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Abstract: We studied the effect of magnetic field and interdot distance on the exchange interaction in two systems of double qubits,

one made of Si and the other made of GaAs. We found that the effect is the same for both systems, but the exchange value for Si qubits

is smaller due to the larger effective mass of electrons. This study provides insights into the exchange interaction, which is essential for

the development of quantum computers.
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1 Introduction

Quantum computer is a device using quantum physics
principals to store information and executes
computations. To build quantum computer [1], it is
required storage unit for information (qubit) and quantum
logic gate. This qubit should be two level system with
special criteria [2,3] some physical systems are suitable
for qubits and quantum logic gate, but the best suitable
system is semiconductor quantum dot [4] because of its
long coherence time and scalability [5,6,7,8]. Qubit state
is formed by superposition between two states of electron
spin inside dot (spin up and spin down). According to
Pauli Exclusion Principle and the Coulomb interaction,
the ground state of two electrons is a spin singlet, while
the first excited state is a spin triplet [9,10,11]. Quantum
logic gate form from two qubits coupled by superposition
and entanglement mechanisms, to investigate quantum
logic gates operation, first, we calculate the unitary time
evolution between spins in dots:

U12(t) = e
−itHs(t)

h̄ (1)

where Hs is given by HS(t) = J(t)Si.S j (J is the
difference of energy between singlet and triplet state, Si is
the spin operator acting on electron i and S j is the spin
operator acting on electron j). So, the exchange coupling

is the important parameter for quantum logic gate
operation.

The spin of electron inside Silicon (Si) quantum dot
and Gallim Arsenide (GaAs) quantum dot have long
coherence time. Also, the Si and GaAs have a weak spin
-orbit interaction, so GaAs and Si are the best suitable for
qubits. Here we investigate two symmetry double
quantum dots systems (each dot has one electron), one of
them is GaAs double quantum dots and the other system
is Si double quantum dots. we use the approximation
models Hund-Mulliken and Heitler-London for
calculation of exchange coupling between singlet and
triplet state. We study the effect of external magnetic field
and interdot distance on exchange interaction coupling for
two systems.

2 Physical Model

We consider two symmetry double quantum dots systems
as where one of them of GaAs quantum dot and the other
from Si quantum dot. As shown in Fig. (1), in each center
of the dot there is one electron of spin [maybe in up-state
or in down-state] and the distance between each dot and
origin is d. The effective mass of electron is 0.191me for Si
and 0.067 me for GaAs. The electron will allow to tunnel
through the barrier between dots from one to another,

If we applied electric and magnetic fields on each
system where electric field in x direction and magnetic
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Fig. 1: Symmetry double quantum dot (for GaAs system and Si

system) with inter dot distance is 2 d, one electron inside each

dot. A magnetic field is applied in z axis.

field in z direction then we can write Hamiltonian as two
terms:

H = H1 +H2 (2)

where H1 is summation of two particle energy and the
potential between dots is given by:

H1 =
2

∑
i=1

1

2m
(pi −A(ri))

2 +V(ri)+V(x,y) (3)

whereA(ri) is the vector potential where is given by

A(ri) = [B×ri]
2

→ B
2
(−y,x,0), V (ri) is the confined

potential, the confinement potential for aligned double
dots is the quartic potential is

V (x,y) = ω0h̄

2a2
0

(( x2

2a
− a

2
)2 + y2), and H

2
is summation of

three terms:

H2 = ge f f µB ∑BSi
Z + exiE +

e2

εr12

(4)

The first term is Zeeman energy where the g-factor is 0.44
for GaAs and 2 for Si and µ

B
is the Boher magneton. The

value of Zeeman effect for GaAs and Si is a small value,
so we can neglect Zeeman energy for two systems. The
second term is electric energy, and the third term is
Coulomb interaction between two electrons, where ε is
the dielectric constant (in GaAs ε = 13.1 and for Si=7.9),
r12 is the distance between the two electrons. From the
experimental researches, the potential of single dot is a
harmonic oscillator potential [12,13,14], thus the
potential between two quantum dots is chosen to be:

V (x,y) =
mω2

0

2
(

1

4d2
(x2 − d2)2 + y2) (5)

These is the potential between two dots (two harmonic
potential wells of frequency ω0.

From experimental research the single quantum dot
potential is harmonic oscillator. so, the electron ground
state wave function φ(x,y) is given by:

φ(x,y) =

√

mω

π h̄
e
−mω(x2+y2)

2h̄ (6)

where ω =
√

ω2
0 +ω2

l and ωl is the Larmor

frequency (ωl=
eB
m∗ ), so the wave function of

ground state electron inside dot is given by:

φ±d(x,y) = exp(± iyd

2l2
B

)φ(x∓d,y) (7)

where exp(± iyd

2l2
B

) is the magnetic field phase

factor, (lB =
√

h̄c
ωlm

∗ ) is the length of magnetic

field, we choose the gauge described by the

vector:

A =
[B× r]

2
→ A± =

B

2
(−y,x,0) (8)

After this consideration, the two electrons Hamiltonian
is:

Horb =
1

2m
(p1 − e

c
A(r1))

2 + 1
2m

(p2 − e
c
A(r2))

2 +

V (x,y)+ e2/(εr12) (9)

We can write the Hamiltonian of two quantum dots as:

Horb = ∑2
i=1

((Pi−eA(ri)/C))2

2m
+ mw2

2
((xi ∓ d)2 + yi

2)

+W +Vc (10)

where W (x,y) =V (x,y)− mω2

2
((x1 +d)2+(x2−d)2)

and Vc = e2/(εr12).
Under magnetic field the two-electron spin have two

spin state one of them is singlet state
(S = 0)|S〉 = 1√

2
| ↑↓ − ↓↑〉 and the other is triplet state

(S = 1)|T0〉 = 1√
2
| ↑↓ + ↓↑〉, |T+〉 = | ↑↑〉, |T−〉 = | ↓↓〉,

where the ground state is singlet and first excited state is
triplet under condition h̄ωo ≫ KT . Exchange interaction
is given by the difference between triplet and singlet state.
So J = ET − ES to calculate it we use this expectation
equation:

J = 〈ψT | Horb | ψT 〉− 〈ψS | Horb | ψS〉 (11)

Quantum dot is like an atom (artificial atom) so we can
consider the two quantum dots as artificial molecule. Then,
we can use the same approximation methods as Hund –
Mulliken and Heitler – London models, under condition at
zero magnetic field the ground state should be singlet (at
B = 0 is J > 0).

3 Heitler-London model

Heitler-London model is the approximation method to
evaluate the exchange interaction between two electrons
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in molecule or in two quantum dots. It considers the
single electron wave function as a basis and the system is
two level one is singlet and the other is triplet state which
is linear combination from basis. The accuracy of this
method is related to the distance between two dots as
larger as more accurate exchange value. The two-level
system (singlet and triplet wave function) is:

| ψS⁄T 〉=
| φL(1)φR(2)±φL(2)φR(1)〉√

(2(1± p2
LR))

× |↑↓ ∓ ↓↑〉√
2

(12)

The first term is the orbital contribution, the spin wave
function term can be neglected. The orbit wave function
overlap is:

p =

ˆ

φ∗
+d(r)φ−d(r)d

2r = 〈φL | φR〉= e
(−mωd2

h
− d2h̄

4lBmω )

(13)

From equations (7), (8), and (9) the exchange energy
due to HL obtained by:

JHL = 〈ψT Horb ψT 〉− 〈ψS Horb ψS〉 (14)

This can be written as:

JHL = p2

1−p4 (JW + JVc)

= p2

1−p4 [〈φL(1)φR(2)|w|φL(1)φR(2)〉
− 1

p2 〈φL(1)φR(2)|w|φL(2)φR(1)〉
+〈φL(1)φR(2)|c|φL(1)φR(2)〉

− 1
p2 〈φL(1)φR(2)|c|φL(2)φR(1)〉]

(15)

after calculation the exchange interaction by HL
approximation method is given by:

JHL = h̄ω0

sinh[2d2(2b−1/b)]
[ bα2

16π2ω
e−10bα2

(1+ e
bα2(3− 1

b2 )(ω0 − 4ω2

ω0
+ 3h̄ω0)

+ (S
√

bEr f [2
√

2bd]
8π2 (e2ba2 − e2(b− 1

b
)d2

)]

(16)

where Erf (error function) is given by

Er f (z) = 2√
π

´ z

0
e−t2

dt and s = 1

8
√

2π
3
2

e2

ka0
h̄ωo

is the ratio

between Coulomb energy and confining energy, the b is

the m is given by b = ω
ωo

=

√

1+
ω2

l

ω2
0

(magnetic factor), and

α is the interdot distance to interatomic distance α = d
ao

.

As shown in Fig. (2), the exchange energy J against
the magnetic field is plotted for GaAs system. We note
that J is positive at zero magnetic field, because the two
electrons in singlet state. By increasing of magnetic field,
the exchange coupling decreases until to be zero. The
change from singlet to triplet state (sign change of J from
positive to negative) occurs at B=1.3T (for
h̄ω0 ≈ 3meV,and d=0.7). Then by increasing the magnetic
field J go to zero.

Fig. 2: For GaAs system: variation of exchange interaction with

magnetic field at value 3 meV of confinement energy and the

distance between dot is fixed (HL model).

Fig. 3: For Si system, variation of exchange interaction with

magnetic field at value 8 meV of confinement energy and the

distance between dots is fixed (HL model).

Fig. 4: Variation of J obtained from HL with inter dot distance d

at zero magnetic field (B=0).

As shown in Fig. (3), the exchange energy J against
the magnetic field is plotted for Si system. We note that J
is positive at zero magnetic field, because the two
electrons in singlet state. By increasing of magnetic field,
the exchange coupling decreases, until to be zero. The
change from singlet to triplet state (sign change of J from
positive to negative) occurs at B=6.42T (for
h̄ω0 ≈ 8meV,and d=1.2).

As shown in Fig: (4) and (5) for Si and GaAs double
quantum dots systems, it is clear that the J exhibits the
same behavior for two systems, as the distance between
two dots increases as the exchange interaction decreases
where the distance between two dots is a measure the
overlap between the wavefunction of two electrons.
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Fig. 5: For Si: the variation of J obtained from HL with inter dot

distance d at zero magnetic field (B=0).

4 Hund-Mulliken method

Hund-Mullikan is approximate method which differ from
Heitler-London model in the no. of states, here it include
the doubly occupied states, where there are two doubly
occupied states beside the Heitler-London singlets S(1,1)
and triplet T(1,1). Where this states are linear
combination from the same basis single electron wave
function as in HL, the doubly occupied state should be
singlet state according to Pauli principle. So, the two
Hilbert space in HL become four Hilbert space in HM,
the four wave functions are:

ψd
L = ΦL(r1)ΦL(r2) (17)

ψd
R = ΦR(r1)ΦR(r2) (18)

ψS =
ΦL(r1)ΦR(r2)+ΦL(r2)ΦR(r1)√

2

ψT = ΦL(r1)ΦR(r2)−ΦL(r2)ΦR(r1)√
2

(19)

The Hamiltonian operator according to HM wave
functions is:

Horb = εR + εL +









U X
√

2t 0

X U
√

2t 0√
2t

√
2t Vs 0

0 0 0 VT









(20)

Then, we obtained the energy for states by:

ET = εR + εL +VT (21)

ES0 = εR + εL +U −X (22)

ES− = εR + εL +
U

2
+

VS

2
+

X

2
−
√

(U −VS +X)2

4
+ 4t2

(23)

ES+ = εR + εL +
U

2
+

VS

2
+

X

2
+

√

(U −VS +X)2

4
+ 4t2

(24)

Fig. 6: For GaAs: The Hund-Mullikan exchange energy J as a

function of magnetic field at a fixed inter-dot.

Fig. 7: For Si system: The Hund-Mullikan exchange energy J as

a function of magnetic field at a fixed inter-dot.

where εR/L = 〈φR/L | k0
±d | φR/L〉 are the single electron

energy in the each dot, U = 〈ψd
L/R

| C | ψd
L/R

〉 is the

coulomb reputation energy, X = 〈ψd
L/R

| C | ψd
R/L

〉 is

Coulomb exchange energy, Vs = 〈ψs | C | ψs〉,
VT = 〈ψT | C | ψT 〉 are the Coulomb energies for the
singlet and triplet state for one electron inside each
quantum dot t = 〈φL/R | k0

∓d | φR/L〉+ 1√
2
〈ψs |C | ψd

L/R
〉 is

tunneling energy matrix element. The orthonormal of
basis (single electron wavefunction) is given by:

ΦL/R =
ΦL/R − gΦR/L
√

1− 2pg+ g2
(25)

where g =
(1−

√
(1−p2))

p
and p is the overlap wavefunction

between two electrons. We can obtain the exchange
coupling J from diagonalizing of Hamiltonian, where J is
the different between triplet state and singlet state so,

JHM = ET− =VT −VS − 1
2
(U −VS +X)+

1
2

√

(U −VS +X)2 + 16t2 (26)

For Si and GaAs system, as shown in Fig. (6) and (7)
exhibits the same behavior of HL, we can say that the
result obtained from HM has a good agreement with that
obtained by HL.
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5 Conclusion

From our results, the effect of physical parameters as an
interdot distance and external magnetic field parameter on
exchange interaction for GaAs double quantum dots
(GaAs qubits) is qualitatively the same for Si double
quantum dots (Si qubits). The exchange interaction in Si
is smaller than GaAs because of the smaller wave
function overlap which due to large electron mass inside
silicon. Also, the scalability is advantage for silicon
qubits over other qubits types because of small size of
silicon qubits.
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