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Abstract: Based on the data of the world health organization (WHO), diagnosing heart disease is a great task, as heart disease (HD)

is the most prevalent disease worldwide. We suggested a method based on heart sounds to deal with this difficult issue because the

heart sound (HS) is an essential component for detecting heart conditions. A feature extraction technique and a classifier are used in

the suggested strategy. We use the GoogLeNet convolutional neural network (CNN) architecture with some modifications to separate

the most crucial attributes of HS, and the heart condition is classified as diseased or not diseased based on these attributes. The model

is trained using the AdaBelief optimizer to tune the parameters of our modified GoogLeNet architecture. The model was trained

and validated utilising various datasets from PhysioNet 2016. Additional training samples were provided by integrating the PASCAL

dataset with the PhysioNet 2016 dataset. Additionally, the variety of samples from various sources enabled our system to learn about

sounds from everyday life more accurately. Our results indicated that using a modified GoogLeNet architecture with the AdaBelief

optimizer, the trained model obtained test accuracy of 100% and 99.9% on unseen HS recordings from PhysioNet and the merged

datasets, respectively. By comparing our proposed model with the highest-scoring methods listed on the official PhysioNet website in

these datasets, the results show significantly improved.

Keywords: Deep Learning ,GoogleNet , Feature extraction ,Heart disease prediction ,phonocardiogram.

1 Introduction

As stated by the WHO, HD is the top reason for global mortality. It is plausible to assert that cardiovascular disease
accounts for around 30% of all fatalities. Heart disease imposes an enormous burden on the public health sector, causing
18 million deaths annually. As a result, the demand for early-stage heart disease diagnosis is unavoidable in order to
avoid early death in persons at threat and to help clinicians make predictions [1–3]. Physicians are diagnosing heart
disease using wearable monitors and a variety of tests, such as X-rays of the chest, stress checks, electrocardiograms, and
coronary angiograms. However, mining suitable heart disease threat features from electric diagnostic valuations is hard
as specialists make every effort to detect patients fast and accurately. These checks are time wasting, expensive, and have
adverse consequences. Another way to detect the condition of the heart depends on the medical professional’s knowledge
and experience and is done physically using a stethoscope. Sometimes this way leads to miss diagnosis since heart sound
has almost similar patterns. Although it may appear simple, heart sound auscultation requires extensive training because it
needs the capability to separate among subtle changes in that sound. This is something that professionals can do. However,
these specialists are not always accessible, mainly in rural places where the availability of specialists is limited. For the
medical assessment of heart auscultation, the correctness of expectation by medical students is 20 to 40 percent, but it is
around 80 percent for cardiologists who are professionals [4–8]. As a result, alternative methods of carrying out such a
procedure are required to aid physicians in making accurate diagnoses.

We can rely on phonocardiograms (PCG) or electrocardiograms (ECG) for diagnosing heart diseases, where the ECG
indicates the electrical activity and the PCG indicates the sounds produced by the human heartbeat. The auscultation
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method is now the most popular technique for predicting cardiovascular problems. This is accomplished through
stethoscope-based monitoring and analysis of the cardiac sounds. So in this research, PCG is used to detect heart
diseases because it provides essential information during one cycle of the heart’s beat [9, 10].

When the heart sound was analyzed, it consisted of four main sounds called HS1, HS2, HS3, and HS4. HS1 and HS2
both refer to normal heart sounds, and these sounds are a result of the semilunar valve closing and the atrioventricular
valve opening. While HS3 and HS4 refer to abnormal sounds when a wave of blood reaches the inside of the ventricles,
HS3 shows up. As a result of atrial systole, HS4 appears before HS1. These components, which are segmented for the
purpose of detecting cardiac problems, include important information about the heart system. Each sound is included in
Table1 along with its frequency and duration [11].

Table 1: Different heart sounds’ duration and frequency

The sound of the heart The frequency Period

HS1 from 30 to 45 Hz from 0.1 to 0.12

HS2 from 50 to 70 Hz from 0.08 to 0.14

HS3 less than 30 Hz from 0.04 to 0.05

HS4 less than 20 Hz from 0.04 to 0.05

Branches of artificial intelligence (AI) help people make decisions with high accuracy and work to reduce human
errors. Currently, a variety of AI methods are being applied in medicine to precisely diagnose illnesses. The key element
of data science that makes machines intelligent is AI, where every expert system needs to be capable of learning. AI
employs several learning-based methods, like deep learning (DL), robotics, machine learning (ML), and others [12].

A few years ago, the DL approach saw tremendous success in a variety of fields and applications. On unstructured
data, DL performs better than ML. DL enables the regular learning of features from samples at different layers. Due to
the growing complexity of healthcare data, DL approaches have become widely used in healthcare applications. By using
a massive amount of health records to uncover hidden patterns and mine important characteristics, DL techniques offer
models for data analysis that are effective and efficient compared to traditional analytics, which cannot generate results
quickly enough [13–17].

One of the most significant DL networks is considered to be CNN, as it has proven high efficiency in image recognition
[]. There are many DL networks, but CNN has proven to be highly effective in many applications that need to process
pixel data. Where CNN provides a set of filters that extract the most significant attributes from the data in numerous image
processing (IP) and computer vision (CV) applications. CNN, a deep learning model, has demonstrated good performance
in these applications that require object recognition, such as self-driving cars and facial recognition []. It is a misconception
that CNN deals with images only, but it deals with data that can be represented by numbers, such as images (pixels) and
sounds (since sound is a frequency) [18–20].

There are many architectural examples of CNN with various layers that make up the CNN model, such as VGG-
16, AlexNet, LeNet-5, GoogLeNet, and others. GoogLeNet is a deep CNN architecture proposed by a team at Google
whose objective is to enhance how the network uses its computational resources during the classification and detection
processes. Results improved by using computing resources more effectively, or in other words, by extracting more features
with the same amount of processing. These were introduced with the idea of GoogLeNet’s inception block that make the
network wide rather than deep by having filters with several sizes that can run on the same level. To extract and integrate
information from various scales, the GoogLeNet used groups of convolution kernels [21–23].

In Google’s neural network, an ”Inception block” is the fundamental convolutional block. As shown in diagram 2,
there are four parallel branches in the block. The first three branches collect data from different spatial sizes using various
layers of filter width: one-by-one, three-by-three, and five-by- five. One-by-one filters were applied in the middle of the
block to minimise the channels and optimise the network. The fourth branch changes the number of channels using three-
by-three max-pooling, accompanied by a one-by-one filter. The size of the input is preserved by using suitable padding
throughout the four branches. As reflected in Figure 1, GoogLeNet employs a stack of nine inception blocks divided
into three sets with global average pooling, max pooling, and filtering layers where the dimensionality is reduced by
max-pooling between inception blocks [23, 24].

For the prediction of HD, several researchers (mentioned in 2) have proposed several methods based on HSs. However,
it was noted that studies with high prediction accuracy relied on very small datasets, while studies that relied on large
datasets did not achieve high accuracy. And because the prediction process is related to the field of health, the proposed
method must be very accurate in order to rely on it with confidence and to overcome human errors in predicting the
presence of disease or not. To achieve this, the model must be trained and tested on a large data set to verify results when
high accuracy is achieved.
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Fig. 1: The architecture of GoogLeNet

Fig. 2: Block structure for the inception

In this study[20], there is a disadvantage in determining the duration of the HS (only 30 seconds), because after 30
seconds there may be important information for determining the heart condition.

We created a novel DL model based on the GoogLeNet architecture with some modifications to extract significant
attributes from HS and then use these attributes to predict whether the heart is diseased or not. Our network parameters
were tuned using the AdaBelief optimizer. The following is a summary of this paper’s major contributions:

–Overcome the drawbacks of training and testing the model on a small dataset in previous studies
–Modifications to the GoogLeNet and Inception block structures to match the heart sound data format
–Solve the limitations of using the limited duration of the HS in previous studies
–A reliable classification model capable of achieving high accuracy on a large dataset to validate results. Most of the
previous studies that achieved high accuracy relied on a very small dataset, while most studies that relied on a large
dataset did not achieve high accuracy. Therefore, the model must achieve very high accuracy on a large dataset because
the problem is concentrated in health care

–The proposed architecture was evaluated using the PhysioNet dataset to compare the results with the highest scores
listed on the official PhysioNet website. An evaluation was also carried out on the merged datasets (PhysioNet and
PASCAL) to verify the results

–When we compare our proposed model to traditional methods in these two large datasets, the results are noticeably
better

The following categories apply to this paper: An extensive summary of the relevant work is presented in Section 2.
The suggested solution can be found in Section 3. The dataset, results, and comparison with others are described in 4,
while the final Section 5 spells out the conclusion and the work to come in the future.

2 Related work

There are many studies on the use of AI methodologies in diagnosing heart diseases. This section contains a review of
methodologies related to ML and DL in order to predict heart disease.
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R. Valarmathi and T. Sheela [25] developed a sequential forward selection-based approach for predicting heart disease
that would eliminate unimportant features. Two classifiers, Random Forest (RF) and XG Boost (XB), were relied upon. To
tune the hyperparameter and enhance the functionality of the classifier models, the researchers applied set of algorithms:
grid search, random search, and genetic programming. The system is evaluated using the Cleveland Cardiology (CHD)
and the Z-Alizadeh Sani (ZS) datasets, where age, fasting blood glucose, etc. are prognostic features of cardiac status.
The accuracy was 97.52% and 80.2% on the CHD and ZS datasets, respectively. However, it is possible to fall into the
problem of over-fitting due to the smallness and the imbalance of the data between a patient and a normal person. Where
the CHD dataset has 303 rows and the ZS dataset contains 303 examples; among them, 216 indicated the absence of heart
disease, but 87 indicated the presence of heart disease. So the accuracy of this system can decrease in real time.

Kartik et al. [26] proposed a diagnostic system based on CHD examples. They used an XB classifier with an accuracy
of 91.8% and a Bayesian algorithm to tune the hyperparameters for this classifier. This model should be evaluated on a
different set of data to guarantee the reliability of the findings.

Similarly, [27] a new ML model for predicting heart disease was proposed on the basis of data mining methods. The
RF, decision tree (DT), and hybrid algorithms (RF and DT) are used to implement the proposed model. The CHD is
used to evaluate the proposed system. The highest accuracy is up to 88.7% with the hybrid model. However, prediction
accuracy must be increased.

Furthermore, Deepika and Balaji [28] introduced a new HD prediction system with 97% accuracy based on a new
optimised unsupervised method for feature selection and, for classification purposes, the Dragonfly algorithm with multi-
layer perceptrons. The proposed system was evaluated using a dataset called ”UCI Clevel,” which contained 14 features
with 305 examples. The limitation of this study is that they used a small dataset to assess the proposed system.

On the other hand, for the prediction of cardiovascular disease, Muhammad Nasiruddin and Rajib Kumar Halder [29]
used a dataset available on Kaggle with 70,000 examples containing features like age, pressure, etc. For the purpose of
selecting features, the suggested model uses the the Gain Attribute, Gain Percentage Attribute and Correlation Attribute
Evaluators . For the purpose of classification, the suggested model uses the RF and Naive Bayesian algorithms. The
suggested model was based on various ratios between the Kaggle heart disease dataset’s training and testing sets (50:50 ,
60:40, 70:30, 80:20, and 87.5:12.5) with accuracy of (98.88%, 99.53%, 99.98%, 98.36%, 96.66%, 97.77%, 99.56%, and
94.37%). However, the data must be scanned to find, collect associated features and to extract the hidden pattern to enable
rapid learning and improve the detection accuracy in real time detection. This requires implementing a deep learning
model.

Moreover, Rajkamal Rajendran and Anitha Karthi [3] combined an integrated set of datasets (Cleveland Cardiology
”CHDD”, Swiss, etc.) to build a confident classifier. This set required missing values to be computed based on continuous
features. The feature engineering based on entropy was proposed. For the purpose of classification, they relied on ML
algorithms such as K-nearest neighbours (KNN) and vector machines for support (SVM). The proposed approach obtained
an accuracy of 92.7%. However, an improvement in accuracy is required as the issue is specifically related to health care.

Polipireddy Srinivas and Rahul Katarya [30] proposed an expert model (HyOPTX) using the XGBoost algorithm
to classify heart conditions. They use OPTUNA (Ultra Parameter Optimization Technology) for hyper-parameter tuning.
They accessed the CHD, HFP, and HDUCI datasets with an accuracy of 94.7%, 89.3%, and 88.5% , respectively. However,
diagnostic accuracy should be increased to be able to rely on HyOPTX.

Jyoti Mishra et al. [31] identified key features for predicting heart disease using ML techniques. For the discovery
of heart illnesses, a medical internet of things architecture based on recurrent neural networks (Rec-CONVnet) has been
proposed. Clinical records are used to estimate heart disease risk based on age, pressure, and other features. Rec-CONVnet
has an accuracy rate of 96.4%.

Yong Li et al.[32] suggested a new DL architecture (CraftNet) built on ECG signals and handcrafted features to predict
HD. The proposed CraftNet network is influenced by the SVM idea. The designed loss function, named P-S, mixed with
the architecture improves classification performance and generalisation ability. The MIT-BIH arrhythmia dataset is used
to evaluate the proposed CraftNet. It contains 30 - 48 minutes recordings of an ECG logged at 360 Hz from 47 patients.
The proposed CraftNet obtained an accuracy of 89.25%. The proposed CraftNet has the disadvantage that convergence
was difficult during the training process due to the combination of P-S with the proposed CraftNet, which required great
attention during the training process.

Haya al-Askar et al. [33] established a novel model that is built on HS to predict HD. For the purpose of obtaining
attributes from HS, AlexNet was used. The SVM was used based on extracted features from AlexNet to classify the HS.
They depended on the PhysioNet HS examples. The proposed system achieves an accuracy of up to 87%. However, the
classification accuracy must be increased to rely on this model.

Aniruda Dutta et al.[34] developed a new methodology for predicting heart illness based on least absolute contraction
and operator selection (lasso). To identify significant features from PCG signals, they relied on a feature weight estimate,
which is monitored by co-voting feature selection. Significant features are smoothed using a fully connected layer, which
is an important step before passing the layer’s output to later convolutional stages. PhysioNet/Computing was used in the
2016 Cardiology Challenge dataset for model performance testing and achieved an overall accuracy of 87.31%, however,
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the linear nature of the estimator may cause a problem when using LASSO. LASSO is a penal regression technique in
which the variance of variables is imposed by infinity.

Farahat Bint Azzam et al.[35] generated a method for detecting cardiac abnormalities based on the mathematical
analysis of the influence of extra noise on the power-based features of the short-range slope filter bank and CNN layer.
They proposed combining spectrogram-image features that are logarithmic and linear, which are then fed into a residual
CNN network (ResNet) to classify PCG signals. The model has been evaluated in the Physionet dataset with 85.08%
accuracy. The validation of the proposed method is empirical by nature, which is a major drawback. However, in order for
us to rely on this model, efficiency must be increased because it is a health problem.

Omer Deperlioglu [36] developed a new methodology centered on the direct classification of energy values in the
heart sound data. Classification was done using the directly employed energy of the resampled technique with the Stack
AutoEncoder Network (SAEN). With an accuracy of 99.80%, the SAEN model used HS examples from a BPASCAL
dataset [37]. The BPASCAL is a small dataset; it only contains 449 heart sound samples, so this dataset should be
combined with another similar dataset to verify the results.

Utku Kose et al. [38] introduced a confident system for predicting heart illness using the Internet of Things for Health
(IOH), based on secure data processing with a Tangle approach and multiple forms of authentication. For the purpose
of classification, the suggested system uses Autoencoder Neural Networks (AEN). For the dataset, they relied on two
sources: the first dataset was from PhysioNet, where Set A of the PhysioNet datasets was used, and the second source
was PASCAL B. Normal heart sounds were diagnosed with an accuracy of 96.03%, while abnormal sounds were 90.11%
and 91.91% for both murmurs and extrasystoles, respectively. By considering two separate datasets, the performance
of embedded system diagnostics (together with AEN infrastructure) was evaluated. However, continuous training using
the most recent data and examples may be required to make the AEN adaptable and prevent it from developing bias.
There may still be some unexpected scenarios in terms of IOH architecture. Building materials, for example, may cause
interruptions or problems with the wireless communication of signals.

Ali A. Samir et al. [20] established a new methodology that relies on the DL strategy to predict HD. They relied on
CNN to obtain significant attributes from the HS and then classify the heart as diseased or not based on these attributes.
To fine-tune CNN’s hyperparameters, they used the JSO optimizer. The proposed CNN-JSO model relied on two sources
of data: ”PhysioNet” and ”Kaggle.” with a test accuracy of 94.12% and a training accuracy of 97.76%. However, there
are limits on the duration of heart sounds (only 30 seconds). Therefore, the accuracy of the test with the acceptance
of the heart sound should be increased without limits in its duration, because after 30 seconds there may be important
information for determining the state of the heart.

CardioXNet is developed by [39] for classification of heart disease using heart sound. They did not aim to overuse
parameters and memory resources during training, so they relied on the learning strategies of representation and
sequencing. For extracting main features from PCG signals, representation learning employs an adaptive feature
extractor. For extracting temporal features, sequence residual learning is used. They relied on the PhysioNet dataset with
an accuracy of 86.57%. However, the proposed model could be improved if multiple larger PCG datasets with different
cardiology annotations are used. Several advanced networking strategies can be tried to achieve better PCG
auto-classification performance when CardioXNet is integrated into wearable devices.

Haoran Kui et al.[40] developed a novel methodology that relies on HS to detect HD. The wavelet algorithm was used
to clean the HS of any noise. The segmentation process of PCG signals was done by a model of hidden Markov. They used
the dynamic frame length method to obtain significant attributes from the HS. Finally, these features were classified using
CNN. They constructed two- and multi-classifiers with an accuracy of 93.89% and 86.25%, respectively. They relied on
heart sounds collected from Kunming and Fuwei heart hospitals. This dataset contains 1800 cases of heart sounds, divided
into 900 normal cases and 900 abnormal cases. However, this dataset is balanced, but more cases need to be collected to
increase the accuracy of the proposed technique.

El Badlaoui et al. [41] proposed an approach to predict HD based on HS with an accuracy of 96% and 100% in
two different datasets. They employed an analysis of principal components algorithm to reduce the amount of data. They
depended on the SVM classifier and k-nearest neighbours (kNN) to classify the HS. However, this model has been archived
with high accuracy, but it is not reliable because the two datasets they used were very small, the first containing 31 normal
and 34 abnormal heart sounds (31 heart sounds for training and 34 heart sounds for testing), and the second containing
200 normal and 66 heart sounds (133 heart sounds for training and 133 heart sounds for testing). So they have to combine
these two datasets with another big dataset.

More studies listed in Table 2 have made significant contributions to the prediction of HD based on HS. However,
there are various obstacles to overcome in classifying a heart as diseased or not:

–Heart disease prediction utilising a new methodology based on heart sounds (PCG signals)
–Using the sound of the heart without specifying the duration
–Use appropriate feature extraction methods with large structural differences
–Use a dataset of appropriate size and balance (between an abnormal heart and a normal heart)
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Table 2: Detailed literature based on heart sound (PCG signals) for predicting heart disease

Ref Year Dataset Approach Accuracy

[42] 2020 PhysioNet,

2016

Feature maps from different clique

blocks. 1D-CNN algorithm.

91%

[43] 2021 PhysioNet,

2016

The frequency domain features. CNN

algorithm.

85%

[44] 2021 PhysioNet,

2016

Seesaw loss for Long-Tailed PCG

signals with Res2Net.

87%

[45] 2021 PhysioNet,

2016

Wavelet scattering features. SVM

algorithm.

92.23%

[46] 2021 PASCAL

A and B,

2011

Discrete wavelet based features. Hidden

Markov Models (HMM).

92.74%

[47] 2021 PhysioNet,

2016 and

PASCAL

The time and frequency domain features.

Light gradient boosting model.

92.88%

[48] 2021 PhysioNet

2016 and

PASCAL

2011

Transforming HS into a recurring

spectrogram based on patterns. Residual

neural and CNN architecture networks:

Xception, dense, mobile, and VGG16

based on CWT models.

89.04% (PhysioNet

2016, DenseNet

model) 92.96%

(PASCAL 2011,

VGG model)

[49] 2021 PhysioNet,

2016

PCG-ECG signals based on time-

frequency. kNN, SVM, and Ensemble.

93.14%

[50] 2021 PhysioNet,

2016

The time–frequency representation.

Differential evolution with a

straightforward genetic algorithm

93.60%

[51] 2021 Private Time and frequency domain features.

kNN algorithm.

94%

[52] 2022 PhysioNet,

2016

Carefully constructed processing

pipeline to accurately identify individual

heartbeats in PCG recordings. A bi-

directional long-short-term memory

structure then categorised these

recordings.

68%

[7] 2022 the

PASCAL

CHSC

Features were acquired using a

Spectrogram signal representation.

VGG16 ,VGG19,MobileNet

,inceptionV3 models.

80.25%, 85.19%,

72.84% 54.32%,

[53] 2022 PhysioNet,

2016 and

PASCAL

CHSC

Features of the discrete wavelet

transform and the mel-frequency

cepstral coefficients (MFCCs). RF

classifier

88.7% and 86.16%

for the PhysioNet

and Pascal

CHSE datasets,

respectively.

[10] 2022 PASCAL

A & B,

2011

AlexNet to obtain attributes from the HS

+ SVM classifier.

90%

[54] 2022 Private MFCCs, spectral and statistical features.

kNN + SVM.

91.10%

[55] 2023 PhysioNet,

2016

The features that are retrieved from the

segmented sound signal are put through a

Bonferroni mean-based fuzzy K-nearest

centroid neighbour classifier.

88.4%

[56] 2023 PhysioNet,

2016

Using conventional temporal-frequency

visualisations as input attributes. Pre-

trained CNNs (transfer learning)

92.23%

[57] 2023 PhysioNet,

2016

Attributes of PCG time and frequency

signals. 2-D CNNs were created.

93.07%
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–Maximize classification accuracy

So, given the limitations of current cardiac detection methods, we aim to develop a technique to enhance HD diagnosis.

3 Proposed model

3.1 Data preprocessing

In order to obtain significant attributes from the HS to determine whether the heart as diseased or not, we must first
prepare the sounds to remove the noise and determine the duration of the sound to train the model. Figure 3 shows the
steps involved in preparing HSs. In the first step, the first second of sound was cut off as noise from the recording device.
Looking at Table 1, we find that the highest frequency of HSs is 70 Hz, so noises with a frequency of more than 70 Hz
were removed. Then, after these steps, it is ensured that the length of the sound is not less than 2 seconds (s). If it is greater
than 3.6 s, then this sound is divided into sounds, each equal to 3.6 s. If it is less than 3.6 s and greater than 2 s, the sound
is repeated until it is equal to 3.6 s. A sampling rate (SR) of 22050 is used. This means that the sound has 22050 numeric
values per second. To enhance the performance and training stability of the model, the average of each five values in the
sound was taken to reduce the sound shape, and then normalisation was performed in the last step.

Fig. 3: Data preprocessing

3.2 Modifications to the GoogLeNet Convolutional Neural Network architecture

Information on the various layers of the redesigned GoogLeNet and Inception block was shown in tables 11 and 12.
By comparing the GoogLeNet architecture as shown in Figures 1 and 2 with the proposed architecture shown in

Figures 5 and 4, we can see the proposed modifications to the GoogLeNet architecture to extract the most important
features from the PCG signals and then classify the heart as diseased or not.

–Changing the dimensions of the layers from 2D to 1D
–Changing the size of the kernels and pool size of the Maxpooling layers in the GoogleNet network
–Changing a convolution layer to a separable convolution layer
–Adding SpatialDropout1D layers to the architecture
–Adding Batch Normalization layers to the architecture

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2844 A. R. Rashwan et al.: Predicting heart disease using modified ...

Fig. 4: Modified Inception Block

Fig. 5: Modified GoogLeNet Convolutional Neural Network architecture

The dimensions of the layers were changed from 2D to 1D to match the shape of the HS data, as the full sound was
represented as a continuous number value in one row. The layers were also resized to fit the row size of the HS data, as
the best fit size was reached to adequately extract the features during model training.

3.2.1 separable convolution layer

In order to explain the reasons for using a separable convolution layer instead of a traditional convolution layer, we first
explain how the traditional CNN works.
As shown in this study [20], 1D CNN extracts features from a row of data by separating that row into smaller sets and
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then performing some operations on these small subsets using the kernel. The set of values that make up the kernel are
treated as parameters and chosen by training. These parameters are changed to obtain the optimal values during training
that help us extract features from the data by multiplying these values with each element of the subset. Let’s use an
example to clarify.

Data ”x”: 0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

kernal values ”k”: –1 0 1

Since the kernel ”k” has a size of three, the row of data ”x” is divided into smaller subsets, each subset ”d” containing
three elements. The multiplication operation is performed by the following equation:

Y =
2

∑
i=0

kidi (1)

First subset of data ”d” = [0.0, 0.6, 1.3].
Kernel values ”k” = [1, 0. 1].
By applying equation 1, the output:

Y = (1× 0.0) + (0× 0.6) + (1× 1.3) = 0+ 0+ 1.3= 1.3
Depending on the number of steps, the next subset is selected. taken with a value of at least 1 from the first element of
the preceding subset. This number of steps is called a stride ”S”. The following rows shown in tables, from 3 to 9, show
subsets of data where k size = 3 and S = 1.

Table 3: A Subset (a)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 4: A Subset (b)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 5: A Subset (c)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 6: A Subset (d)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 10 presents the extracted features (final result) as a result of applying the kernel ”k” to the row of data ”x”. From
equation 2, the shape of the result can be calculated, where W and Q represent the shape of the data, T and O represent
the shape of the kernel, and S represents the stride.

([
W −T

S
+ 1

]
,

[
Q−O

S
+ 1

])
(2)
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Table 7: A Subset (e)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 8: A Subset (f)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 9: A Subset (g)

0.0 0.6 1.3 2.3 3.2 4.3 4.7 5.8 6.8

Table 10: The end result of the data after applying the kernel

1.3 1.7 1.9 2 1.5 1.5 2.1

Then the shape of the result in the previous example is as follows:
([

1−1
1

+ 1
]
,
[

9−3
1

+ 1
])

= (1,7).

To extract more than one feature, more than one kernel is used. These kernels are lined up together, and the number of
kernels is called a channel. So the dimension of the previous example is expressed as one row, seven columns, and one
kernel (1,7,1). If three kernels are used (three channels), the shape of the result would be (1,7,3). Each kernel extracts one
feature from the same and whole data through the operations described above. All kernels have the same size but different
values.

From the comparison illustrated by figures 6 and 7, the 1D separable convolution divides the process of the original 1D
convolution into two sub-processes: the first is called ”spatial convolution,” and the second is called ”channel convolution.”
Spatial convolution extracts the middle features of the input signal, and then the final output (features) is extracted from
these middle features using point-by-point convolution. The output of the separable and original convolutions is the same,
but separable convolution decreases the number of calculations and parameters [58], which enhances system efficiency and
speeds up model training compared to traditional convolution as a result of dividing the original convolution process into
two sub-processes. For these reasons, a separable convolution was used in the proposed modified GoogLeNet architecture.

3.2.2 Spatial Dropout 1D layers

It is an excellent tool for reducing overfitting in a model, so spatial dropout 1D layers were added to the proposed
architecture to avoid overfitting during training with heart-sound data, as the first set of training examples influences
learning. This, in turn, prevents the learning of features that only appear in subsequent samples or groups. Due to the fact
that neighbouring frames in feature maps that are tightly connected (as is frequently the case in early convolution layers)
will reduce the effective learning rate, the spatial dropout 1D layer drops entire 1D feature maps during training to create
independence between feature maps.

3.2.3 Batch Normalization layers

Although we have normalised the data in pre-processing, the input layer in our architecture is not the only input layer. For
the network, the output of layer R-1 acts as the input of layer R. The input value distribution for each layer in the network
is influenced by different ranges as a result of operations in the layers before it during the network training. Varying the
values slows down the training speed of the model because we have to use a small learning rate (it takes a long time to
converge). To solve this problem, batch normalisation was used, which resolves the variance of the values and thus speeds
up the training of the model. This is accomplished by subtracting the mean from each of the input features and dividing
the result by the standard deviation [59].

The input shape in the first layer is (1, 16000) and the kernel size is (1, 11, 32) with a stride equal to 1, so the output
shape of the first layer is (1, 15990, 32). This output is the input to the next layer, and it is big for training, so the
max-pooling technique was used in our architecture to reduce the input shape by dividing the input raw data into small
subsets according to a pool size and a stride value, and then each subset is converted to the maximum value in this
subset. Let’s use an example to clarify; we’ll use max-pooling with a pool size and stride of 3.
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0.0 0.6 1.3 2.3 4.3 3.2 4.7 5.8 6.8

Max of (0.0 & 0.6 & 1.3) = 1.3
Max of (2.3 & 4.3 & 3.2 ) = 4.3
Max of (4.7 & 5.8 & 6.8) = 6.8

Final output: 1.3 4.3 6.8

A ReLU activation function has been implemented after each separable layer and a 1 x 1 conv for a non-linearlity
implementation where non-linear layers expand the capabilities of the model. This is to avoid the problems of linear
equations in training and to reach accurate results. ReLU also helps avoid the vanishing gradient problem (VGP) [60].

3.2.4 Modified Inception Block

From figures 2 and 4,

–The dimension of max-pooling layer in the fourth branch changed from 2D to 1D.
–The 3 x 3 and 5 x 5 convolutional layers were converted to 1D separable convolution (3 x 1 and 5 x 1) layers.

The last layer before classification is the global average booling (GAB) to convert the feature maps from the previous
layers into a single vector, and then this vector is fed into fully connected network (FC) with the softmax layer to classify
it as normal or abnormal. This is done by averaging all the values in each feature map and representing this as a single
element in the vector. So feature maps can easily be inferred as species guarantee maps. No optimization parameter is
needed in this layer. Moreover, the GAB totals out the spatial information, so it is very robust to spatial translations of
inputs. One of the reasons for using this layer is to solve the limitations of using the limited duration of the heart sound
in previous studies. Where GAB converts any input dimension (height and width) to 1 x 1 x C, if you enter any length, it
will convert to 1 x 1 x C, where C is the number of channels, hence it gives no error.

To accomplish this, a fully connected neural network (FC) with 2 neurons (dense layer) followed by the SoftMax
activation function to perform the final prediction. Softmax returns an array of length equal to the number of classes,
in our case 2 (normal or abnormal), with probabilities distributed over them. The softmax ensures that the sum of all
our output probabilities will be equal to 1. Although our problem is a binary classification (normal or abnormal), we
use softmax instead of the sigmoid activation function as usual to avoid the problem of VGP [61]. The following is the
softmax function’s equation 3:

So f tmax( #»z )i =
ezi

∑K
j=1 ez j

(3)

– #»z : The softmax function’s input vector, composed of (z0, ...zK)
–All of the zi values are elements of the softmax function’s input vector, and they can take any real value, positive,
zero, or negative. A neural network, for example, could output a vector like (-0.52, 7.12, 2.23), which is not a valid
probability distribution, which is why the softmax is required

–ez j : Every element of the input vector is subjected to the standard exponential function. This results in a positive value
that is greater than zero, which will be very little if the input was negative and very huge if the input was large. It is
still not fixed in the range (0, 1), which is what a probability must be.

–∑K
j=1 ez j : This term ensures that all of the function’s output values sum to 1 and are in the range (0, 1), resulting in a

valid probability distribution (normalization)
–K: Refer to the number of classes

The model’s output (nromal or abnormal) is combined with the data labels to calculate the loss function; the purpose
of the training process is to decrease the loss function value. The equation of the loss function is expressed as:

l = y log(y′)+ (1− y) log(1− y′) (4)

L =
n

∑
i=0

li (5)
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–L stands for the overall dataset loss,
–l stands for the loss of a single input,
–y stands for the input label,
–y′ displays the predicted label for this input,
–n stands for the total number of inputs in the dataset.

Our proposed technique is illustrated in Figure 8.

Table 11: Information on the various layers of the redesigned GoogLeNet architecture

Layer Size Stride Activation

Input 16000 x 1

SeparableConv1D 11 x 1 x 32 ReLU

MaxPool1D 3 x 1 1

Conv1D 1 x 1 x 32 ReLU

SeparableConv1D 5 x 1 x 32 ReLU

MaxPool1D 3 x 1 2

SpatialDropout1D

BatchNormalization

Inception block (2a)

SpatialDropout1D

MaxPool1D 10 x 1 5

BatchNormalization

Inception block (3b)

SpatialDropout1D

Inception block (2c)

SpatialDropout1D

MaxPool1D 10 x 1 5

BatchNormalization

Inception block (2d)

GlobalAveragePooling1D

Fully connected network Softmax

3.3 AdaBelief optimization algorithm

In this study, we relied on the AdaBelief algorithm to tune the parameters of our architecture. This is due to the fact that this
algorithm simultaneously achieves three objectives: training stability in challenging environments, strong generalisation
similar to stochastic gradient descent(SGD), and quick convergence similar to adaptive approaches. Deep neural network
parameters are iteratively updated by AdaBelief algorithm by completely utilizing ”belief.” The gradient’s prediction
correctness is what determines the dependability of the ”belief,” and the choice of the smoothing parameter ”β1” is
what determines this prediction accuracy. The calculation of the totally squared difference between the observed gradient
”gt” and the predicted gradient ”mt” for the loss function is the core of AdaBelief. Let ”gt = ▽ft(θt)”be the observed

Table 12: Information on the various layers of the redesigned Inception block

Branch number Layer name Size Stride Activation

a b c d

First Conv1D 1 x 1 x 32 1 x 1 x 64 1 x 1 x 64 1 x 1 x 128 ReLU

Second MaxPool1D 3 x 1 3 x 1 3 x 1 3 x 1 1

Second Conv1D 1 x 1 x 32 1 x 1 x 64 1 x 1 x 64 1 x 1 x 128 ReLU

Third Conv1D 1 x 1 x 32 1 x 1 x 64 1 x 1 x 64 1 x 1 x 128 ReLU

Third SeparableConv1D 5 x 1 x 32 5 x 1 x 64 5 x 1 x 64 5 x 1 x 128 ReLU

Fourth Conv1D 1 x 1 x 32 1 x 1 x 64 1 x 1 x 64 1 x 1 x 128 ReLU

Fourth SeparableConv1D 3 x 1 x 32 3 x 1 x 64 3 x 1 x 64 3 x 1 x 128 ReLU
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Fig. 6: Original 1D convolution

Fig. 7: Separable 1D convolution

gradient, and ”ft(θt)” denote the loss function of a Deep neural network. The AdaBelief algorithm suggested in [62] can
be expressed as:

m̂t =
β1m̂t-1 +(1−β1)gt

1−β t
1

(6)

ŝt =
β2ŝt-1 +(1−β2)(gt− m̂t)

2

1−β t
2

(7)

θt = θt− 1−
αm̂t√
ŝt + ε

(8)

β1 and β2 denote the degrees of the moving average decay, and the learning rate is denoted by α .

Notations used in the AdaBelief algorithm, as shown in algorithm 1
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Algorithm 1 AdaBelief algorithm

1: Initialize θ0, m0← 0, s0← 0, t← 0

2: while θt not converged do

3: t← t +1

4: gt ← ▽θ ft(θt−1)
5: mt ← β1mt−1 +(1−β1)gt

6: st ← β2st−1 +(1−β2)(gt −mt)
2 + ε

7: Bias Correction

8: m̂t ← mt

1−β t
1
, ŝt ← st

1−β t
2

9: Update

10: θt ←ΠF ,
√

ŝt

(
θt−1− αm̂t√

ŝt+ε

)

11: end while

– f (θ ) ∈ R,θ ∈ R
d : where θ is the parameter in R

d and f is the loss function to decrease,

–ΠF ,M(y) = argminx ∈F ‖M1/2(x− y)‖ : Prediction of y on a convex possible set F

–gt : The step t of the gradient
–mt : The exponential moving average of gt

–st : The exponential moving average of(gt −mt)
2

–ε , α : ε is a low number, usually set to 10−8 and α is the learning rate, with a default value of 10−3

–β1 and β2 : smoothing parameters, with usual values of 0.9 and 0.999, respectively
–β1t is commonly set to be constant (for example, β1t = β1, ∀t ∈ {1,2, ...T}) and represents the momentum for mt at
step t.

Fig. 8: proposed technique
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Fig. 9: Testing PhysioNet dataset

Fig. 10: Testing merged dataset

4 Results of experiments and comparisons

4.1 Dataset description

Table 13: Explanation of the combined dataset

Items Explanation

First part, from 0 to

16000

refers to the full sound, which is

represented by a float type (continuous

value) in the range from -0.8 to 0.8.

Second part 16001 Sampling Rate (SR) is used to load

audio and is represented as an int type

with a value of 22050.

Third part 16002 Its value is 1 or 0, to know the status of

each heart sound in the dataset (normal

or abnormal).
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4.1.1 Kaggle dataset (PASCAL)

This dataset is very important, although it is small in size. It contains HSs collected from different sources along with
noise sounds. This dataset is divided into two groups. From the first group, we use 34 murmur sounds and 31 normal
sounds, and from the second group, we use 29 noisy murmur sounds, 120 noisy normal sounds, 66 murmur sounds, and
200 normal sounds [37].

4.1.2 Physionet dataset

This dataset was launched in 2016 to challenge the prediction of HD based on HSs. It consists of eight sets of HS data
with 4,430 recordings from 1,072 individuals for a total of 233,512 HSs collected from both normal persons and patients
[63].

4.1.3 Merged dataset

We address the limitations of the previous proposed methods for training and testing the model on small PCG datasets
by integrating the two Kaggle and Physionet HS datasets. After cleaning the data by preprocessing the HSs, we get 5800
normal HSs and 5148 abnormal HSs. Each sound, as shown in Table 13, consists of 16002 features, which are split into
three parts: the first 16000 features are the entire audio, and the final two features are the audio SR and label, respectively.

4.2 Performance metrics

Table 14: Explanation of Performance metrics values

Abbreviation Description Prediction

TN The true negative is that

the heart sound is actually

normal, and it has a normal

classification.

correctly

FP The false positive is that the

heart sound is normal, but it has

an abnormal classification.

incorrectly

FN The false negative is that the

heart sound is abnormal, but it

has a normal classification.

incorrectly

TP The true positive is that

the heart sound is actually

abnormal, and it has an

abnormal classification.

correctly

Various performance measures were used to evaluate the proposed system based on the confusion matrix values as
shown in Table 14, including:

4.2.1 Accuracy

Refers to the percentage of true predictors (including true positives and true negatives) among all cases evaluated. From
another perspective, the fraction of correct predictions of normal and abnormal heart sounds.

Accuracy =
TP+TN

TP+TN +FP+FN
(9)
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4.2.2 Precision

This refers to the accuracy calculated only for positive persons. So this metric informs us how often we are right when we
classify a person as positive (abnormal heart sound). This is done by calculating the fraction of true positive predictions
out of all positive predictions. From another perspective, ”Of all the sounds that are classified as abnormal, how many
predictions are correct?”.

Precision =
T P

T P+FP
(10)

4.2.3 Recall

Also called sensitivity, this shows if the classifier is able to detect any abnormal sound at all. This is done by calculating
the fraction of true positive predictions from all positive samples in the dataset. From another perspective, ”the number of
sounds classified as abnormal relative to all abnormal sounds in the dataset”.

Recall =
T P

T P+FN
(11)

4.2.4 specificity

speci f icity =
TN

TN +FP
(12)

4.2.5 F1 score

The F1-score integrates the recall and precision into a lone metric by taking their harmonic mean, so we can’t develop a
high F1 if either one is very low. F1-score only cares about sounds that the model expects to be positive (abnormal heart
sounds) and sounds that are really positive (abnormal heart sounds).

F1 score = 2 ∗ Precision ∗Recall

Precision+Recall
(13)

4.2.6 Balanced Accuracy

The F1 score is not concerned with how many negative sounds (normal heart sounds) are in the dataset or how many
correctly classified sounds. So the balanced accuracy metric was used to pay attention to negative sounds.

Balanced Accuracy = 0.5 ∗
(

T P

TP+FN
+

T N

T N +FP

)
(14)

4.2.7 Geometric Mean

Refers to the square root of the product of Precision and Recall.

Geometric Mean =
√

Precision ∗Recall (15)

Table 15 shows the results of our proposed technique.
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Table 15: Experimental Results

Dataset Accuracy

(%)

Precision

(%)

Recall

(%)

Specificity

(%)

F1-score

(%)

Balanced

Accuracy (%)

Geometric Mean (%)

PhysioNet 100 100 100 100 100 100 100

Merged 99.9 99.8 100 99.8 99.9 99.9 99.9

Table 16: comparison with the top 11 scores listed on the Physionet official website.

Dataset Year Score (%) Reference

PhysioNet 2023 100 our architecture

PhysioNet 2016 86.02 [64]

PhysioNet 2016 85.90 [65]

PhysioNet 2016 85.20 [66]

PhysioNet 2016 84.54 [67]

PhysioNet 2016 84.48 [68]

PhysioNet 2017 84.15 [69]

PhysioNet 2016 84.11 [70]

PhysioNet 2016 83.99 [71]

PhysioNet 2016 82.82 [72]

PhysioNet 2016 82.63 [73]

PhysioNet 2016 81.85 [72]

Table 17: Comparison with the scores in the last five years

Dataset Year Score (%) Reference

PhysioNet 2017 89.26 [74]

PhysioNet 2018 91.50 [75]

PhysioNet 2019 92.90 [76]

PhysioNet 2020 91.00 [42]

PhysioNet 2021 95.50 [77]

Merged 2021 94.11 [20]

PhysioNet 2023 100 our architecture

Merged 2023 99.9 our architecture

Fig. 11: Comparing the accuracy, sensitivity, and specificity of all competitors in a PhysioNet challenge
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4.3 Comparative analysis

The PhysioNet (2016) competition [78] intends to promote the creation of techniques for classifying cardiac status based
on HS recordings. Table 16 and figure 11 show the comparison with each competitor in this competition.
Table 17 shows comparisons with other competitors over the past five years.

5 Conclusion and future work

Several studies, as shown in Table 2 have made significant contributions to the prediction of heart disease based on PCG
signals. However, most of the previous high-scoring research relied on a very small dataset, while most of the research
with a large dataset did not score close to 99%. Because the problem is centred in healthcare, we still need a new and
reliable classification model capable of achieving high accuracy on a large dataset to validate the results. Therefore, from
a review of the previous literature presented in this study (Section 2), we proposed a new method to classify PCG signals
extracted from normal and abnormal hearts. We relied on a dataset available in PhysioNet 2016. To expand the dataset,
further training samples were made available by integrating the PASCAL dataset with PhysioNet 2016. By incorporating
a new PCG dataset, we address the limitations of training and testing the model on the small PCG datasets of the previous
proposed methods. Our approach is based on the GoogLeNet Convolutional Neural Network architecture with some
modifications (described in section 3 ) to extract the most important features from the PCG signals and then classify the
heart sound as normal or abnormal. The parameters of the modified GoogLeNet architecture were tuned by the AdaBelief
optimizer. Our algorithm was tested on a combined dataset and also tested on PhysioNet 2016 to compare results with
the highest scores listed on the official PhysioNet website. When compared, our proposed model achieved a significant
improvement with a test accuracy of 100% and 99.9% for PhysioNet and the merged datasets, respectively. Therefore,
high accuracy was achieved on a large dataset, and thus the defects of previous studies were overcome. The limitations of
using the limited duration of the heart sound in previous studies have also been resolved. In the future, we will collect a
dataset containing a description of the type of heart disease, not only whether the heart sound is normal or abnormal, so
in the case of abnormalities, the type of disease is determined.
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