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Abstract: This article offers a condensed analysis of a fractional SEIR model used to track and forecast influenza spread. In addition,

the seasonal evolution of influenza epidemics is predicted using the ARIMA model. The Atangana-Baleanu-Caputo (ABC) fractional

derivative operator, which offers a more precise explanation of influenza dynamics than conventional integer operators, is the subject of

the study. The study shows that the fractional order model outperforms the ARIMA model and agrees with actual data. The results

emphasize the significance of using fractional models to health risk management and creating numerical methods with accurate

parameter values. Graphical illustrations of several fractional orders are included in the article. Graphical illustrations of various

fractional order and fractal dimension levels are included in the article. These findings have significance for creating pandemic

mathematical models that are more accurate and devising realistic influenza control methods.
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1 Introduction

During flu season, the highly contagious virus influenza,
which spreads quickly through human contact, poses a
serious threat to the public’s health. This respiratory
condition, which has symptoms ranging from mild to
severe, affects people of all ages. While certain influenza
strains can spread from humans to animals and vice versa,
others are only contagious between people. The annual
winter influenza epidemic is caused by influenza A and B,
and the disease burden is also influenced by influenza C
and D viruses [1,2,3,4]. It’s crucial to comprehend the
mechanics of the illness and create efficient management
plans if you want to effectively stop and manage influenza
epidemics. These objectives can be accomplished in large
part by using mathematical modeling techniques, which
also help researchers assess and forecast disease
outbreaks.
Significant study has been put into mathematical
modeling of the flu in recent years to help us better

understand how it spreads and to enable effective
preventative measures. In specifically, Abdoon et al. [5]
created the fractional-order ABC derivation operator
model, which enables the investigation of disease-free
equilibrium stability, the study of endemic equilibrium
points, and the examination of solutions that are positive
for the influenza virus. Through numerical comparisons,
this model based on fractions has produced promising
results. Sabir et al. completed a big contribution as well.
In 2023, [6] used stochastic neural networks to present
the Mathematical Influenza Disease Model (MIDM).
With lower mean square error values during training,
validation, and testing than integer-order models, the
MIDM subcategory demonstrated enhanced accuracy.
The possibility for a revolution due to these
improvements in modeling methodologies. These
advances in modeling techniques have the potential to
revolutionize the field of influenza research.
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The use of numerous mathematical models has allowed
for a thorough study of influenza virus propagation
patterns. This research is essential because it enables us to
comprehend the course of an influenza pandemic and
create efficient defense and management measures. We
can greatly influence public health outcomes by
establishing early surveillance and prompt warnings of
influenza epidemics [7,8,9,10,11]. Several techniques
exist right now for forecasting the onset of infectious
disease outbreaks. The neural network prediction model
[12,13,14], the SEIR model [2,15,16], and ARIMA [17,
18,19] are notable examples, each with unique benefits
and drawbacks. The best model must be chosen in order
to increase prediction accuracy, which necessitates a
thorough study of the particular disease and the data that
are available. The vast majority of current research on
modeling influenza is centered on traditional
mathematical models that do not take into consideration
memory effects, which are crucial to many biological
processes.
Recent research, however, has demonstrated that
non-local operators are more effective at capturing
memory features than conventional local differential and
integral operators [20,21,22,23,24,25,26,27,28]. Our
study intends to construct a unique mathematical model
that uses the operator-based derivation of the
fractional-order ABC operator in order to overcome this
restriction and enhance the realism of influenza modeling.
We anticipate that our model will offer a more thorough
understanding of influenza transmission dynamics by
taking memory effects into account through fractional
leads [19,29,30].
We contrast the outcomes of our suggested fractional
model with those of the ARIMA model, a popular
strategy in epidemic modeling, to see how effective it is.
Through this comparison, we can assess the fractional
model’s benefits for capturing memory-related
phenomena and its potential to surpass established
techniques for predicting and controlling influenza
outbreaks [31,32,33,34].
Our investigation’s major goal is to increase the
understanding of the flu pandemic through the creation
and evaluation of fractional SEIR and ARIMA models
[35,36]. Our goal is to produce precise and dependable
predictions of influenza dynamics in Saudi Arabia by
meticulous parameter estimate and careful consideration
of population infectivity levels.
It is crucial to remember that conventional models that
disregard memory effects might not adequately capture
the intricacy of actual epidemics. In order to ensure that
our results are consistent with the actual epidemiological
situation and to increase the practical relevance and
applicability of our results, we incorporate non-local
operators and validate our models’ using data from
reliable sources, such as the World Health Organization
and medical literature [37,38].
The key findings of our study will provide insight into the
improvements in influenza modeling made possible by

the application of fractional SEIR and ARIMA models.
We seek to provide useful insights into the dynamics of
influenza transmission and the possible advantages of
adopting these novel modeling tools by completely
presenting the results and giving detailed analysis.
Our research has the potential to considerably contribute
to the development of more efficient influenza
surveillance, outbreak prediction, and response tactics by
fusing cutting-edge mathematical modeling methods with
actual data and thorough analysis. The findings of this
study may not only have positive effects on Saudi
Arabia’s public health, but they may also have wider
ramifications for the investigation of other infectious
diseases and intricate biological systems. This
interdisciplinary approach brings up fresh research
opportunities and creative modeling strategies, improving
epidemic preparedness and response globally.
This document is divided into the following sections:
Section 2 presents the materials and methods used in our
study; Section 3 performs a thorough analysis of the
proposed model; Section 4 presents the application of the
ARIMA model; Section 5 presents numerical simulations
for validating our models; Section 6 presents influenza
predictions derived from the ARIMA model; Section 7
assesses the performance of both models; and Section 8
discusses the findings.

2 Materials and Methods

We give the background material required for our study in
the following section.

2.1 Atangana-Baleanu derivatives

We define the innovative fractional derivatives developed
by Atangana and Baleanu [39,40] in this subsection.

Definition 1.[39] As a function f (t), the

Atangana-Baleanu fractional integral with nonlocal

kernel is defined as

AB
a Iα

t [ f (t)]

=
1−α

B(α)
f (t)+

α

B(α)Γ (α)

∫ t

a
f ( j)(t − j)α−1d j,

(1)

where Γ (α)is the Gama function and (B(α) = 1−α +
α

Γ (α)
.

Note that when α = 0, the initial function is recovered, and
α = 1 gives the ordinary integral.

Definition 2.Let f ∈ H1(a,b), b > a, and H1 the space of

the square-integrable functions such that

H1 (a,b) =
{

ψ (s) ∈ L2 (a,b) |ψ ′ (s) ∈ L2 (a,b)
}

. (2)
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Then, the Atangana-Baleanu fractional derivative in the

Riemann-Liouville sense [39] for f (t) is given by

ABR
a Dα

t ( f (t)) =
B(α)

1−α

d

dt

∫ t

a
f (x)Ea

[

−α
(t − x)α

1−α

]

dx,

(3)
and the Atangana-Baleanu fractional derivative in the

Caputo sense [41]for f (t) is given by

ABC
a Dα

t ( f (t)) =
B(α)

1−α

∫ t

a
f
′
(x)Eα

[

−α
(t − x)α

1−α

]

dx,

(4)
where α ∈ [0,1], B(α) = 1 − α + α

Γ (α) and Eα is the

Mittag-Leffler function.

According to the argument, B(α) has the same
characteristics as in the Caputo and Fabrizio situations.
These definitions have practical applications and are
advantageous when applying the Laplace transform to
resolve specific physical issues.

Definition 3.A continuous function’s Laplace transform is

given by

L [ f (t)] = F (s) =

∫ ∞

0
e−st f (t)dt,Re(s)> 0.

The Laplace transform of the Atangana-Baleanu
fractional derivative in the sense of Riemann-Liouville (3)
and Caputo (4) respectively, are given by [41]

1.

L
[

ABR
0 Dα

t ( f (t))
]

=
B(α)

1−α

sα F (s)

sα + α
1−α

, (5)

2.

L
[

ABC
0 Dα

t ( f (t))
]

=
B(α)

1−α

F (s) sα − sα−1 f (0)

sα + α
1−α

. (6)

2.2 The fractional model

The SIR model, first presented by [42], quantifies the
spread of an outbreak. The SEIR model was created by
incorporating an exposed (E) compartment into the SIR
model in order to account for the disease’s latent period
[43]. This model has been used by researchers like Zhilan
Feng [44] and Rafiqul Islam et al. [11] to examine
influenza epidemics in Bangladesh and assess various
management approaches, respectively.
The SEIR model is a commonly used segmented
epidemiological model for characterizing epidemic
disease outbreaks. It considers the susceptible population
and the dynamics of disease transmission. During the
incubation period, individuals may be infected but not
display symptoms. Additionally, the SEIR model can be
modified to include a compartment solely for individuals
who are sick but not actively transmitting the virus [45,
46].

In the SEIR model, individuals in the susceptible (S)
compartment transition to the exposed (E) compartment
through effective contact transmission from infected
individuals (I) at a rate of α2. Other model parameters
include the infection rate (α3) and the recovery rate (α4).
Assuming a constant population size, we obtain the
population-scaled SEIR classical model [10,47,48]
described by the following equations:

dS (t)

dt
=−

α2

N
I (t)S (t)+α0N −α1S (t) ,

dS (t)

dt
=−

α2

N
I (t)S (t)+α0N −α1S (t) ,

dE (t)

dt
=−(α1 +α3)E (t)+

α2

N
I (t)S (t) ,

dI (t)

dt
=−(α1 +α4) I (t)+α3E (t) ,

dR(t)

dt
=−α1R(t)+α4I (t) .

(7)

These equations capture the dynamics of susceptible (S),
exposed (E), infected (I), and recovered (R) individuals in
the population.
The Atangana-Baleanu-Caputo fractional order
derivatives provide more realistic solutions for the
fractional-order mathematical influenza disease model, as
fractional derivatives inherently involve memory. By
replacing the time derivatives in the SEIR model (1) with
ABC operators, more accurate results can be obtained.
Thus, the fractional nonlinear system SEIR model in the
sense of ABC derivative is given by

DABCS (t) =−
α2

N
I (t)S (t)+α0N −α1S (t) ,

DABCE (t) =−(α1 +α3)E (t)+
α2

N
I (t)S (t) ,

DABCI (t) =−(α1 +α4) I (t)+α3E (t) ,

DABCR(t) =−α1R(t)+α4I (t) .

(8)

The entire population is divided into four distinct
categories under the fractional epidemiological model:
vulnerable, incubating, infected, and recovering.
Additionally, it is presumptive that people leave the
system at the natural death rate and that the population is
exposed at the natural birth rate. The pace of transfers
fluctuates because the virus spreads efficiently across
people. While preserving a fixed population size, the
model also takes into account the rates of infection,
infection of latent people, and recovery [39]. The
fractional-order mathematical influenza disease model is
solved using a novel mathematical model for influenza in
which the normal derivative operator is swapped out for
the Atangana-Baleanu-Caputo (ABC) fractional-order
derivative operator.
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2.3 Estimation of Parameter Values

We use numerical techniques to incorporate real influenza
infection data into the system (8) in order to accurately
anticipate the spread of the disease. We use the method
outlined in [18,49,50,51] to estimate the parameters and
numerically solve the system. Table 1 contains the
estimated and modified parameter values. Notably, the
key threshold value, the fundamental reproduction
number, is expected to be around 0.17.
For the initial conditions, we initialize the system as
follows: N = 48,000,000, S (0) = 47,999,990, E (0) = 3,
I (0) = 7, and R(0) = 0.
To estimate the values of α0,α1,α2,α3 and α4, we utilize
a fitting procedure that employs a non-linear least squares
algorithm. The resulting parameter values obtained from
the fitting procedure are presented in Table 1.
The values of α0,α1,α2,α3, and α4 are estimated using a
fitting technique that makes use of the non-linear least
squares algorithm. The final parameter values determined
through the fitting process are listed in Table 1.

Table 1: Parameter values

Variable Description Value Source

α0 Natural birth rate 0.001 Fitted

α1 The natural death rate 0.001 Fitted

α2 The transmission rate 0.98 Fitted

α3 The incubation rate 0.78 Fitted

α4 Recovery rate 0.62 Fitted

3 Analysis of the Model

In this section, the stability and equilibrium points of the
fractional order model (8) presented in the work are
discussed. Two different types of equilibrium points are
studied: endemic equilibrium (EE) and disease-free
equilibrium (DFE). The EE point is derived by solving
the system of equations and assuming a non-zero infected
individual, while the DFE point is obtained by assuming
there are no infected individuals. The dynamics of the
disease are illustrated by the equations for S,E, I and R at
the EE point. The fundamental reproduction number R0,
which serves as a stability indicator, is derived from the
equilibrium points. A sensitivity study that assesses how
model parameters affect R0 is also provided.

3.1 The Equilibrium Points of the Model

To analyze the fractional-order model (8) and understand
its equilibrium points, we distinguish between two main
categories: the DFE and EE.
For the DFE point, we assume I = 0 and set the right-hand

side of all equations in system (8) to 0. Thus, the DFE
point of the system is given by

Tde f = (N,0,0,0) . (9)

On the other hand, if one considers I 6= 0, the (EE) solution
satisfies the following conditions

α2

N
IS+α0N −α1S (t) = 0, (10)

−(α1 +α3)E +
α2

N
IS = 0, (11)

−(α1 +α4) I+α3E = 0, (12)

−α1R+α4I = 0. (13)

From equation (12), we can express E as

E =
α1 +α4

α3

I. (14)

Substituting (14) into [52] and dividing by I, we obtain an
expression for S

S =
N (α1 +α3)(α1 +α4)

α2α3

. (15)

Substituting in [5] and setting α0 = α1, we can solve for I

I =
α1N (α1α3 − (α1 +α3) (α1 +α4))

α2 (α1 +α3) (α1 +α4)
. (16)

From (14), an expression for E is obtained as

E =
α1N (α1α3 − (α1 +α3)(α1 +α4))

α2α3 (α1α3)
. (17)

Finally, using (13) and (16), we can express R as

R =
α4N [α1α3 − (α1 +α3)(α1 +α4)]

α2 (α1 +α3)(α1 +α4)
. (18)

Based on the above discussion, the EE point can be
represented as follows

TEE = (S0,E0, I0,R0) , (19)

where

S0 =
N (α1 +α3)(α1 +α4)

α2α3

,

E0 =
α1N (α1α3 − (α1 +α3) (α1 +α4))

α2α3 (α1α3)
,

I0 =
α1N (α1α3 − (α1 +α3) (α1 +α4))

α2 (α1 +α3)(α1 +α4)
,

R0 =
α4N (α1α3 − (α1 +α3) (α1 +α4))

α2 (α1 +α3)(α1 +α4)
.

(20)

The equilibrium points of the fractional-order model (8)
are crucial for various stability conclusions related to the
fundamental reproductive number R0, which will be
discussed in the next subsection.
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3.2 The basic reproduction numbers

The computation of basic reproduction numbers plays a
crucial role in understanding the dynamics of infectious
diseases. In the context of Equation (8), it is evident that
the classes I(t) and E(t) are the ones primarily affected.
To analyze the system holistically, we can represent the
fractional-order differential operator as

Dα
∅(t) = F (∅(t))−V (∅(t)) . (21)

Considering the combined class ∅ = [E.I], we define the
vectors f and v as follows:

f =

[

α2SI
N

0

]

,v =

[

(α1 +α3)E (t)

(α1 +α4) I (t)+α3E (t)

]

. (22)

The Jacobian matrices F and V are obtained by
differentiating f and v with respect to ∅, respectively:

F =

[

0
α2S
N

0 0

]

,V =

[

α1 +α3 0

α3 α1 +α4

]

. (23)

To calculate the basic reproduction number, we need the
inverse of matrix V :

V−1 =

[

1
α1+α3

0
α3

(α1+α3)(α1+α4)
1

α1+α4

]

. (24)

The product of matrices F and V−1, denoted as FV−1,
provides us with the expression for the basic reproduction
number R0:

FV−1 = α1

[

α0α2α3

(α1+α3)(α1+α4)
α0α2

α1(α1+α4)

0 0

]

. (25)

Hence, the basic reproduction number R0 is given by the
spectral radius of FV−1, which can be computed as
follows:

R0 = ρ
(

FV−1
)

=
α0α2α3

α1(α1 +α3)(α1 +α4)
. (26)

For determining the disease’s potential for epidemic
spread, it is essential to comprehend the value of R0. If R0

is less than 1, it means that there won’t likely be a
significant outbreak of the illness. On the other hand, if
R0 is higher than 1, it may indicate that the disease has a
high chance of populating a large area.
It is important to remember that the calculation of R0 in
Equation (26) relies on the precise parameter values
shown in Table 1.
According to Section 2.3, a fitting approach was used to
estimate these values. Sensitivity analysis is another
method that may be used to assess how each parameter
affects the value of R0.
This analysis provides insights into which parameters
have a more significant influence on the disease’s
reproductive potential.

3.3 Local Stability of Disease-Free Equilibrium

In this subsection, we analyze the stability properties of the
system around the disease-free equilibrium to determine
whether it is stable or unstable.

Theorem 1.The system described by Equation (8)
exhibits local stability at the disease-free equilibrium

point, denoted as Edef, if the basic reproduction number

R0 < 1 is less than 1. Conversely, it is unstable if R0 is

greater than 1.

Proof: To begin, we compute the Jacobian matrix for the
system given by Equation (8):

J =











−α2
N

I−α1 0
−α2S

N
0

α2I
N

−(α1 +α3)
α2S
N

0

0 α3 −(α1 +α4) 0

0 0 α4 −α1











. (27)

At the disease-free equilibrium point Edef, the Jacobian
matrix simplifies to:

J(Edef) =













−α1 0
−α2α0

α1
0

0 −(α1 +α3)
α2α0

α1
0

0 α3 −(α1 +α4) 0

0 0 α4 −α1













. (28)

By analyzing the eigenvalues, we have

λ1 =−α1,

λ2 =−α1,

λ3 =
−
(

2α2
1 +α1α3 +α1α4

)

−K

2α1

,

λ4 =
−
(

2α2
1 +α1α3 +α1α4

)

+K

2α1

,

(29)

where

k =
√

4α0α1α2α3 +α2
1 α2

3 − 2α2
1 α3α4 +α2

1 α2
4 . (30)

If 2α2
1 + α1α3 + α1α4 > k, and λ3 < 0, then R0 < 1.

When R0 < 1, it fulfills this requirement, proving that the
system in Equation (8) is locally asymptotically stable.
Contrarily, if 2α2

1 +α1α3 +α1α4 > k, then λ3 > 0, and
we draw the conclusion that R0 > 1. For R0 > 1, the
system given by Equation (8) is hence unstable.
Note that the stability analysis in Theorem 1 offers vital
insights into how the system behaves close to the
disease-free equilibrium. However, the analysis makes
some assumptions about parameter values, which are
detailed in Section 2.3. To determine how particular
factors affect the stability of the system, sensitivity
analysis should be carried out.
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3.4 Sensitivity Analysis

To determine the effect of various parameters on the
fundamental reproduction number, R0, we conduct a
sensitivity analysis in this subsection.
The sensitivity analysis offers useful insights into how
changes in a parameter can affect the system dynamics.

Definition 4.[47] The basic reproduction number, R0, is

sensitive to a particular parameter, k, as measured by the

normalized sensitivity index, abbreviated as CR
K . In order

to compute it, use the equation:

C
R0
k =

∂R0

∂k
×

k

R0

.

By applying the formulation given in Equation (13) and
utilizing the parameter values from Table 1, we can
compute the sensitivity indices for each parameter in R0.
The resulting sensitivity indices are presented in Table 2,
highlighting the sensitivity of each parameter.

Table 2: Fitted parameter values for influenza cases and their

corresponding sensitivity indices.

Variable Value Sensitivity Index

α0 0.001 1

α1 0.009 -1.0284489

α2 0.98 +0.99999

α3 0.78 +0.0126399

α4 0.62 -0.9841909

The sensitivity indices provide insights into the
relationship between parameter variations and the
resulting changes in R0. Positive sensitivity indices for
parameters α0,α2 and α3 indicate that increasing or
decreasing these parameters while holding the others
constant will result in a corresponding increase or
decrease in R0. This suggests that an increase of R0 is
detrimental to the population. Conversely, negative
sensitivity indices for parameters α1 and α4 suggest that
altering the values of these parameters in either direction,
while keeping the others constant, will lead to changes in
R0 in the opposite direction.

It is important to consider the sensitivity analysis results
when making decisions or implementing interventions
related to the control and prevention of influenza
outbreaks. By understanding the influence of individual
parameters on R0, policymakers and public health
officials can prioritize interventions targeting the most
sensitive parameters, thereby maximizing the
effectiveness of disease control measures.

4 Autoregressive integrated moving average

(ARIMA)

The ARIMA model is a well-established linear model
widely used for time series forecasting. Despite its
long-standing presence, ARIMA has been creatively
employed in forecasting tasks. In this research, ARIMA
was utilized with the aid of Rprogramming. ARIMA
processes offer a significant advantage in simulating time
series that exhibit trends, seasonal patterns, and
short-term correlations, even when working with limited
data. Before applying ARIMA for time series analysis
[10,40], the following steps need to be performed:

– Model identification: The appropriate ARIMA
model parameters need to be identified, which include
autoregressive terms, moving average terms, and the
number of differences required for achieving
stationarity.

–Parameter estimation: The model parameters are
estimated using various techniques such as maximum
likelihood estimation.

–Diagnostics through residual testing: The residuals
obtained from the fitted ARIMA model are examined
for any patterns or deviations from randomness.
Diagnostic tests help assess the adequacy of the
model and identify any further improvements needed.

–Future prediction: Once the ARIMA model is
validated and deemed satisfactory, it can be used for
making future predictions and forecasting the
behavior of the time series.

ARIMA models assume linearity and adherence to a
statistical distribution in the time series being analyzed.
They encompass different popular forms such as
autoregressive models, moving average models, and
seasonal ARIMA (SARIMA) models [34-35]. By
utilizing the lag operator, we can represent the ARIMA
(Λ1,Λ2,Λ3) model as follows

Ψ (I)(1− I)2
xt = Φ (I)ξt . (31)

Here, Λ1 represents the number of autoregressive terms,
Λ2 denotes the number of moving average terms, and Λ3

indicates the number of differencing operations required
to achieve stationarity. These parameters are nonnegative
integers. The coefficients Ψ and Φ correspond to the
model’s autoregressive and moving average terms,
respectively.

5 Numerical Simulations

This section contains a series of numerical simulations
performed with the influenza model to show how
fractional order influenza is expected to behave. Using the
ABC operator with a fractional order of α = 0.95, our
proposed model is presented visually. Furthermore, we
use numerical simulations to study the dynamics of
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vulnerable, exposed, infected, and recovered individuals
across different fractional-order values. Using the starting
values and parameter values listed in Table 1, all
simulations are performed in MATLAB.
The Saudi Ministry of Health provided a dataset for the
simulations, covering 305 weeks from the first week of
January 2017 to the 47th week of 2022. The Saudi
Arabian Ministry of Health provided accurate data used
to calculate the parameter values in Table 1. The number
of confirmed influenza cases over a 200-week period is
shown in Figure 1 to give viewers a visual understanding
of the cases in Saudi Arabia -to mediate Arabia.

Fig. 1: Number of influenza cases confirmed in Saudi Arabia

over time.

These simulations allow us to see how the influenza
model dynamically responds to different fractional order
scenarios and provide us with important information on
how the virus spread and what impact it had in Saudi
Arabia.

6 Forecasting influenza using ARIMA

This section presents the results of applying ARIMA
models to weekly data reflecting the number of influenza
cases from week 1 of 2017 to week 42 of 2022. The right
ARIMA model was found, its parameters estimated, and
its performance evaluated using R and Python software.
The dataset used provides a comprehensive overview of
influenza incidence over time and spans a six-year period.
Figure 2 shows the development of influenza cases
between 2017 and 2022. The two years with the highest
infection rates were 2020 and 2023, while the years with
the mildest outbreaks were 2019 and 2018. In contrast,
fewer cases were recorded in the first year of 2017, the
year of records, as well as in the COVID lockdown years
of 2021 and 2022.

Fig. 2: Weekly influenza cases in Saudi Arabia, from winter

2016/7 to winter 2022/3.

To evaluate the stationarity of the influenza case series, an
Augmented Dickey-Fuller test was performed, and the
results are presented in Table 3. The Augmented
Dickey-Fuller value of 3.6829 with a probability value of
0.02548 indicates that the series is stationary, supporting
the suitability of applying ARIMA models.

Table 3: Augmented Dickey-Fuller Test

Value of Dickey Fuller Lag order p-value

3.6829 6 0.02548

Additionally, the correlogram, auto correlation function
(ACF), and partial auto correlation function (PACF) plots
(Figure 3) were analyzed for the confirmed influenza
cases. The empirical findings suggest a gradual decay of
the ACF towards zero, while the PACF shows a
significant positive peak at one lag. These observations
align with the established hypotheses and provide further
support for the chosen models.

Fig. 3: ACF and PACF of the weekly influenza cases in Saudi

Arabia.
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Utilizing the ARIMA library in R programming, the
ARIMA (2,0,1) model with a nonzero mean was
identified as the appropriate model for modeling the
confirmed influenza case data based on established model
selection criteria. Once the models are identified and the
parameters are estimated, the next step involves validating
the models by examining the residuals. Figure 3 indicates
that the residuals follow a normal distribution and exhibit
independence, resembling white noise. The majority of
residuals align with the straight line, indicating normality,
with only a few falling outside the line. These findings
support the conclusion that there are no significant
correlations among the residuals in the series.
To further assess the distribution of errors, histograms and
normal probability plots (Figure 4) were employed. A
straight line on the normal probability plot suggests that
the residuals follow a normal distribution, with slight
deviations indicating the best-fit line. Figure 4 shows the
residuals of the ARIMA (2,0,1) model with a non-zero
mean for weekly influenza cases in Saudi Arabia.

Fig. 4: Weekly influenza cases in Saudi Arabia, residual values

of ARIMA (2,0,1) with non-zero mean.

The main goal of ARIMA modeling is to predict a variable
using the information already available. Figure 5 shows
a 30-week forecast generated using the ARIMA (2,0,1)
model with a non-zero mean to provide information about
the expected future behavior of influenza cases.

Fig. 5: 30-week forecast generated using ARIMA (2,0,1) with

non-zero mean.

These results demonstrate how accurately ARIMA models
predict influenza cases and provide relevant data for public
health planning and interventions.

7 Evaluation of the Precision of Fractional

SEIR and ARIMA Methods

This section evaluates the ability of the fractional SEIR
and ARIMA models to predict and account for confirmed
influenza cases. We use absolute mean error (MAE) and
root mean square error (RMSE) metrics [39] to assess the
effectiveness of these models. Below is the formula for
calculating the MAE:

MAE =
∑n

j=1 |yt − δt |

n
. (32)

The RMSE is calculated as follows:

RMSE =

√

∑n
j=1(yt − δt)2

n
. (33)

In this case, represents the total number of time series
points, yt the value observed at the point in time t, and δt

the value predicted by the fitted model that considered the
30-week projection.
Using the degrees of fit of the fractional SEIR and
ARIMA models, we assess the prevalence of influenza in
Saudi Arabia. To assess the effectiveness of each model,
its performance is measured against a number of criteria.
It is important to remember that the particular data set
being examined will determine that one model is more
effective than another.
The fractional SEIR model implemented with the ABC
operator fits the observed data better than the ARIMA
model results, as shown by the results in Table 4.
Therefore, in these circumstances, the fractional SEIR
model would be a good choice to mimic influenza cases.

Table 4: Performance comparison of the fractional SEIR and

ARIMA models.

Method MAE RMSE

Fractional SEIR 4.26814 0.3625

ARIMA (2,0,1) with non-zero

mean

4.26814 2.788

These results underscore the increased accuracy of the
fractional SEIR model in detecting and predicting
influenza cases and demonstrate its potential to strengthen
influenza surveillance and control initiatives.

8 Conclusion

The purpose of this study was to simulate, model and
predict the spread of the influenza virus in Saudi Arabia.
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We used both the fractional SEIR model and the ARIMA
model to analyze reported influenza cases from the first
week of 2017 to the thirty-first week of 2022. While the
ARIMA model was used to predict the seasonal trends of
the influenza epidemic, the fractional SEIR model was
used to simulate the confirmed cases. Through sensitivity
analyses, we uncovered important factors that have a
major impact on the dynamics of influenza transmission
in Saudi Arabia. We found that higher influenza
prevalence can be caused by increases in natural birth
rate, transmission rate and incubation rate. These
sensitive parameters must be estimated precisely, as even
small changes can have a significant impact on the
quantitative results. Insensitive parameters, on the other
hand, do not require an exact estimate, since minor
fluctuations in these parameters do not have a significant
impact on the target variable. In terms of accuracy in
predicting influenza outbreak dynamics, the proposed
fractional SEIR model performed better than the ARIMA
(2,0,1) model with a non-zero mean. According to these
results, the fractional SEIR model could be an effective
method for predicting confirmed influenza cases.
ARIMA models, being a prevalent choice in time series
forecasting, are subject to certain limitations that can
impact their accuracy. These limitations are inherent to
various statistical forecasting methodologies.
The limitation of ARIMA models lies in their assumption
of linearity in variable relationships, thereby constraining
their capacity to effectively capture intricate non-linear
relationships.
Future studies should investigate disease prevention
methods and drug effects in the context of fractional
SEIR models [53,54,55,56]. To better understand
influenza dynamics and increase forecast accuracy,
additional models such as those mentioned in references
[57,58,59] can be further investigated. Overall, this study
advances influenza modeling and sheds light on influenza
transmission dynamics in Saudi Arabia. The conclusions
impact public health preparedness and can help design
successful influenza control and prevention programs. In
the future, we intend to solve new models with new
fractional operators.
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