0.9380	 0.8919	 0.8409	 0.7888	 0.7376	 0.6888	 0.6430	 0.6005	
1	 0.9964	 0.9792	 0.9486	 0.9086	 0.8632	 0.8158	 0.7684	 0.7224	 0.6786	 0.6375	

 

  

Fig 3: Alteration in 𝑅L for fixed strength Fig 4: alteration in 𝑅L for fixed stress 
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Case 3: Stress follows 𝑹𝒂𝒚 distribution with parameter 𝝀𝟑. 

Table 3 and Fig 5 and 6 indicate that the reliability value decreases as the strength parameter 
values increase. Increased reliability is correlated with increased stress. 

Table 3: Alteration in 𝑅I when strength has 𝑴𝑬 and stress have 𝑹𝒂𝒚 
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 0.9999	 0.9995	 0.9986	 0.9969	 0.9946	 0.9916	 0.9878	 0.9835	 0.9785	 0.9731	
0.2	 0.9998	 0.9989	 0.9968	 0.9932	 0.9880	 0.9815	 0.9735	 0.9643	 0.9541	 0.9429	
0.3	 0.9997	 0.9982	 0.9946	 0.9886	 0.9803	 0.9698	 0.9573	 0.9430	 0.9273	 0.9104	
0.4	 0.9996	 0.9973	 0.9920	 0.9834	 0.9715	 0.9567	 0.9394	 0.9199	 0.8988	 0.8763	
0.5	 0.9994	 0.9962	 0.9890	 0.9774	 0.9617	 0.9424	 0.9201	 0.8954	 0.8689	 0.8413	
0.6	 0.9993	 0.9950	 0.9856	 0.9707	 0.9509	 0.9269	 0.8996	 0.8698	 0.8384	 0.8059	
0.7	 0.9990	 0.9936	 0.9817	 0.9634	 0.9393	 0.9105	 0.8782	 0.8435	 0.8074	 0.7706	
0.8	 0.9988	 0.9920	 0.9775	 0.9555	 0.9269	 0.8933	 0.8562	 0.8169	 0.7765	 0.7359	
0.9	 0.9985	 0.9902	 0.9729	 0.9469	 0.9138	 0.8755	 0.8337	 0.7900	 0.7458	 0.7019	
1	 0.9982	 0.9883	 0.9680	 0.9379	 0.9002	 0.8571	 0.8109	 0.7633	 0.7156	 0.6689	

 

  

Fig 5: Alteration in 𝑅I for fixed strength Fig 6: Alteration in 𝑅I for fixed stress 
 

Case 4: Stress follows 𝑬𝒙𝒑 with parameter 𝝀𝟒. 

Table 4 and Fig 7 and 8 indicate that the reliability value decreases as the strength parameter 
values increase. Increased reliability is correlated with increased stress. 

Table 4: Alteration in 𝑅i when strength has 𝑴𝑬 and stress have 𝑬𝒙𝒑. 
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 0.8620	 0.6733	 0.5358	 0.4378	 0.3661	 0.3119	 0.2698	 0.2364	 0.2093	 0.1871	
0.2	 0.9549	 0.8484	 0.7390	 0.6436	 0.5638	 0.4975	 0.4424	 0.3962	 0.3572	 0.3241	
0.3	 0.9791	 0.9148	 0.8346	 0.7548	 0.6815	 0.6163	 0.5591	 0.5092	 0.4656	 0.4274	
0.4	 0.9882	 0.9460	 0.8862	 0.8209	 0.7568	 0.6966	 0.6416	 0.5919	 0.5473	 0.5073	
0.5	 0.9925	 0.9628	 0.9169	 0.8633	 0.8077	 0.7534	 0.7020	 0.6543	 0.6104	 0.5704	
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0.6	 0.9949	 0.9728	 0.9365	 0.8919	 0.8437	 0.7949	 0.7476	 0.7025	 0.6603	 0.6211	
0.7	 0.9963	 0.9793	 0.9498	 0.9121	 0.8700	 0.8263	 0.7828	 0.7406	 0.7004	 0.6625	
0.8	 0.9971	 0.9836	 0.9592	 0.9269	 0.8899	 0.8505	 0.8106	 0.7712	 0.7332	 0.6968	
0.9	 0.9977	 0.9867	 0.9661	 0.9381	 0.9052	 0.8697	 0.8330	 0.7962	 0.7603	 0.7256	
1	 0.9982	 0.9889	 0.9713	 0.9467	 0.9174	 0.8851	 0.8512	 0.8170	 0.7831	 0.7500	

 

  

Fig 7: Alteration in 𝑅i for fixed strength Fig 8: Alteration in 𝑅i for fixed stress 

 

Case 5: Stress follows 𝑯𝑵with parameter 𝝀𝟓. 

Table 5 and Fig 9 and 10 indicate that the reliability value decreases as the strength parameter 
values increase. Increased reliability is correlated with increased stress. 

Table 5: Alteration in 𝑅g when strength has 𝑴𝑬 and stress have 𝑯𝑵  
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 1.0000	 0.9997	 0.9991	 0.9981	 0.9966	 0.9947	 0.9924	 0.9897	 0.9865	 0.9831	
0.2	 0.9999	 0.9994	 0.9980	 0.9958	 0.9927	 0.9886	 0.9837	 0.9780	 0.9716	 0.9645	
0.3	 0.9998	 0.9989	 0.9968	 0.9932	 0.9882	 0.9818	 0.9740	 0.9652	 0.9553	 0.9447	
0.4	 0.9998	 0.9984	 0.9953	 0.9902	 0.9831	 0.9741	 0.9635	 0.9514	 0.9381	 0.9238	
0.5	 0.9997	 0.9978	 0.9937	 0.9869	 0.9775	 0.9658	 0.9521	 0.9368	 0.9200	 0.9023	
0.6	 0.9996	 0.9972	 0.9918	 0.9831	 0.9714	 0.9569	 0.9401	 0.9215	 0.9014	 0.8804	
0.7	 0.9995	 0.9964	 0.9897	 0.9791	 0.9648	 0.9474	 0.9275	 0.9057	 0.8824	 0.8583	
0.8	 0.9993	 0.9956	 0.9874	 0.9747	 0.9578	 0.9375	 0.9145	 0.8895	 0.8632	 0.8362	
0.9	 0.9992	 0.9947	 0.9850	 0.9700	 0.9504	 0.9271	 0.9010	 0.8731	 0.8439	 0.8143	
1	 0.9990	 0.9937	 0.9823	 0.9650	 0.9427	 0.9164	 0.8873	 0.8565	 0.8247	 0.7926	
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Fig 9: Alteration in 𝑅g for fixed strength Fig 10: Alteration in 𝑅g for fixed stress 

Case 6: Stress follows 𝑹𝑯𝑵 with parameter 𝛌𝟔. 

Table 6 and Fig 11 and 12 indicate that the reliability value decreases as the strength parameter 
values increase. Increased reliability is correlated with increased stress. 

Table 6: Alteration in 𝑅� when strength has 𝑴𝑬 and stress have 𝑹𝑯𝑵 
		 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
0.1	 0.9926	 0.9589	 0.9013	 0.8301	 0.7542	 0.6796	 0.6097	 0.5460	 0.4890	 0.4387	
0.2	 0.9965	 0.9791	 0.9461	 0.9009	 0.8483	 0.7922	 0.7355	 0.6804	 0.6280	 0.5791	
0.3	 0.9978	 0.9859	 0.9623	 0.9287	 0.8877	 0.8423	 0.7947	 0.7468	 0.6999	 0.6548	
0.4	 0.9983	 0.9893	 0.9708	 0.9436	 0.9097	 0.8711	 0.8299	 0.7874	 0.7450	 0.7034	
0.5	 0.9987	 0.9913	 0.9759	 0.9530	 0.9238	 0.8901	 0.8534	 0.8151	 0.7763	 0.7377	
0.6	 0.9989	 0.9926	 0.9794	 0.9595	 0.9337	 0.9036	 0.8704	 0.8354	 0.7995	 0.7635	
0.7	 0.9990	 0.9936	 0.9820	 0.9642	 0.9411	 0.9137	 0.8833	 0.8509	 0.8175	 0.7836	
0.8	 0.9992	 0.9943	 0.9839	 0.9678	 0.9467	 0.9216	 0.8935	 0.8633	 0.8319	 0.7999	
0.9	 0.9992	 0.9949	 0.9854	 0.9707	 0.9513	 0.9280	 0.9018	 0.8734	 0.8438	 0.8134	
1	 0.9993	 0.9953	 0.9866	 0.9730	 0.9550	 0.9332	 0.9086	 0.8818	 0.8537	 0.8248	

 

  

Fig 11: Alteration in 𝑅� for fixed strength Fig 12: Alteration in 𝑅� for fixed stress 
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5. Simulation Results  

In this section, the performance of the estimators is evaluated using Monte Carlo simulations. 
To generate simulated samples, several parameter values from independent sources are 
employed. 𝑴𝑬(𝜇) and 𝑴𝑬(𝜆T) are of sizes 𝑛 and 𝑚 respectively, (5,5), (10, 10), (20, 20), (30, 
30), (40, 40) and (100, 100), with two different sets of parameter values, namely and (1, 0.5)  

The following sample sizes are considered; (𝑛,𝑚) = (5, 5), (10, 10), (20,20), (30,30), 
(40,40), (50,50) and (100,100). 

Table7: Simulation studt 
(𝑛,𝑚)              
(µ, 𝜆T) 

(5,5) (10,10) (20,20) (30,30) (40,40) (50,50) (100,100) 

(1, 0.5) 0.0162 0.0071 0.0038 0.0025 0.0018 0.0016 0.0008 
0.0194 0.0118 0.0053 0.0031 0.0072 0.0002 0.0004 

(1, 1) 0.0251 0.0128 0.0069 0.0048 0.0037 0.0029 0.0015 
0.0043 0.0002 0.0022 0.0011 0.0040 0.0042 0.0012 

(1, 1.5) 0.0209 0.0114 0.0059 0.0034 0.0028 0.0023 0.0011 
0.0117 0.0092 0.0049 0.0029 0.0009 0.0007 0.0000 

(1, 2) 0.0154 0.0077 0.0040 0.0025 0.0022 0.0016 0.0007 
0.0198 0.0089 0.0060 0.0021 0.0022 0.0034 0.0020 

(0.5, 1) 0.0162 0.0075 0.0038 0.0026 0.0018 0.0013 0.0008 
0.0224 0.0096 0.0061 0.0020 0.0026 0.0015 0.0016 

(1.5, 1) 0.0204 0.0117 0.0056 0.0038 0.0027 0.0023 0.0011 
0.0158 0.0090 0.0026 0.0023 0.0016 0.0010 0.0009 

(2, 1) 0.0154 0.0082 0.0042 0.0026 0.0018 0.0015 0.0008 
0.0161 0.0157 0.0042 0.0037 0.0016 0.0031 0.0005 

 

6. Conclusion 

In this article, the stress-strength reliability for the Monsef distribution has been explored when 
the strength follows the Monsef distribution and the stress follows the Monsef, Lindley, 
Rayleigh, exponential, Half-Normal, and Rayleigh Half-Normal distributions. The maximum 
likelihood estimation approach is used to provide parameter estimates based on calculations and 
graphs. The numerical evaluation reveals that when the stress has a Monsef, Lindley, Rayleigh, 
exponential, half-normal, or Rayleigh half-normal distribution, the dependability increases as 
the stress level rises and vice versa. We derived the maximal likelihood estimation (MLE) and 
the method of moments (MOM) for estimating the unknown parameters that are employed in 
reliability estimation (R). The simulation study is carried out to assess the performance of the 
various offered estimation. 
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