
Appl. Math. Inf. Sci. 18, No. 1, 13-22 (2024) 13

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/180102

Fractional Partial and Integral Differential Equations

and Novel Conformable Double (Laplace -Sumudu)

Transform

Ahmad Qazza1, Shams A. Ahmed2,3, Rania Saadeh1,∗ and Tarig Elzaki 4

1Department of Mathematics, Zarqa University, Zarqa 13110, Jordan
2Department of Mathematics, Faculty of Sciences and Arts, Jouf University, Tubarjal 74756, Saudi Arabia
3Department of Mathematics, University of Gezira, Wad Madani 21111, Sudan
4Department of Mathematics, Faculty of Sciences and Arts, Alkamil, Jeddah, University of Jeddah, Saudi Arabia

Received: 1 Jun. 2023, Revised: 11 Aug. 2023, Accepted: 15 Sep. 2023

Published online: 1 Jan. 2024

Abstract: This article presents a novel methodology for dealing with fractional partial differential equations and fractional integral

equations, subject to particular constraints, by combining the Laplace transform with the Sumudu transform. The conformable double

Laplace-Sumudu transform (CDLST) method handles integrals and derivatives of fractional orders by using conformable derivatives. In

this paper, we present a thorough examination of the fundamental traits and revolutionary developments related to the proposed shift. It

is feasible to convert fractional partial differential equations and integral equations into algebraic equations by using the CDLST and its

inherent properties. This modification makes finding solutions simpler, enabling quicker and more effective computations. The findings

of our study highlight the potency and usefulness of this novel strategy in resolving numerous issues in the physics and engineering

areas.
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1 Introduction

Scientific simulations in a variety of disciplines, such as
physics, electrical circuits, fluid dynamics, optics, and
mathematical biology, frequently make use of fractional
partial differential equations [1,2,3,4,5,6,7]. Numerous
definitions of fractional derivatives have been created
throughout history, encompassing formulas credited to
famous individuals like Rizez, Riemann-Liouville,
Caputo, Hadamard, and others. It is noteworthy that the
fractional derivatives of Riemann-Liouville and Caputo
have gained popularity in the subject. However, their
adherence to the accepted guidelines governing the chain,
product, and quotient operations between functions has
occasionally baffled researchers. Fractional derivatives’
complex nature has created substantial obstacles for their
integration into mathematical, physical, and engineering
frameworks, leading to a variety of challenges [8,9,10,
11].

The conformal fractional derivative, a concept
bridging complex analysis with fractional calculus, and is
particularly valuable in modeling complex systems with
intricate geometries, such as fluid dynamics and
electromagnetism. It leverages conformal mapping to
preserve angles between curves and analyze materials
with complex structures. On the other hand, the
Laplace-Sumudu transform method, combining Laplace
and Sumudu transforms, is instrumental in solving
fractional differential equations in various fields, offering
a computer-friendly approach to studying viscoelasticity,
diffusion, and more. In your research, these tools can
enhance the analysis of complex systems involving
fractional calculus, especially when geometry or intricate
dynamics are paramount.

Fractional derivatives have been used in various fields
including physics, engineering, and economics to model
memory and hereditary properties of various materials
and processes. They can also model anomalous diffusion
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processes, control theory, and viscoelastic materials.
Numerically approximating fractional derivatives can be
more challenging compared to classical derivatives.
Various numerical schemes and software packages are
available to handle fractional derivatives.

Khalil et al. [12,13,14,15,16] propose an alternative
proposal in the form of the conformal fractional
derivative, which demonstrates a notable alignment with
the fundamental properties of derivatives. There has been
a noticeable increase in scientific interest in the solving of
conformable fractional partial differential equations. This
interest derives from the recognition of the conformable
fractional derivative’s adaptable nature, which has opened
up new avenues for investigation [17,18,19,20,21,22,
23].

Fractional calculus, which encompasses fractional
derivatives, is an extension of traditional calculus that
allows for derivatives and integrals of non-integer order. It
has interesting properties and applications, especially in
fields like physics, engineering, and applied mathematics.
The notion of a fractional derivative generalizes the
concept of a derivative to non-integer orders, bridging the
gap between differentiation and integration.

The application of the double Laplace-Sumudu
transform method has emerged as a cutting-edge method
for carrying out double integral transformations and has
shown effective in the context of dealing with linear
partial differential equations [24,25,26,27,28,29].
Similar to the restrictions experienced by other integral
transform techniques, its application to nonlinear
applications has nevertheless offered a substantial
challenge. In order to address this specific problem [30,
31,32,32], academics have worked to combine numerical
techniques like variational iteration, decomposition, and
perturbation methods with transformative paradigms.
These initiatives have created new paths for obtaining
complete solutions [13,14,15,16,17,18,19].

This information will be presented in the following
sections: Section 2 clarifies the core framework by
offering a thorough discussion of key terms and theorems
important to conformable fractional derivatives. Section 3
begins with a full description of the CDLST, which
contains essential definitions, significant traits, and
overarching theorems. In Section 4, the research
combines theory and validation to demonstrate
transformation potential using seven instances,
demonstrating dependability, convergence, and efficiency.
The conclusive findings are described in Section 5.

2 Conformable Fractional Derivative

This section introduces the conformable fractional
derivative as our main concept. The conformable
fractional derivative provides a flexible framework for
fractional differentiation qualities for single and
multivariable functions. This article uses mathematical
correlations to show the practicality of conformable

fractional partial derivatives (CFPDs) in Proposition 1.
This foundational knowledge prepares people to study the
CDLST, a transformative technique that may solve
complex mathematical physics problems.

Definition 1. [4] Let m < ϑ2 ≤ m + 1, m ∈ N, and

ξ : (0,∞) → R, then the ϑ2
th order conformable

fractional derivative of ξ is defined by

Dϑ2
y ξ

(

yϑ2

ϑ2

)

= lim
δ→0

ξ ([ϑ2]−1)
(

yϑ2

ϑ2
+ δy([ϑ2]−ϑ2)

)

− ξ ([ϑ2]−1)
(

yϑ2

ϑ2

)

δ
,

yϑ2

ϑ2

> 0, ϑ2 ∈ (m,m+ 1].

(1)

As a special case, if 0 < ϑ2,≤ 1, then we have:

Dϑ2
y ξ

(

yϑ2

ϑ2

)

= lim
δ→0

ξ
(

yϑ2

ϑ2
+ δy(1−ϑ2)

)

− ξ
(

yϑ2

ϑ2

)

δ
,

yϑ2

ϑ2

> 0, ϑ2 ∈ (0,1].

(2)

Definition 2. [20] The CFPDs of

ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

: R+ × R
+ → R order ϑ1 and ϑ2 of the

function ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

is defined by

Dϑ1
z ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

= lim
δ→0

ξ
(

zϑ1

ϑ1
+ δ z(1−ϑ1),

yϑ2

ϑ2

)

− ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

ρ
,

(3)

Dϑ2
y ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

= lim
δ→0

ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2
+ δy(1−ϑ2)

)

− ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

δ
,

(4)

where zϑ1

ϑ1
,

yϑ2

ϑ2
> 0, 0 < ϑ1,ϑ2 ≤ 1.

The CFPDs of several functions are mentioned in the
following proposition.

Proposition 1. Suppose 0 <ϑ1,ϑ2 ≤ 1, and c1, c2, m1,
m2, γ , and η ∈ R; then

• D
ϑ1
z

(

c1ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

+ c2ψ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

)

= c1

(

D
ϑ1
z ξ

(

zϑ1

ϑ1
,

yϑ2

ϑ2

))

+ c2

(

D
ϑ1
z ψ

(

zϑ1

ϑ1
,

yϑ2

ϑ2

))

.

• D
ϑ2
y

(

e
γ zϑ1

ϑ1
+η yϑ2

ϑ2

)

= ηe
γ zϑ1

ϑ1
+η yϑ2

ϑ2 .
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• D
ϑ1
z

(

e
γ zϑ1

ϑ1
+η yϑ2

ϑ2

)

= γe
γ zϑ1

ϑ1
+η yϑ2

ϑ2 .

• D
ϑ1
z

(

sin
(

zϑ1

ϑ1

)

sin
(

yϑ2

ϑ2

))

= cos
(

zϑ1

ϑ1

)

sin
(

yϑ2

ϑ2

)

.

• D
ϑ2
y

(

sin
(

zϑ1

ϑ1

)

sin
(

yϑ2

ϑ2

))

= sin
(

zϑ1

ϑ1

)

cos
(

yϑ2

ϑ2

)

.

3 Conformable double Laplace - Sumudu

transform

In this section, we analyze the CDLST, a novel and strong
integral transformation technique that underpins our
mathematical study. A synergistic combination of the
conformable Laplace transform (CLT) and conformable
Sumudu transform (CST) is proposed. With appropriate
conditions, this method solves fractional partial
differential and integral equations reliably. Essential
definitions and complicated theorems explain the
approach’s uniqueness and analytical efficacy.

Definition 3. [19] The CLT of real valued ξ : (0,∞)→ R

order ϑ1 is defined as

Lϑ1
z

[

ξ

(

zϑ1

ϑ1

)]

= Ξ(u)

=

∫ ∞

0
e
−u zϑ1

ϑ1 ξ

(

zϑ1

ϑ1

)

zϑ1−1dz,

u ∈ C.

(5)

Definition 4. [19] The CST of real valued ξ : (0,∞)→ R

order ϑ2 is defined as

Sϑ2
y

[

ξ

(

yϑ2

ϑ2

)]

= Ξ(v)

=
1

v

∫ ∞

0
e
−

yϑ2

vϑ2 ξ

(

yϑ2

ϑ2

)

yϑ2−1dy,

v ∈ C.

(6)

Definition 5. [19] The CDLST of a piecewise continuous

ξ : (0,∞)× (0,∞)→ R order ϑ1 and ϑ2 is defined as

Lϑ1
z Sϑ2

y

[

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)]

= Ξ(u,v)

=
1

v

∫ ∞

0

∫ ∞

0
e
−

(

u zϑ1
ϑ1

+ yϑ2

vϑ2

)

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

zϑ1−1yϑ2−1dzdy,

u,v ∈ C, ϑ1,ϑ2 ∈ (0,1].
(7)

The relationship between the usual and the CDLST is
provided in the following theorem.

Theorem 1. [10] Suppose that c1,c2 ∈ R and

0 < ϑ1,ϑ2 ≤ 1, then the followings hold

1. L
ϑ1
z S

ϑ2
y [c1] = LzSy [c1] =

c1
u
, u > 0,

2. Lϑ1
z Sϑ2

y

[

(

zϑ1

ϑ1

)m1
(

yϑ2

ϑ2

)m2
]

= LzSy [(z)
m1 ((y)m2)]

=
(m1!)(m2!)vm2

um1+1
, m1,m2 ∈ Z

+
,

3. Lϑ1
z Sϑ2

y

[

e
c1

zϑ1
ϑ1

+c2
yϑ2

ϑ2

]

= LzSy

[

ec1z+c2y
]

=
1

(u− c1)(1− c2v)
,

4. Lϑ1
z Sϑ2

y

[

sin

(

c1
zϑ1

ϑ1

)

sin

(

c2
yϑ2

ϑ2

)]

=LzSy [sin(c1z)sin(c2z)] =
c

(υ2 + c2)

dω

1+ d2ω2
,

5. Lϑ1
z Sϑ2

y

[

e
c1

zϑ1
ϑ1

+c2
yϑ2

ϑ2 ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

]

=
1

1− c2v
Ξ

(

u− c1,
v

1− c2v

)

.

Theorem 2. [10] Suppose that ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

is a function

of exponential order a and b defined on the interval (0,Z)

and (0,Y ), then CDLST of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

well-defined for all

u and 1
v

provided that Re[u]> a and Re
[

1
v

]

> b.

Theorem 3. [19]. Let L
ϑ1
z S

ϑ2
y

[

ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)]

= Ξ(u,v),

where 0 < ϑ1,ϑ2 ≤ 1. Then the CDLST of the

conformable partial derivatives of order ϑ1 and ϑ2 is

given by

Lϑ1
z Sϑ2

y

[

∂ ϑ1 ξ

∂ zϑ1

]

= uΞ(u,v)−Ξ(0,v) , (8)

Lϑ1
z Sϑ2

y

[

∂ ϑ2 ξ

∂yϑ2

]

= v−1Ξ(u,v)− v−1Ξ(u,0) , (9)

Lϑ1
z Sϑ2

y

[

∂ 2ϑ1ξ

∂ z2ϑ1

]

= u2Ξ(u,v)− uΞ(0,v)

−Ξz (0,v) , (10)

Lϑ1
z Sϑ2

y

[

∂ 2ϑ2ξ

∂y2ϑ2

]

= v−2Ξ(u,v)− v−2Ξ(u,0)

− v−1Ξy (u,0) . (11)

They can be generalized as

Lϑ1
z Sϑ2

y

[

∂ mϑ1ξ

∂ zmϑ1

]

= umΞ(u,v)

−

m−1

∑
k=0

um−1−kSϑ2
y

[

∂ kϑ1

∂ zkϑ1

(

ξ

(

0,
yϑ2

ϑ2

))]

, (12)

Lϑ1
z Sϑ2

y

[

∂ nϑ2ξ

∂ynϑ2

]

= v−nΞ(u,v)

−

n−1

∑
j=0

v−n+ jLϑ1
z

[

∂ jϑ2

∂ z jϑ2

(

ξ

(

zϑ1

ϑ1
,0

))]

. (13)
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Theorem 4. [21] (CDL-CDLS duality) If the CDLST of

ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

exist, then

Lϑ1
z Sϑ2

y

[

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

: (u,v)

]

=
1

v
Lϑ1

z Lϑ2
y

[

ξ

(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

:

(

u,
1

v

)]

,

(14)

where

Lϑ1
u Lϑ2

v

[

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

: (u,v)

]

= Ξ(u,v)

=

∫ ∞

0

∫ ∞

0
e
−u zϑ1

ϑ1
−v

yϑ2

ϑ2 ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

dϑ1
zdϑ2

y.

Theorem 5. (Convolution Theorem) Assume that

ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

and ϕ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

are two functions with the

CDLST, then,

Lϑ1
z Sϑ2

y

[

(ξ ∗ ∗ϕ)

(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

: (u,v)

]

= vΞ(u,v)Ψ(u,v) .

(15)

Proof. Using Theorems 4 and 2.2 in [22], we obtain,

Lϑ1
z Sϑ2

y

[

(ξ ∗ ∗ϕ)

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

: (u,v)

]

=
1

v
Lϑ1

z Lϑ2
y

[

(ξ ∗ ∗ϕ)

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

:

(

u,
1

v

)]

=
1

v
Lϑ1

z Lϑ2
y

[

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

:

(

u,
1

v

)]

Lϑ1
z Lϑ2

y

[

ϕ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

:

(

u,
1

v

)]

= vLϑ1
z Sϑ2

y

[

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

: (u,v)

]

Lϑ1
z Sϑ2

y

[

ϕ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

: (u,v)

]

= vΞ(u,v)Ψ(u,v) .

4 Applications of CDLST to Partial and

Integral Differential Equations

This section provides a variety of examples that
demonstrate the application of the CDLST method in
solving linear conformable fractional partial and integral
differential equations. Every example is accompanied
with its corresponding equation, initial and boundary
conditions, steps for solving, and the resulting solution.
The evaluation of the CDLST approach’s accuracy
involves a comparison between the solutions obtained
using this method and well-established analytical
solutions. In addition, the CDLST approach utilizes
visual representations in the form of figures to illustrate
the approximate answers obtained.

Example 1. Consider the linear Euler -Bernoulli equation
of CFPD

∂ 2ϑ2ξ

∂y2ϑ2
+

∂ 4ϑ1ξ

∂ z4ϑ1
=

(

zϑ1

ϑ1

)(

yϑ2

ϑ2

)

+

(

yϑ2

ϑ2

)2

,

ϑ1,ϑ2 ∈ (0,1],

(16)

subject to the initial conditions (ICs) and the boundary
conditions (BCs),

ξ

(

zϑ1

ϑ1

,0

)

= 0,

ξy

(

zϑ1

ϑ1

,0

)

=
1

120

(

zϑ1

ϑ1

)5

,

ξ

(

0,
yϑ2

ϑ2

)

=
1

12

(

yϑ2

ϑ2

)4

,

∂ kϑ1

∂ zkϑ1
ξ

(

0,
yϑ2

ϑ2

)

= 0, k = 1,2,3.

(17)

Solution. Employing the CDLST on Eq. (16) and single
conformable Laplace transform (CLT) and conformable
Sumudu transform (CST) on Eq. (17), we get

v−2Ξ(u,v)− v−2Ξ(u,0)− v−1Ξy (u,0)+ u4Ξ(u,v)

− u3Ξ(0,v)− u2Ξz (0,v)− uΞzz (0,v)

−Ξzzz (0,v) =
v

u2
+

2v2

u
,

(18)

substituting

Ξ(u,0) = 0,

Ξy (u,0) =
1

u6
,

Ξ(0,v) = 2v4
,

Ξz (0,v) = Ξzz (0,v) = Ξzzz (0,v) = 0.

in Eq. (18), we get

(

v−2 + u4
)

Ξ(u,v) =
v

u2
+

2v2

u
+

v−1

u6
+ 2u3v4

.

Simplifying

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

2v4

u
+

v

u6

]

=
1

12

(

yϑ2

ϑ2

)4

+
1

5!

(

yϑ2

ϑ2

)(

zϑ1

ϑ1

)5

,

(19)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) =
2y4

4!
+

yz5

5!
, (20)

c© 2024 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 18, No. 1, 13-22 (2024) / www.naturalspublishing.com/Journals.asp 17

which is consistent with the solution found in [23].

In the following figure, Figure 1 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (19) at

ϑ1 = ϑ2 = 1.

Fig. 1: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (19) at

ϑ1 = ϑ2 = 1.

Example 2. Consider the Klein-Gordon equation of CFPD

∂ 2ϑ2ξ

∂y2ϑ2
−

∂ 2ϑ1ξ

∂ z2ϑ1
− 2ξ =−2sin

(

zϑ1

ϑ1

)

sin

(

yϑ2

ϑ2

)

,

ϑ1,ϑ2 ∈ (0,1],

(21)

subject to the ICs and the boundary conditions BCs,

ξ

(

zϑ1

ϑ1
,0

)

= 0,

ξy

(

zϑ1

ϑ1

,0

)

= sin

(

zϑ1

ϑ1

)

,

ξ

(

0,
yϑ2

ϑ2

)

= 0,

ξz

(

0,
yϑ2

ϑ2

)

= sin

(

yϑ2

ϑ2

)

.

(22)

Solution. As described previously in Example 1, the
answer to problem (21) can be expressed as

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1

[

1

(v−2 − u2 − 2)

(

v−1

1+ u2
−

v

1+ u2
−

2v

(1+ u2) (1+ v2)

)

]

.

(23)

Simplifying

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

v

(1+ u2) (1+ v2)

]

= sin

(

yϑ2

ϑ2

)

sin

(

zϑ1

ϑ1

)

,

(24)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = sin (y)sin(z), (25)

which is consistent with the solution found in [23].
In the following figure, Figure 2 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (24) at

ϑ1 = ϑ2 = 1.

Fig. 2: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (24) at

ϑ1 = ϑ2 = 1.

Example 3. Consider the advection - diffusion problem of
CFPD

∂ ϑ2ξ

∂yϑ2
=

∂ 2ϑ1ξ

∂ z2ϑ1
−

∂ ϑ1ξ

∂ zϑ1
, ϑ1,ϑ2 ∈ (0,1], (26)

subject to the ICs and the boundary conditions BCs,

ξ

(

zϑ1

ϑ1

,0

)

= e
zϑ1
ϑ1 −

zϑ1

ϑ1

,

ξ

(

0,
yϑ2

ϑ2

)

=
yϑ2

ϑ2

+ 1,

ξz

(

0,
yϑ2

ϑ2

)

= 0.

(27)

Solution. Employing the CDLST on Eq. (26) and single
CLT and CST on Eq. (27), we get

v−1Ξ(u,v)− v−1Ξ(u,0) = u2Ξ(u,v)− uΞ(0,v)

−Ξz (0,v)− (uΞ(u,v)−Ξ(0,v)) .
(28)
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Substituting

Ξ(u,0) =
1

u− 1
−

1

u2
,

Ξ(0,v) = v+ 1,Ξz (0,v) = 0,

in Eq. (28), we get

(

v−1
− u2

− u
)

Ξ(u,v) = v−1

(

1

u− 1
−

1

u2

)

− u(v+ 1).

(29)
Simplifying

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

1

u− 1
−

1

u2
+

v

u

]

= e
zϑ1
ϑ1 −

zϑ1

ϑ1

+
yϑ2

ϑ2

,

(30)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = ez
− z+ y, (31)

which is consistent with the solution found in [24].

In the following figure, Figure 3 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (30) at

ϑ1 = ϑ2 = 1.

Fig. 3: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (30) at

ϑ1 = ϑ2 = 1.

Example 4. Consider the telegraph Equation of CFPD

∂ 2ϑ1ξ

∂ z2ϑ1
−

∂ 2ϑ2ξ

∂y2ϑ2
−

∂ ϑ2 ξ

∂yϑ2
− ξ = 1−

(

zϑ1

ϑ1

)2

−
yϑ2

ϑ2

,

ϑ1,ϑ2 ∈ (0,1],
(32)

subject to the ICs and the boundary conditions BCs,

ξ

(

zϑ1

ϑ1

,0

)

=

(

zϑ1

ϑ1

)2

,

ξy

(

zϑ1

ϑ1

,0

)

= 1,

ξ

(

0,
yϑ2

ϑ2

)

=
yϑ2

ϑ2

,

ξz

(

0,
yϑ2

ϑ2

)

= 0.

(33)

Solution. As described previously in the Example 3, the
answer to problem (32) can be expressed as

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1

[

1

(u2 − v−2 − v−1 − 1)

(

1

u
−

2

u3
− v+

v

1+ v2
−

v−1

1+ u2

)

]

.

(34)

Simplifying

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

2

u3
+

v

u

]

=

(

zϑ1

ϑ1

)2

+
yϑ2

ϑ2

,

(35)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = z2 + y, (36)

which is consistent with the solution found in [25].
In the following figure, Figure 4 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (35) at

ϑ1 = ϑ2 = 1.

Fig. 4: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (35) at

ϑ1 = ϑ2 = 1.
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Example 5. Consider the following Volterra – Integral
Equation of conformable fractional derivative

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

= a−λ

∫ z

0

∫ y

0
ξ

(

(z−η)ϑ1

ϑ1

,
(y− γ)ϑ2

ϑ2

)

dηdγ,

ϑ1,ϑ2 ∈ (0,1],
(37)

Solution. Applying the CDLST on Eq. (37) and using
Theorem 5, we get

Ξ(u,v) =
a

u
−

λ v

u
Ξ(u,v) . (38)

Consequently,

Ξ(u,v) =
a

u+λ v
. (39)

Taking
(

L
ϑ1
z

)−1(

S
ϑ2
y

)−1

for Eq. (39), we obtain the

solution ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

of Eq. (37).

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

a

u+λ v

]

= aJ0



2

√

λ
zϑ1

ϑ1

yϑ2

ϑ2



 ,

(40)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = a J0

(

2
√

λ yz

)

, (41)

which is consistent with the solution found in [11].
In the following figure, Figure 5 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (40) at

ϑ1 = ϑ2 = 1 and λ = 1.

Fig. 5: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (40) at

ϑ1 = ϑ2 = 1 for a = 1, and λ = 1.

Example 6. Consider the following Volterra Integro –
Partial Differential Equation of conformable fractional
derivative

∂ ϑ1 ξ

∂ zϑ1
+

∂ ϑ2ξ

∂yϑ2
=−1+ e

zϑ1
ϑ1 + e

yϑ2

ϑ2 + e
zϑ1
ϑ1

+ yϑ2

ϑ2

+

∫ z

0

∫ y

0
ξ

(

(z−η)ϑ1

ϑ1

,
(y− γ)ϑ2

ϑ2

)

dηdγ,

zϑ1

ϑ1

,
yϑ2

ϑ2

> 0, ϑ1,ϑ2 ∈ (0,1],

(42)

with conditions

ξ

(

zϑ1

ϑ1

,0

)

= e
zϑ1
ϑ1 ,

ξ

(

0,
yϑ2

ϑ2

)

= e
yϑ2

ϑ2 .

(43)

Solution. Operating the CDLST on Eq. (42), and single
CLT, and CST, on Eq. (43), and simplifying we get,

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

1

(u− 1)(1− v)

]

= e
zϑ1
ϑ1

+ yϑ2

ϑ2 ,

(44)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = ez+y
, (45)

which is consistent with the solution found in [11].

In the following figure, Figure 6 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (44) at

ϑ1 = ϑ2 = 1.

Fig. 6: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (44) at

ϑ1 = ϑ2 = 1.
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Example 7. Consider the following Integro – Partial
Differential Equation of conformable fractional derivative

∂ 2ϑ2ξ

∂y2ϑ2
−

∂ 2ϑ1ξ

∂ z2ϑ1
+ ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

+

∫ z

0

∫ y

0
e
(z−η)ϑ1

ϑ1
+

(y−γ)ϑ2

ϑ2 ξ (η ,γ)dηdγ

= e
zϑ1
ϑ1

+ yϑ2

ϑ2 +

(

zϑ1

ϑ1

)(

yϑ2

ϑ2

)

e
zϑ1
ϑ1

+ yϑ2

ϑ2 ,

zϑ1

ϑ1

,
yϑ2

ϑ2

> 0, ϑ1,ϑ2 ∈ (0,1],

(46)

with conditions

ξ

(

zϑ1

ϑ1

,0

)

= e
zϑ1
ϑ1 ,

ξy

(

zϑ1

ϑ1

,0

)

= e
zϑ1
ϑ1 ,

ξ

(

0,
yϑ2

ϑ2

)

= e
yϑ2

ϑ2 ,

ξz

(

0,
yϑ2

ϑ2

)

= e
yϑ2

ϑ2 .

(47)

Solution. Operating the CDLST on Eq. (46), and single
CLT, and CST, on Eq. (47), and simplifying we get,

ξ

(

zϑ1

ϑ1

,
yϑ2

ϑ2

)

=
(

Lϑ1
z

)−1(

Sϑ2
y

)−1
[

1

(u− 1)(1− v)

]

= e
zϑ1
ϑ1

+ yϑ2

ϑ2 ,

(48)

the exact solution if ϑ1 = ϑ2 = 1 is

ξ (z,y) = ez+y
, (49)

which is consistent with the solution found in [11].

In the following figure, Figure 7 we sketch the

approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (48) at

ϑ1 = 0.9, and ϑ2 = 0.7.

Fig. 7: The approximate solution of ξ
(

zϑ1

ϑ1
,

yϑ2

ϑ2

)

for Eq. (48) at

ϑ1 = 0.9, and ϑ2 = 0.7.

5 Conclusion

In this research, we used the conformable double
Laplace-Sumudu transform (CDLST) to solve a wide
class of linear partial and integral differential equations
involving conformable fractional derivatives from various
real-life sciences. Based on the results, the suggested
technique is efficient, appropriate, reliable, and sufficient
to solve linear partial and integral differential equations
with beginning and boundary conditions. Compared to
other approaches, CDLST computations are small [11,23,
24,25]. Thus, these methods work for many linear
fractional partial differential equation systems. Future
applications of the CDLST approach include solving
increasingly complex differential equations utilizing
conformable fractional derivatives. Its efficiency and
versatility make it ideal for complex scientific challenges.
Integrating additional methods may improve its
capabilities, possibly extending to nonlinear problems.
Collaboration may lead to specialized solutions and wider
adoption, advancing science and problem-solving in
various disciplines. Based on our study, we conclude that
the Laplace Sumudu transform is efficient for solving
conformable fractional problems, whenever it can be
applied. Thus, unfortunately the method for solving
integral equations can be hold only if it is of convolution
type.

In the future, we intend to solve models of fractional
differential equations and system of fractional integro
differential equations in the conformable sense.
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