A successful and ideal randomized orthogonal additive response model

Manzoor A. Khanday ${ }^{l, *}$, Tanveer A. Tarray ${ }^{2}$, S. Alkhazaleh ${ }^{3}$, A. Ibrahim ${ }^{~}{ }^{1}$, Pratyay Das ${ }^{l}$, Akansha Rawat ${ }^{1}$, and Shiv Shanker Pandey ${ }^{l}$
${ }^{1}$ Department of Statistics, Faculty of Chemical Engineering and Physical Sciences, Lovely Professional University Punjab, India
${ }^{2}$ Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, India
${ }^{3}$ Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan

Received: 17 Sep. 2023, Revised: 20 Oct. 2023, Accepted: 2 Nov. 2023
Published online: 1 Nov. 2024.

Abstract

An innovative additive randomized response technique (RRT) has been put forth in this study. The proposed model's characteristics have been researched. Theoretically, it has been demonstrated that under highly realistic circumstances, the recommended additive model is superior to the existing one. RRTs are used to lessen response biases in sensitive research question self-report surveys (e.g., on socially undesirable characteristics). Evidence suggests that they cannot entirely eradicate self-protective response mechanisms. There are RRTs made especially to assess the effectiveness of such tactics in order to solve this issue. Also provided in support of the current study are numerical examples.

Keywords: Randomized response sampling, orthogonality, Mean Squared Error, Estimation of proportion, sensitive variable.

1 Introduction

One issue with studies on high-risk behaviour is that participants may knowingly or unknowingly give false information. A social desirability bias has been noted as a significant factor in the distortion of standardized personality tests in psychological studies. Concerns concerning the veracity of survey findings/results about issues including drunk driving, marijuana usage, tax evasion, illicit drug use, induced abortion, shoplifting, child abuse, family issues, test cheating, HIV/AIDS, and sexual conduct are shared by survey researchers. Lack of an accurate indicator of their incidence or prevalence is the biggest obstacle to investigating some sensitive social issues (such as drug use, induced abortion, tax fraud, etc.). To gather reliable information on such sensitive and private issues, instead there is a need for alternate processes other than open surveys. Warner was the first to present such an alternate method as "randomized response technique" (RRT). It offers the chance to lessen response biases brought on by dishonest responses to delicate queries. In the context of sensitive and private issues, the availability of reliable information is crucial. However, relying solely on open surveys may not always be the most suitable approach but Fuzzy theory can be the solution [1-7].
As a result, the method guarantees a high level of privacy protection in many situations. Many improvements are suggested in the literature as a result of Warner's ground breaking study. A nice overview of randomized response method advancements might be found in [15-23]. Due to their delicate nature, many social and psychological phenomena of considerable societal importance are challenging to experimentally explore. For instance, the ongoing corona virus disease 2019 (COVID-19) pandemic [24-30] has resulted in an alarming rise in the prevalence of intimate partner violence (IPV), according to recent reports from the German news outlet [21] The model's description from [8] is provided [8] additive model:

Allow k scrambling variables, represented by $\mathrm{Sj}, \mathrm{j}=1,2, \ldots, \mathrm{k}$ whose cruel $\theta \mathrm{j}$ (i.e. $\mathrm{E}(\mathrm{Sj})=\theta \mathrm{j}$) and variance γ_{j}^{2} (i.e. $\mathrm{V}(\mathrm{Sj})=$ γ_{j}^{2}) are known. To determine the proportion of the k darkened areas, (see Ref. [15]) proposed optimum new orthogonal additive model known as (POONAM), each responder chosen from the sample is asked to rotate a spinner. P1, P2, ... Pkare, let's say, orthogonal to the k scrambling variables' meanings $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ such that:
$\sum_{j=1}^{k} P_{j} \theta_{j}=0$
and
*Corresponding author e-mail: manzoor.28711@lpu.co.in or manzoorstat@gmail.com

$$
\begin{equation*}
\sum_{j=1}^{k} P_{j}=1 \tag{1.2}
\end{equation*}
$$

Fig. 1 Spinner for POONAM
If the cursor now pauses in the $\mathrm{j}^{\text {th }}$ shadowed region, the $\mathrm{i}^{\text {th }}$ responder having the sensitive variable's actual value, let's say Yi, is asked to submit the response's scrambled form, Z_{i}, as follows:
$Z_{i}=Y_{i}+S_{j}$
Assuming that simple random sampling with replacement is used to choose the sample of size n from the population (SRSWR). Singh (2010) proposed an objective method of estimating the population mean μ_{Y} as
$\hat{\mu}_{Y}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$

The variance of $\hat{\mu}_{Y}$ is given by
$V\left(\hat{\mu}_{Y}\right)=\frac{1}{n}\left[\sigma_{y}^{2}+\sum_{j=1}^{k} P_{j}\left(\theta_{j}^{2}+\gamma_{j}^{2}\right)\right]$

2 The proposed procedure

Let $\mathrm{S}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{k}$ be k the process of mixing together variables such that their distribution is understood. In brief, let $\mathrm{E}(\mathrm{Sj})=\theta \mathrm{j}$ and $\mathrm{V}(\mathrm{Sj})=\gamma_{j}^{2}$ get noticed. Subsequently, in the suggested additive model, each participant chosen from the sample is asked to spin a spinner, as shown in Fig. 2, to determine the percentage of the k shaded regions, say $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{\mathrm{k}}$ are orthogonal to the means of the k scrambling variables, say $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ such that:
$\sum_{j=1}^{k} P_{j} \theta_{j}=0$
and
$\sum_{j=1}^{k} P_{j}=1$
\qquad
The $\mathrm{i}^{\text {th }}$ respondent holding the genuine value of the sensitive variable, let's say Y_{i}, is asked to report the scrambled response if the pointer stops in the $\mathrm{j}^{\text {th }}$ darkened region. Z_{i}^{*} as:
$Z_{i}^{*}=Y_{i}+S_{j}^{*}$,

$$
\begin{equation*}
S_{j}^{*}=\frac{\left(a_{j} S_{j}+b_{j} \theta_{j}\right)}{\left(a_{j}+b_{j}\right)} \tag{2.3}
\end{equation*}
$$ and $\left(a_{j}, b_{j}\right)$ being appropriately selected constants that have real-world values and are functions of

where

$$
\theta \mathrm{j}, \mathrm{Cj}(=\gamma \mathrm{j} / \theta \mathrm{j}), \quad \beta_{2}\left(S_{j}\right)=\frac{\mu_{4}\left(S_{j}\right)}{\gamma_{j}^{4}}
$$

(coefficient
established parameters for the scrambling variable S_{j} such as γ_{j},

$$
G_{1}\left(S_{j}\right)=\frac{\mu_{3}\left(S_{j}\right)}{\gamma_{j}^{3}}
$$ is the Fisher's measure of skewness, $\mu_{3}\left(S_{j}\right)$ and $\mu_{4}\left(S_{j}\right)$ are third and fourth central moments of the scrambling variable Sj etc. Let's use basic random sampling with replacement to select a sample of size n from the population (SRSWR). The following theorems are then proven.

Fig. 2 Spinner for proposed procedure.
Theorem 2.1 An unbiased estimator of the population mean μ_{Y} is given by
$\hat{\mu}_{\mathrm{ST}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Z}_{\mathrm{i}}^{*}$
Proof. Let E1 and E2 denote the expectation over the sampling design and the randomization device respectively, we have

$$
\begin{align*}
& \mathrm{E}\left(\hat{\mu}_{\mathrm{ST}}\right)=\mathrm{E}_{1} \mathrm{E}_{2}\left[\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Z}_{\mathrm{i}}^{*}\right] \tag{2.4}\\
& =\mathrm{E}_{1}\left[\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E}_{2}\left(\mathrm{Z}_{\mathrm{i}}^{*}\right)\right] \\
& =\mathrm{E}_{1}\left[\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{Y}_{\mathrm{i}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{j}}^{*}\right)\right\}\right] \\
& =\mathrm{E}_{1}\left[\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left\{\mathrm{Y}_{\mathrm{i}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}\right\}\right]
\end{align*}
$$

$$
=\mathrm{E}_{1}\left[\frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}\right]=\mu_{\mathrm{Y}}
$$

$$
\sum_{j=1}^{k} P_{j}=1 \text { and } \sum_{j=1}^{k} P_{j} \theta_{j}=0 \text {, }
$$

whinch completes the theorem.
The variance of the proposed estimator $\hat{\mu}_{\mathrm{ST}}$ is given in the following theorem.
Theorem 2.2 The variance of the proposed estimator $\hat{\mu}_{\mathrm{ST}}$ is given by
$\mathrm{V}\left(\hat{\mu}_{\mathrm{ST}}\right)=\frac{1}{\mathrm{n}}\left[\sigma_{\mathrm{y}}^{2}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}^{2}\left(1+\eta_{\mathrm{j}}^{2} \mathrm{C}_{\mathrm{j}}^{2}\right)\right]$,
where

$$
\begin{equation*}
\eta_{j}=a_{j} /\left(a_{j}+b_{j}\right)_{\text {and } C j}=\gamma j / \theta j ; j=1,2, \ldots, k . \tag{2.5}
\end{equation*}
$$

Proof. Let V1 and V2 denote the variance over the sampling design and over the proposed randomization device, respectively, then we have

$$
\begin{align*}
& V\left(\hat{\mu}_{Y}\right)=E_{1} V_{2}\left(\hat{\mu}_{Y}\right)+V_{1} E_{2}\left(\hat{\mu}_{Y}\right) \\
& =E_{1}\left[V_{2}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{*}\right)\right]+V_{1}\left[E_{2}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{*}\right)\right] \\
& =E_{1}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} V_{2}\left(Z_{i}^{*}\right)\right]+V_{1}\left[\frac{1}{n} \sum_{i=1}^{n} E_{2}\left(Z_{i}^{*}\right)\right] \\
& =E_{1}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} V_{2}\left(Z_{i}^{*}\right)\right]+V_{1}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right], \text { since } E_{2}\left(Z_{i}^{*}\right)=Y_{i} \\
& =\frac{\sigma_{y}^{2}}{n}+E_{1}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} V_{2}\left(Z_{i}^{*}\right)\right] \tag{2.7}
\end{align*}
$$

Note that:

$$
\begin{align*}
& V_{2}\left(Z_{i}^{*}\right)=\sum_{j=1}^{k} P_{j} E_{2}\left(Y_{i}+S_{j}^{*}\right)^{2}-Y_{i}^{2} \\
& \quad=\sum_{j=1}^{k} P_{j} E_{2}\left(Y_{i}^{2}+S_{j}^{* 2}+2 Y_{i} S_{j}^{*}\right)-Y_{i}^{2} \\
& =Y_{i}^{2} \sum_{j=1}^{k} P_{j}+2 Y_{i} \sum_{j=1}^{k} P_{j} \theta_{j}+\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{1+\eta_{j}^{2} C_{j}^{2}\right\}-Y_{i}^{2} \\
& =Y_{i}^{2}+\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{1+\eta_{j}^{2} C_{j}^{2}\right\}-Y_{i}^{2} ; \sin \text { ce } \sum_{j=1}^{k} P_{j}=1 \text { and } \sum_{j=1}^{k} P_{j} \theta_{j}=0, \\
& =\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{1+\eta_{j}^{2} C_{j}^{2}\right\} \tag{2.8}
\end{align*}
$$

where $\eta_{j}=a_{j} /\left(a_{j}+b_{j}\right)$ and $C \mathrm{j}=\gamma \mathrm{j} / \theta \mathrm{j} ; \mathrm{j}=1,2, \ldots, \mathrm{k}$.
Putting (2.8) in (2.7) we get
$\mathrm{V}\left(\hat{\mu}_{\mathrm{Y}}\right)=\frac{\sigma_{\mathrm{y}}^{2}}{\mathrm{n}}+\mathrm{E}_{1}\left[\frac{1}{\mathrm{n}^{2}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}^{2}\left\{1+\eta_{\mathrm{j}}^{2} C_{\mathrm{j}}^{2}\right\}\right]$
$=\frac{\sigma_{y}^{2}}{n}+\frac{1}{n} \sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{1+\eta_{j}^{2} C_{j}^{2}\right\}$
$=\frac{1}{n}\left[\sigma_{y}^{2}+\sum_{j=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}^{2}\left\{1+\eta_{\mathrm{j}}^{2} \mathrm{C}_{\mathrm{j}}^{2}\right\}\right]$
This completes the proof of the Theorem.

3 Efficiency Comparison

The proposed estimator $\hat{\mu}_{\text {ST }}$ will be more efficient than the estimator $\hat{\mu}_{Y \text { if }}$ $\mathrm{V}\left(\hat{\mu}_{\mathrm{ST}}\right)<\mathrm{V}\left(\hat{\mu}_{\mathrm{Y}}\right)$ if
i.e. if $\frac{1}{\mathrm{n}}\left[\sigma_{y}^{2}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}^{2}\left\{1+\eta_{\mathrm{j}}^{2} \mathrm{C}_{\mathrm{j}}^{2}\right\}\right]<\frac{1}{\mathrm{n}}\left[\sigma_{\mathrm{y}}^{2}+\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{P}_{\mathrm{j}} \theta_{\mathrm{j}}^{2}\left(1+\mathrm{C}_{\mathrm{j}}^{2}\right)\right]$
i.e if $\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{1+\eta_{j}^{2} C_{j}^{2}\right\}<\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left(1+C_{j}^{2}\right)$
i.e if

$$
\sum_{j=1}^{k} P_{j} \theta_{j}^{2}\left\{\eta_{j}^{2}-1\right\} C_{j}^{2}<0
$$

i.e. if $\sum_{j=1} P_{j} \gamma_{j}^{2}\left\{\eta_{j}^{2}-1\right\}<0 \quad \forall j=1,2, \ldots, k$,
i.e. if
$\left\{\eta_{\mathrm{j}}^{2}-1\right\}<0 \forall \mathrm{j}=1,2, \ldots, \mathrm{k}$,
i.e. if $\left|\eta_{j}^{2}\right|<1 \forall \mathrm{j}=1,2, \ldots, \mathrm{k}$.

It follows from (3.1) that we should choose the value of $(\mathrm{aj}, \mathrm{bj})$ in such way that
$\left|\frac{\mathrm{a}_{\mathrm{j}}}{\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}}\right|<1$.
We have calculated the suggested estimator's percent relative efficiency (PRE) of the estimator $\hat{\mu}_{S T}$ with respect to Singh's (2010) estimator $\hat{\mu}_{Y}$ by using the formula:
$\operatorname{PRE}\left(\hat{\mu}_{S T}, \hat{\mu}_{Y}\right)=\frac{\left[\sigma_{y}^{2}+\sum_{j=1}^{k} P_{j}\left\{\left(\theta_{j}^{2}+\gamma_{j}^{2}\right)\right\}\right]}{\left[\sigma_{y}^{2}+\sum_{j=1}^{k} P_{j}\left\{\left(\theta_{j}^{2}+\eta_{j}^{2} \gamma_{j}^{2}\right)\right\}\right]} \times 100$
where η_{j} is given in (2.6).
Considering the respondents' participation, we made the following decision: $\gamma=40, \gamma_{1}=30, \gamma_{2}=40, \gamma_{3}=20, \gamma_{4}=10, \mathrm{P}_{1}=0.01, \mathrm{P}_{2}=0.02$, $\mathrm{P}_{3}=0.03, \mathrm{P}_{4}=0.04$ with $\mathrm{k}=4$. In addition we choose different values $\sigma_{y}^{2}, \theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} as listed in Table 1.

Table 1. Percent relative efficiencies of the proposed estimator $\hat{\mu}_{S T}$ over the existing estimator $\hat{\mu}_{Y}$.

σ_{Y}^{2}	PREs						
	$\mathrm{a}_{\mathrm{j}} \rightarrow \frac{\mathrm{b}_{\mathrm{j}}}{4}$	$\frac{b_{j}}{2}$	$\frac{3 \mathrm{~b}_{\mathrm{j}}}{4}$	b_{j}	$\frac{5 b_{j}}{4}$	$\frac{5 b_{j}}{2}$	$\frac{7 \mathrm{~b}_{\mathrm{j}}}{4}$
	$\eta_{\mathrm{j}} \rightarrow \frac{1}{5}$	1/3	3/7	1/2	5/9	3/5	7/11
25	1244.77	$\begin{aligned} & 678.4 \\ & 5 \end{aligned}$	$\begin{aligned} & 466.3 \\ & 0 \end{aligned}$	$\begin{aligned} & 355.2 \\ & 2 \end{aligned}$	$\begin{aligned} & 294.9 \\ & 9 \end{aligned}$	$\begin{aligned} & 258.4 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 235.1 \\ & 8 \end{aligned}$
125	470.23	$\begin{aligned} & 370.2 \\ & 7 \end{aligned}$	$\begin{aligned} & 305.3 \\ & 6 \end{aligned}$	$\begin{aligned} & 259.8 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 230.3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 210.4 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 196.8 \\ & 8 \\ & \hline \end{aligned}$
225	320.82	276.3	242.6	216.3	197.9	184.8	175.5
325	257.33	$\begin{aligned} & 230.8 \\ & 5 \end{aligned}$	$\begin{aligned} & 209.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 191.4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 178.3 \\ & 9 \end{aligned}$	$\begin{aligned} & 168.8 \\ & 0 \end{aligned}$	$\begin{aligned} & 161.8 \\ & 4 \\ & \hline \end{aligned}$
425	222.20	$\begin{aligned} & 204.0 \\ & 2 \end{aligned}$	$\begin{aligned} & 188.5 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 175.3 \\ & 3 \end{aligned}$	$\begin{aligned} & 165.3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 157.8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 152.3 \\ & 7 \\ & \hline \end{aligned}$
525	199.89	$\begin{aligned} & 286.3 \\ & \hline 2 \end{aligned}$	$\begin{array}{\|l} \hline 174.4 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 164.0 \\ & 4 \end{aligned}$	$\begin{aligned} & 156.0 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 149.9 \\ & 6 \end{aligned}$	$\begin{aligned} & 145.4 \\ & 2 \end{aligned}$
625	184.47	173.7	164.2	155.7	149.0	143.9	140.0
725	173.17	164.4	156.4	149.2	143.6	139.2	135.8
		0	8	8	2	2	9
825	164.54	$\begin{aligned} & 157.1 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 150.3 \\ & 9 \end{aligned}$	$\begin{aligned} & 144.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 139.2 \\ & 6 \end{aligned}$	135.4	$\begin{aligned} & 132.4 \\ & 8 \end{aligned}$

Table 3. Percent relative efficiencies of the proposed estimator $\hat{\mu}_{S T}$ over the existing estimator $\hat{\mu}_{Y}$.

σ_{Y}^{2}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	PREs	
					$\mathrm{a}_{\mathrm{j}}=\theta_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}=\gamma_{\mathrm{j}}$	$\mathrm{a}_{\mathrm{j}}=\theta_{\mathrm{j}}^{2}, \mathrm{~b}_{\mathrm{j}}=\gamma_{\mathrm{j}}^{2}$
25	1	1	2	-2.25	728.03	2001.40
	1	2	2	-2.75	505.45	1818.41
	2	1	3	-3.25	340.55	1584.98
	2	2	3	-3.75	239.00	1390.36
125	1	1	2	-2.25	383.36	537.72
	1	2	2	-2.75	320.09	526.40
	2	1	3	-3.25	253.68	509.02
	2	2	3	-3.75	199.62	491.03
225	1	1	2	-2.25	282.95	347.33
	1	2	2	-2.75	251.03	343.40
	2	1	3	-3.25	212.91	337.17
	2	2	3	-3.75	177.62	330.43
325	1	1	2	-2.25	235.09	272.36
	1	2	2	-2.75	214.97	270.31
	2	1	3	-3.25	189.24	267.01
	2	2	3	-3.75	163.58	263.34

Table 4. Percent relative efficiencies of the proposed estimator $\hat{\mu}_{\mathrm{ST}}$ over the existing estimator $\hat{\mu}_{Y}$ for $\theta \mathrm{j}=0, \mathrm{j}=1,2, \ldots, \mathrm{k}$.

σ_{Y}^{2}	25	125	225	325
PRE's	2380.00	556.00	353.33	275.38

Table 5. Percent relative efficiencies of the proposed estimator $\hat{\mu}_{\mathrm{ST}}$ over the existing estimator $\hat{\mu}_{\mathrm{Y}}$ with $\mathrm{k}=2$.

Table 6. Percent relative efficiencies of the proposed estimator $\hat{\mu}_{\mathrm{ST}}$ over the existing estimator $\hat{\mu}_{\mathrm{Y}}$ with k=2

σ_{Y}^{2}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	PREs	
					$\mathrm{a}_{\mathrm{j}}=\theta_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}=\gamma_{\mathrm{j}}$	$\mathrm{a}_{\mathrm{j}}=\theta_{\mathrm{j}}^{2}, \mathrm{~b}_{\mathrm{j}}=\gamma_{\mathrm{j}}^{2}$
25	1	1	2	-2.25	1676.13	1720.51
	1	2	2	-2.75	1599.26	1682.81
	2	1	3	-3.25	1587.15	1701.02
	2	2	3	-3.75	1518.21	1664.21
125	1	1	2	-2.25	424.94	427.21
	1	2	2	-2.75	421.12	425.64
	2	1	3	-3.25	420.26	426.41
	2	2	3	-3.75	416.53	424.85
225	1	1	2	-2.25	281.14	281.98
	1	2	2	-2.75	279.82	281.49
	2	1	3	-3.25	279.45	281.73
	2	2	3	-3.75	278.14	281.24
325	1	1	2	-2.25	225.57	226.04
	1	2	2	-2.75	224.87	225.80
	2	1	3	-3.25	224.65	225.92
	2	2	3	-3.75	223.95	225.68

Tables 1 and 3 demonstrate that the values of $\operatorname{PRE}\left(\hat{\mu}_{S T}, \hat{\mu}_{Y}\right)$ are greater than 100. It follows that the proposed estimator $\hat{\mu}_{S T}$ is more efficient than the estimator $\hat{\mu}_{Y}$ due to Singh (2010) with substantial gain in efficiency. Thus, based on the outcomes of our simulation, applying the suggested estimator $\hat{\mu}_{\mathrm{ST}}$ over Singh (2010) estimator $\hat{\mu}_{Y}$ is recommended for all situations close to Tables 1 and 3 respectively.
We also consider a situation where $\theta \mathrm{j}=0$ for $\mathrm{j}=1,2,3,4$, and rest of the parameters are kept same as in Table 1 and 3 respectively. The percent relative efficiency of the proposed estimator $\hat{\mu}_{S T}$ over Singh (2010) estimators $\hat{\mu}_{Y}$ has been shown in Tables 2 and 4 respectively.
Tables 2 and 4 clearly show that the percent relative efficiencies remain higher if the value of σ_{y}^{2} is small.
We have further considered the case $\mathrm{k}=2$ and computed the $\operatorname{PRE}\left(\hat{\mu}_{S T}, \hat{\mu}_{Y}\right)$ for different choices of parameters. Results are shown in Tables 5 and 6.
In light of these numerical findings, the suggested estimates $\hat{\mu}_{\mathrm{ST}}$ is to be preferred over Singh (2010) estimator $\hat{\mu}_{\mathrm{Y}}$ is recommended for all situations in actual use, the Tables 1 to 6 are comparable. It should be mentioned that while selecting a randomization method to be employed in practise, real-world survey expertise is a need.

4 Conclusions

This paper has proposed a novel additive randomised response method (RRT). Research has been done on the qualities of the suggested model. Theoretically, it has been proven that the suggested additive model outperforms the current one under extremely realistic conditions. In sensitive research question self-report surveys, RRTs are employed to reduce response biases (e.g., on socially undesirable characteristics). There are RRTs designed specifically to evaluate the efficacy of such strategies in order to address this problem.

Acknowledgment

The authors are thankful to learned referees for their comments/suggestions regarding the manuscript.

References

[1]. K. I. Noor, M. A. Noor, Fuzzy Differential Subordination Involving Generalized Noor-Salagean Operator, Information Sciences Letters, Vol. 11, No. 06 PP: 1905-1911 (2022) doi:10.18576/isl/110606
[2]. Atimad Harir, Said Melliani, L.Saadia Chadli, Convergence of Fuzzy Conformable Laplace Transform, Applied Mathematics \& Information Sciences, Volume 16, No. 6 PP: 353-360 (2022) doi:10.18576/amis/160223
[3]. M. Kozae, Mohamed Shokry, Manar Omran, Comparison Between Fuzzy Soft Expert System and Intuitionistic Fuzzy Set in Prediction of Luge Cancer Disease, Information Sciences Letters, Vol. 10, No. 2 PP: 167-176 (2021) doi:10.18576/isl/100202
[4]. Mushtaq. A. Lone, S. A. Mir, Hilal M. Y. Al-Bayatti, Ozen Ozer, Omar F. Khan, Tabasum Mushtaq, Optimal Allocation in Agriculture using Intuitionistic Fuzzy Assignment Problem, Information Sciences Letters, Vol. 10, No. 3 PP: 497-501 (2021) doi:10.18576/isl/100314
[5]. Maha M. A. Lashin, Areej A. Malibari, Using Fuzzy Logic Control System as an Artificial Intelligence Tool to Design Soap Bubbles Robot as a Type of Interactive Games, Information Sciences Letters, Vol. 11, No. 01 PP: 15-19 doi:10.18576/isl/110103
[6]. Ajjaz Maqbool, Chitranjan Sharma, Mushtaq.A Lone, Riyad Alshalabi,Intuitionistic Fuzzy Programming Technique to Solve Multi- Objective Transportation Problem, Information Sciences Letters, Vol. 11, No. 04 PP: 1261-1265 (2022) doi:10.18576/isl/110425
[7]. Fekadu Tesgera Agama, V. N. SrinivasaRao Repalle, A Study on an Extended Total Fuzzy Graph, Applied Mathematics \& Information Sciences, Volume 16, No. 4 PP: 511-518 (2022), doi:10.18576/amis/160404
[8]. J. A. Fox, and P. E. Tracy, Randomized Response: A method of Sensitive Surveys.Newbury Park, CA: SEGE Publications (1986).
[9]. C. R. Gjestvang and S. A. Singh, New randomized response model. Jour. Roy. Statist. Soc. Vol. 68, 523-530. (2006).
[10]. H.P. Singh and T. A. Tarray, Estimation of population mean with known coefficient of variation under optional response model using scrambled response technique. Statist. Trans., Vol. 6, No. 7, 1079-1093 (2004).
[11]. H. P. Singh and N. Mathur, Estimation of population mean when the coefficient of variation is known using scrambled response technique. Jour. Statist. Plan. Infer., Vol. 131, 135-144 (2005).
[12]. H.P. Singh and T. A. Tarray, A modified survey technique for estimating the proportion and sensitivity in a dichotomous finite population. International Jour. Advanc. Scien.Techn. Res., Vol. 3 No. 6, 459 - 472 (2013).
[13]. H.P. Singh and T. A. Tarray, A dexterous randomized response model for estimating a rare sensitive attribute using Poisson distribution. Statist. Prob. Lett., Vol. 90, 42-45 (2014).
[14]. C. Emundts, Gewalt in Beziehungen: Die Zahlensindschockierend. Tagesschau, November 10, (2020). (https://www.tagesschau.de/inland/beziehungsgewalt-bka-statistik-101.html).
[15]. S. Singh, Proposed optimal orthogonal new additive model (POONAM). Statistica, anno LXX (1), 73-81 (2010).
[16]. S. L. Warner, Randomized response: A survey technique for eliminating evasive answer bias. Jour. Amer. Statist. Assoc., Vol. 60, 63-69 (1965).
[17]. H. G. Aly, O. R. Elguoshy, M. Z. Metwaly, Machine Learning Algorithms and Auditor's Assessments of the Risks Material Misstatement: Evidence from the Restatement of Listed London Companies, Inf. Sci. Lett. Vol. 12 No. 4 (2023) PP: 1285-1298 doi:10.18576/isl/120443
[18]. R. Alazaidah, A. Al-Shaikh, M. R. AL-Mousa, H. Khafajah, G. Samara, M. Alzyoud, N. Al-Shanableh, S. Almatarneh, Website Phishing Detection Using Machine Learning Techniques, J. Stat. Appl. Pro. Vol. 13 No. 1 (2024) PP: 119-129 doi:10.18576/jsap/130108
[19]. Bayan A. Alazzam, Manar Alkhatib, Khaled Shaalan, Artificial Intelligence Chatbots: A Survey of Classical versus Deep Machine Learning Techniques, Inf. Sci. Lett. Vol. 12 No. 4 (2023) PP: 1217-1233 doi:10.18576/isl/120437
[20]. Tlhalitshi Volition Montshiwa, Tshegofatso Botlhoko, Modelling and Predicting Learners Numeracy Test Results using Some Regression and Machine Learning Classifiers, J. Stat. Appl. Pro. Vol. 12 No. 3 (2023) PP: 1345-1363 doi:10.18576/jsap/120337
[21]. A. M. Teamah, W. A. Afifi, Javid Gani Dar, Abd Al-Aziz Hosni El-Bagoury, Sndus Naji Al-Aziz, Optimal Discrete Search for a Randomly Moving COVID19, J. Stat. Appl. Prob. Vol. 9, No. 3 (2020), PP:473-481: doi:10.18576/jsap/090304
[22]. Abdullah Ali H. Ahmadini, Nitesh K. Adichwal, Mutum Zico Meetei, Yashpal Singh Raghav, Mohammed Ali H. Ahmadini, Ahmed Msmali, Neha Seth, Knowledge, Awareness and Practices (KAP) about COVID-19 in Jazan, J. Stat. Appl. Prob. Vol. 10, No. 2 (Jul. 2021), PP:487-497: doi:10.18576/jsap/100217
[23]. Hamid El Maroufy, Adil Lahrouz, PGL Leach, Qualitative Behaviour of a Model of an SIRS Epidemic: Stability and Permanence, Appl. Math. Inf. Sci. Volume 5, No. 2 (2011) PP: 220-238
[24]. H. A. A. El-Saka, The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size, Math. Sci. Lett. Vol. 2, No. 3 (2013) PP: 195-200
[25]. Ahmed M. Yousef, Saad Z. Rida, Yassein Gh. Gouda, Asmaa S. Zaki, On Dynamics of a Fractional-Order SIRS Epidemic Model with Standard Incidence Rate and its Discretization, Prog. Frac. Diff. Appl. Vol. 5, No. 4 (2019) PP: 297-306: doi:10.18576/pfda/050405
[26]. Walaa M. Abd-Elhafiez, Hanan H. Amin, The Digital Transformation Effects in Distance Education in Light of the Epidemics (COVID-19) in Egypt, Inf. Sci. Lett. Vol. 10, No. 1 (2021), PP:141-152: doi:10.18576/isl/100116
[27]. P. Veeresha, Wei Gao, D. G. Prakasha, N. S. Malagi, E. Ilhan, Haci Mehmet Baskonus, New Dynamical Behaviour of the Coronavirus (2019-Ncov) Infection System with Non-Local Operator from Reservoirs to People, Inf. Sci. Lett. Vol. 10, No. 2 (May 2021), PP:205-212: doi:10.18576/isl/100206
[28]. Wael Mustafa, Shrink: An Efficient Construction Algorithm for Minimum Vertex Cover Problem, Inf. Sci. Lett. Vol. 10, No. 2 (May 2021), PP:255-261 doi:10.18576/isl/100209
[29]. Osama Yaseen M. Al-Rawi, Wisam Subhi Al-Dayyeni, Ibrahim Reda, COVID-19 Impact on Education and Work in the Kingdom of Bahrain: Survey Study, Inf. Sci. Lett. Vol. 10, No. 3 (Sep. 2021), PP:427-433: doi:10.18576/isl/100305
[30]. Ismail Atia, Mohamed L Salem, Aya Elkholy, Wael Elmashad, Gomaa A. M. Ali, In-silico Analysis of Protein Receptors Contributing to SARS- COV-2 High Infectivity, Inf. Sci. Lett. Vol. 10, No. 3 (Sep. 2021), PP:561-570: doi:10.18576/isl/100320

