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Abstract: In this work, we studied the controllability results for neutral differential time-varying equation with impulses on time scales
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1 Introduction

Newton & Leibniz introduced calculus invention of
differential equation which was brought into the reality.
Bernoulli differential equation put forward by Jacob
Bernoulli. Leibniz obtained with simplification of
ordinary differential equation form for which the year
happening next. Joseph Louis Lagrange succeeded in
addressing the issue of string vibration in musical
instruments in previous times. d’Alembert established the
one-dimensional wave equation in the year 1746. An
integrodifferential equations has appeared in having
happened years as an self-sufficient part of modern
research since of its relationship to a large number of
fields for example Ecology, continuum mechanics,
System theory, population dynamics, Biology,
Viscoelasticity, Epidemics & other branches of
Engineering & Science [25,33]. Integrodifferential
equations arise in an interim state in the change of a
differential equations to an integral equations [9].

Neutral integrodifferential equations takes place in the
study of compartmental systems, viscoelasticity,
population dynamics, & more than two fields of science
[22,23]. In applied mathematics, neutral differential
equations used widely in several areas. Cause of this
purpose, these equations have gained more observation
for the past few decades. Neutral delay differential
equations include the derivative of the unfamiliar
function, with both accompanied and unaccompanied
delays.Few additional instances can be observed, leading

to the conclusion that the theory of neutral delay
differential equations is more complex than that of
non-neutral delay equations. The swinging behaviour of
the neutral systems solutions that is of significance in
both the applications & theory, for example population
growth, the radiating electrons motion, in networks
containing lossless transmission lines, & the epidemics
spread [34].

The impulsive differential equations theory plays a
significant role in technology development & social
sciences development & science development. More than
two occurrences in these branches have mathematical
models with regard to a few impulsive differential
equations part [8,31].It is widely recognized that various
biological phenomena such as optimal control models in
economics, thresholds & biology exhibit impulse effects,
& also impact the modulation of system frequencies [16,
17,18,19,20]. There are several development processes
that stand out because they have the ability to undergo a
sudden change of state at a specific time period. We are
referring to temporary disruptions that have a relatively
short duration, which do not affect the overall process that
is being compared. Hence, the form of impulses where
perturbations act instantaneously that is natural to
presume. Involving impulse effects of differential
equations, appear as several real world problems such as
natural description of observed evolution occurrence [29].

In existence, one of the most significant
interdisciplinary research area & emerges in the very first
technological inventories of the industrial uprising as well
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as in the most recent technological
applications.Deterministic & non-deterministic partial
differential equations, integro-differential equations, or a
combination of ordinary & partial differential equations
with or without delay in finite or infinite dimensional
spaces using semigroup & cosine family can be used to
represent numerous scientific & engineering problems.
The majority of the systems that emerges in application
are nonlinear to few area, at least over part of their
functioning range. The primary step in dealing with a
nonlinear system is usually, if possible, to represent in it
around few formal utilizing spot is usual as long as, linear
systems are more familiar to manipulate mathematically.
A superior estimation to nonlinear system is the
semilinear system that is by making a local
approximation about few formal trajectories to a system
with a linear part in addition a nonlinear part & can be
obtained from a common nonlinear system. Some
qualities of this system include regularity of the solutions,
existence, stability of equilibrium points, & uniqueness,
among others. An important area of study in control
theory is Controllability. In many applications the aim of
the control undertaking is to operate the system from one
state to another in an optimal fashion.Nevertheless, prior
to addressing the question concerning optimality, it is
essential to consider the more fundamental inquiry of
whether attaining a desired state from an initial state is
feasible or not. The basic definitions & general theory of
controllability & controllability with nonlocal conditions
are referred in [1,6,21,24,30,12,28,26,32].

A time scale can be said to be time replica [11]. Time
can exist in a continuous or discrete form, or it may
possess characteristics of both continuousness &
discreteness to varying degrees [14,15]. After 1980s,
continuous-time Controllability & discrete-time
Controllability linear positive systems has been subject of
analysis [27]. After 1980s, S Hilger initiated this idea in
his PhD thesis of time scales calculus & also establish
how to fuse discrete- & continuous- time dynamical
systems. Presently more than many analyser are acquiring
curious in the time scale calculus, put up to its evolution
& exhibiting theory applications & methods applications
in more than two field. M Bohner introduced calculus of
variations on time scales in 2004 by using delta integral &
delta derivative, & it has been additionally evaluated by
more than many distinct writers in more than many
different views. Applying those results to profitable
models & to display advantages of using time scales
device that is the main aim of present work.

Time models has numerous examples which may be
to some extent continuous & to some extent discrete, in
addition to the level of attainment the whole line cases &
the set of integers - continuous time, discrete time. The
true delta derivative function is defined as the discrepancy
between the classical derivative in continuous time and
the discrepancy in discrete time, with their similarities
limited. R. H. Middleton & G. C. Goodwin were
responsible for the main attempt to combine the

continuous-time theories & discrete-time control systems.
Both considered realizations of linear systems,
controllability & observability. For more details, refer [2,
3,4,5].

We examine the specific results of controllability for
the neutral integro-differential equation with impulsive
events on time scales, as well as the associated nonlocal
problem. Many classical problems can be solved by the
method of modern analysis. The fixed point method is a
valuable approach primarily utilized for demonstrating
the existence & uniqueness of solutions in differential
equations. In this study, our primary approach involves
utilizing the Banach fixed point theorem(BFT) to examine
the existence of controllability results. Motivation is to
discuss neutral integrodifferential equations
controllability within finite dimensional spaces along
impulses on time scales. In this scenario, a non-linear
control system is being examined. The system is
time-varying & includes impulses on a specific time scale
in Rn.[

z(ζ )−ω

(
ζ ,za(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,z(s))∆s
)]∆

=

A(ζ )z(ζ )+B(ζ )u(ζ )+ f
(

ζ ,z(ζ ),
∫

ζ

ζ0

v(ζ ,s)G(s,z(s))∆s
)
,

ζ ∈ I,ζ ̸= ζk, z(ζ+
k )− z(ζ−

k ) =V1k(ζk,z(ζ
−
k )),

k = 1,2, ...,mz(ζ0)− ε(z) = z0. (1.1)

Here state function is z(ζ ) ∈ Rn & time scale be T with
ζ0,ζk,b ∈ T . za(ζ ) = z(a(ζ )), where a : I = [ζ0,b]T → I
is a delay function which satisfies a(ζ ) ≤ ζ .
A(ζ ) ∈ CrdR(T ,Mn(R)), B(ζ ) ∈ CrdR(T ,Mn×m(R)).
Throughout, for k = 1,2, ...,m, the points of impulses ζk
satisfy 0 ≤ ζ0 < ζ1 < ζ2 < ... < ζm < ζm+1 = b,z(ζ+

k ) =

limh→0+ z(ζk +h),z(ζ−
k ) = limh→0+ z(ζk −h) denotes left

& right limits of z(ζ ) at in case of time scale ζ = ζk . The
control function is u(·) ∈ Rm. f : I × Rn → Rn,
V1k : I×Rn → Rn & ω : I×Rn → Rn are the functions
defined which satisfies some contexts that will be stated
thereafter. The obtained results are entirely novel, indeed
the context of differential equations (T = R) & in
context of difference equation (T = Z).

2 Preliminaries

Assume n-dimensional vectors space along ∥ · ∥ is Rn .
Banach spaces(BS) of f̃ : I → Rn is C(I,Rn), i.e
continuous & provided with ∥ f̃∥C = supt∈I ∥ f̃ (t)∥.
L1(I,Rn) is Lebesgue integrable in terms of time scales
which denotes the space of functions from I into Rn.
Assume PC(I,Rn) as
PC(I,Rn) = {x : I → Rn : x ∈ C((tk, tk+1],R

n),
k = 0,1, ...,m & ∃ x(t−k ) & x(t+k ), k = 1,2, ...,m with
x(t−k ) = x(tk)}. PC(I,Rn) forms a BS provided along sup
norm can be easily proven, ∥x∥PC = supt∈I ∥x(t)∥. Denote
PC for PC(I,Rn) for the notional convenience.
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A non empty closed subset of the real no.R is referred to
as a time scale T . If max T appears, we get
T k = T /{maxT } else T k = T . Some of the most
frequently encountered instances are
T = R,T = N,T = hZ, where h > 0.
[a,b] = {t ∈ T : a ≤ t ≤ b} be a time scale interval, also
defining (a,b),(a,b], [a,b) & so on. From now on time
scale interval will be used.
ρ(t) := inf{s ∈ T : s > t} has inf{φ} = supT is defined
as forward jump operator ρ(T k,T ). Also,
µ(t) := ρ(t)− t, ∀ t ∈ T k is defined as the graininess
function µ(T k, [0,∞)) .

Definition 1.[10] Let Z : T → Rn & t ∈ T k. The ∆

derivative Z∆ (t) is the no. s.t., ∀ ε > 0, ∃ a nbd U(t) s.t.,

|[Z(ρ(t))−Z(s)]−Z∆ (t)[ρ(t)− s]| ≤ ε|ρ(t)− s|,∀ s ∈U.

Definition 2.[10] F is called antiderivative of Z : T → X
endowed D∆ (t) = Z(t) ∀ t ∈ T k, we have:∫ t

t0
Z(s)∆s = D(t)−D(t0).

Definition 3.[10] p(T,R) known as regressive,∀ t ∈ T,1+
η(t)p(t) ̸= 0. R denotes for every regressive functions.

Definition 4.[10] The generalized exp function for p ∈ R
is given as:

ep(t,s) = exp
(∫ t

s
ξ η(ς)(p(ς))∆ς

)
, t,s ∈ T ,

here ξη(ς)(p(ς)) be cylinder transformation defined as:

ξη(ς)(q) =

{
1

η(ς) log(1+η(ς)q), if η(ς) ̸= 0.
q, if η(ς) = 0.

Theorem 1.[3] For A ∈ CrdR(T ,Mn(R)) &
w ∈Crd(T ,Rn), ∀ x0 ∈ Rn

x∆ (t) = A(t)x(t)+w(t),x(t0) = x0, t0 ∈ T , (1.2)

has unique solution as:

x(t) = ΦA(t, t0)+
∫ t

t0
ΦA(t,ρ(ς))w(ς)∆ς , t ≥ t0, (1.3)

here ΦA(·, t) is the transition matrix of homogeneous eqn
corresponding to eqn (1.2). Assume,

x∆ (t) = A(t)x(t)+B(t)u(t), t ∈ I
′
, t ̸= tk,

x(t+k )− x(t−k ) = Jk(tk,x(t−k )), t = tk, k = 1,2, ...,m,

x(t0) = x0. (1.4)

Lemma 1.x ∈ PC is known as solution of (1.4), if it
satisfies x(t0) = x0, x(t+k ) − x(t−k ) = Jk(tk,x(t−k )),
k = 1,2, ...,m & x(t) known as solution of eqn

x(t) = ΦA(t, t0)x0 +
∫ t

t0
ΦA(t,ρ(s))B(s)u(s)∆s

+ ∑
t0<tk<t

ΦA(t, tk)Jk(tk,x(t−k )). (1.5)

Proof: The proof is obtained using mathematical
induction.
Remark: If the impulses x(t+k ) − x(t−k ) = 0,
k = 1,2, ...,m, then (1.4) is given by

x∆ (t) = A(t)x(t)+B(t)u(t), t ∈ I
′
,

x(t0) = x0, (1.6)

& eqn (1.5) becomes

x(t) = ΦA(t, t0)x0 +
∫ t

t0
ΦA(t,ρ(s))B(s)u(s)∆s.

The result of controllability for (1.5) is explained in [7].

Theorem 2.The controllability Gramian matrix W b
t0 is

reversible iff (1.5) is controllable on [t0,b], where

W b
t0 =

∫ b

t0
ΦA(b,ρ(s))B(s)BT (s)ΦT

A (b,ρ(s))∆s.

The following assumptions are needed based on [13]:

(H1) : ω : I×Rn ×Rn → Rn is ∆ differentiable & ∃
Lω1 ,Lω2 > 0 s.t.,

∥ω(ζ ,z,y)−ω(ζ , z̄, ȳ)∥ ≤ Lω1∥z− z̄∥+Lω2∥y− ȳ∥,
∀z,y, z̄, ȳ ∈ Rn,ζ ∈ I.

&, ∃ Cω ,Mω ,Nω > 0 such that
∥ω(ζ ,z,y)∥ ≤ Cω + Mω∥z∥ + Nω∥y∥, ∀z,y ∈ Rn &
ζ ∈ I.

(H2) : f : I× Rn × Rn → Rn is continuous & ∃
Lf1 ,Lf2 > 0 s.t.,

∥ f (ζ ,z,y)− f (ζ , z̄, ȳ)∥ ≤ Lf1∥z− z̄∥+Lf2∥y− ȳ∥,
∀z,y, z̄, ȳ ∈ Rn,ζ ∈ I.

Also, ∃ Cf,Mf,Nf > 0 s.t.,
∥ f (ζ ,z,y)∥ ≤ Cf+Mf∥z∥+Nf∥y∥, ∀z,y ∈ Rn & ζ ∈ I.

(H3) : V1k(ζk,z(ζk)) ∈ C(I,Rn), k = 1,2, ...,m & ∃
‘+’ve constant LV1 > 0 such that

∥V1k(ζ ,z)−V1k(ζ ,y)∥ ≤ LV1∥z− y∥,∀z,y ∈ Rn,ζ ∈ I.

Also, ∃ MV1 ,NV1 > 0 s.t.,
∥V1(ζ ,z)∥ ≤MV1 +NV1∥z∥,∀z ∈ Rn & ζ ∈ I.

(H4) : l is a continuous function & ∃ a no. Ml > 0 s.t.,

Ml =
∫

ζ

ζ0

|l(ζ ,s)|∆s.

(H5) : E3 : I ×Rn → Rn is continuous function & ∃
LE3 > 0 s.t.,

∥E3(ζ ,z)−E3(ζ ,y)∥ ≤ LE3∥z− y∥,∀z,y ∈ Rn,ζ ∈ I.
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Also, ∃ME3 ,NE3 > 0 s.t., ∥E3(ζ ,z)∥ ≤ME3 +NE3∥z∥,
∀z ∈ Rn & ζ ∈ I.

(H6) : v is a continuous function & ∃ a no. Mv > 0 s.t.,

Mv =
∫

ζ

ζ0

|v(ζ ,s)|∆s.

(H7) : G : I ×Rn → Rn is continuous function & ∃
LG > 0 s.t.,

∥G(ζ ,z)−G(ζ ,y)∥ ≤ LG∥z− y∥,∀z,y ∈ Rn,ζ ∈ I.

Also, ∃ Mg,Ng > 0 s.t., ∥G(ζ ,z)∥ ≤ Mg + Ng∥z∥,
∀z ∈ Rn & ζ ∈ I.

(H8) : ε : C(I,Rn)→Rn is continuous & ∃ a constant
Lε > 0 s.t.,

∥ε(z)− ε(y)∥ ≤ Lε∥z− y∥,∀z,y ∈ Rn.

For the notional convenience, consider

MΨ = max{ΨA(ζ ,s), ζ0 ≤ s ≤ ζ ≤ b}, MA = sup
ζ∈I

∥A(ζ )∥.

MB = sup
ζ∈I

∥B(ζ )∥, MW = ∥(W b
0 )

−1∥.

M∗ = (1+MΨ +MAMΨ b)(Cω +NωMlME3)

+MΨ b(Cf+NfMvMG)+mMΨMV1 .

M∗∗ = (1+MΨ +MAMΨ b)(Mω +NωMlNE3)

+MΨ b(Mf+NfMvNG)+mMΨNV1 .

K1 = (1+M2
ΨMB

2MWb)(MΨ (∥z0 + ε(z)∥)+M∗)

+M2
ΨMB

2MWb∥zb∥.
K2 = (1+M2

ΨMB
2MWb)M∗∗.

3 Neutral Integro-Differential Equations
Controllability Results

Definition 5.z∈PC is called solution of (1.1), if it satisfies
z(ζ0) = z0,z(ζ+

k )− z(ζ−
k ) =V1k(ζk,z(ζ−

k )), k = 1,2, ...,m
& z(ζ ) is the solution of the following equation

z(ζ ) = ω

(
ζ ,za(ζ ),

∫
ζ

ζ0
l(ζ ,s)E3(ζ ,z(s))∆s

)
+ΨA(ζ ,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫

ζ

ζ0
l(ζ0,s)E3(ζ0,z(s))∆s

)]
+

∫ b

ζ0
A(r)ΨA(ζ ,ρ(r))ω

(
r,za(r),

∫ r

r0
l(r,s)E3(r,z(s))∆s

)
∆r

+
∫ b

ζ0
ΨA(ζ ,ρ(r))

(
B(r)u(r)+ f

(
r,z(r),

∫ r

r0
v(r,s)G(r,z(s))∆s

))
∆r

+ ∑
ζ0<ζk<ζ

ΨA(ζ ,ζk)V1k(ζk ,z(ζk)) (1.8)

Lemma 2.Consider (H1)− (H7) holds, control input

u(ζ ) = BT (t)Ψ T
A (b,ρ(ζ ))(W b

ζ0
)−1P(z), (1.9)

transfer the system

z(ζ ) = ω

(
ζ ,za(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,z(s))∆s
)

+ΨA(ζ ,ζ0)

[
z0 + ε(z)

−ω

(
ζ0,za(ζ0),

∫
ζ

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

+
∫ b

ζ0

A(r)ΨA(ζ ,ρ(r))ω
(

r,za(r),
∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

+
∫ b

ζ0

ΨA(ζ ,ρ(r))
[

B(r)u(r)

+ f
(

r,z(r),
∫ r

r0

v(r,s)G(r,z(s))∆s
)]

∆r

+
m

∑
k=1

ΨA(ζ ,ζk)V1k(ζk,z(ζk))

from z0 to zb in b &, Mu is approximate for the control
input u(ζ ),

P(z) = zb −ΨA(b,ζ0)

[
z0 + ε(z)

−ω

(
ζ0,za(ζ0),

∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

−ω

(
b,za(b),

∫ b

ζ0

l(b,s)E3(b,z(s))∆s
)

−
∫ b

ζ0

ΨA(b,ρ(r)) f
(

r,z(r),
∫ r

r0

v(r,s)G(r,z(s))∆s
)

∆r

−
∫ b

ζ0

A(r)ΨA(b,ρ(r))ω
(

r,za(r),
∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

−
m

∑
k=1

ΨA(b,ζk)V1k(ζk,z(ζ
−
k ))

&

Mu =MBMΨMW(∥zb∥+MΨ∥z0 + ε(z)∥+M∗

+M∗∗ sup
ζ∈I

(∥z(ζ )∥)).s
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Proof: Put ζ = b, in (1.8) we have:

z(b) = ω(b,za(b),
∫ b

ζ0

l(b,s)E3(b,z(s))∆s)

+ΨA(b,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

+
∫ b

ζ0

A(r)ΨA(b,ρ(r))ω
(

r,za(r),∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

+
∫ b

ζ0

ΨA(b,ρ(r))B(r)u(r)∆r

+
∫ b

ζ0

ΨA(b,ρ(r)) f
(

r,z(r),∫ r

r0

v(r,s)G(r,z(s))∆s
)

∆r

+ ∑
ζ0<ζk<ζ

ΨA(b,ζk)V1k(ζk,z(ζk))

= ω

(
b,za(b),

∫ b

ζ0

l(b,s)E3(b,z(s))∆s
)

+ΨA(b,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

+
∫ b

ζ0

A(r)ΨA(b,ρ(r))ω
(

r,za(r),∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

+
∫ b

ζ0

ΨA(b,ρ(r))B(r)BT (r)

Ψ
T

A (b,ρ(r))(W b
ζ0
)−1P(z)∆r

+
∫ b

ζ0

ΨA(b,ρ(r)) f
(

r,z(r),∫ r

r0

v(r,s)G(r,z(s))∆s
)

∆r

+
m

∑
k=1

ΨA(b,ζk)V1k(ζk,z(ζ−
k ))

= ω

(
b,za(b),

∫ b

ζ0

l(b,s)E3(b,z(s))∆s
)

+
m

∑
k=1

ΨA(b,ζk)V1k(ζk,z(ζ−
k ))

+ΨA(b,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

+
∫ b

ζ0
A(r)ΨA(b,ρ(r))ω

(
r,za(r),

∫ r

r0
l(r,s)E3(r,z(s))∆s

)
∆r

+(W b
ζ0
)(W b

ζ0
)−1P(z)

+
∫ b

ζ0
ΨA(b,ρ(r)) f

(
r,z(r),

∫ r

r0
v(r,s)G(r,z(s))∆s

)
∆r

z(b) = ω

(
b,za(b),

∫ b

ζ0
l(b,s)E3(b,z(s))∆s

)
+

m

∑
k=1

ΨA(b,ζk)V1k(ζk ,z(ζ−
k ))

+ΨA(b,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫ b

ζ0
l(ζ0,s)E3(ζ0,z(s))∆s

)]
+

∫ b

ζ0
A(r)ΨA(b,ρ(r))ω

(
r,za(r),

∫ r

r0
l(r,s)E3(r,z(s))∆s

)
∆r

+ zb −ΨA(b,ζ0)(z0 + ε(z)

−ω

(
ζ0,za(ζ0),

∫ b

ζ0
l(ζ0,s)E3(ζ0,z(s))∆s

)
−ω

(
b,za(b),

∫ b

ζ0
l(b,s)E3(b,z(s))∆s

)
−

∫ b

ζ0
ΨA(b,ρ(r)) f

(
r,z(r),

∫ r

r0
v(r,s)G(r,z(s))∆s

)
∆r

−
∫ b

ζ0
A(r)ΨA(b,ρ(r))ω

(
r,za(r),

∫ r

r0
l(r,s)E3(r,z(s))∆s

)
∆r

−
m

∑
k=1

ΨA(b,ζk)V1k(ζk ,z(ζ−
k ))

]
+

∫ b

ζ0
ΨA(b,ρ(r)) f

(
r,z(r),

∫ r

r0
v(r,s)G(r,z(s))∆s

)
∆r

= zb

i.e., z(b) = zb.
∴ control input (1.9) is suitable for the system

[
z(ζ )−ω

(
ζ ,za(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,z(s))∆s
)]∆

=

A(ζ )z(ζ )+B(ζ )u(ζ )

+ f
(

ζ ,z(ζ ),
∫

ζ

ζ0

v(ζ ,s)G(s,z(s))∆s
)
,

ζ ∈ I,ζ ̸= ζk

z(ζ+
k )− z(ζ−

k ) =V1k(ζk,z(ζ
−
k )),k = 1,2, ...,m

z(ζ0)− ε(z) = z0.

Also, we have,

∥u(ζ )∥ ≤ ∥BT (ζ )∥∥Ψ T
A (b,ρ(ζ ))∥∥(W b

ζ0
)−1∥∥P(z)∥

≤MBMΨMW∥P(z)∥ (1.10)
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∥P(z)∥= ∥zb −ΨA(b,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

−ω

(
b,za(b),

∫ b

ζ0

l(b,s)E3(b,z(s))∆s
)

−
∫ b

ζ0

ΨA(b,ρ(r)) f
(

r,z(r),∫ r

r0

v(r,s)G(r,z(s))∆s
)

∆r

−
∫ b

ζ0

A(r)ΨA(b,ρ(r))ω
(

r,za(r),∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

−
m

∑
k=1

ΨA(b,ζk)V1k(ζk,z(ζ
−
k ))∥

≤ ∥zb∥+MΨ∥z0 + ε(z)∥
+MΨ (Cω +Mω sup

ζ∈I
∥z(ζ )∥

+Nω (Ml(ME3
+NE3

sup
ζ∈I

∥z(ζ )∥)))+Cω

+Mω sup
ζ∈I

∥z(ζ )∥+Nω (Ml(ME3

+NE3
sup
ζ∈I

∥z(ζ )∥))

+MAMΨ b(Cω +Mω sup
ζ∈I

∥z(ζ )∥)

+Nω (Ml(ME3
+NE3

sup
ζ∈I

∥z(ζ )∥)))

+MΨ b(Cf+Mf sup
ζ∈I

∥z(ζ )∥

+Nf(Mv(Mω +Nω sup
ζ∈I

∥z(ζ )∥)))

+mMΨ (MV1
+NV1

sup
ζ∈I

∥z(ζ )∥)

≤ ∥zb∥+MΨ∥z0 + ε(z)∥+MΨCω +MΨNωMlME3

+Cω +NωMlME3
+MAMΨ bCω

+MAMΨ bNωMlME3

+MΨ bCf+MΨ bNfMvMG+mMΨMV1

+{MΨ (Mω +NωMlNE3
)+Mω +NωMlNE3

+MAMΨ b(Mω +NωMlNE3
)

+MΨ b(Mf+NfMvNω )+mMΨNV1
}sup

ζ∈I
∥z(ζ )∥

≤ ∥zb∥+MΨ∥z0 + ε(z)∥+M∗+M∗∗ sup
ζ∈I

∥z(ζ )∥.

Then equation (1.10) becomes

∥u(ζ )∥ ≤MBMΨMW(∥zb∥+MΨ∥z0 + ε(z)∥+M∗

+M∗∗ sup
ζ∈I

∥z(ζ )∥)

= Mu.

Theorem 3. If (H1)− (H8) are hold with

Lα =

[
Lω1 +Lω2MlLE3

+MΨ

(
Lε +Lω1 +Lω2MlLE3

+mLV1
+MAb(Lω1 +Lω2MlLE3

)

+b(Lf1 +Lf2MvLG)

)]
(1+M2

ΨMB
2MWb)< 1,

then on I (1.1) is controllable.

Proof: For β = K1
1−K2

, assume a subset B ⊆ PC s.t.,

B = {z ∈ PC : ∥z∥PC ≤ β}.

Define Π : B → B :

(Πz)ζ =ΨA(ζ ,ζ0)

[
z0 + ε(z)

−ω

(
ζ0,za(ζ0),

∫
ζ

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)]

+ω

(
ζ ,za(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,z(s))∆s
)

+
∫

ζ

ζ0

ΨA(ζ ,ρ(r))
[

B(r)u(r)

+ f
(

r,z(r),
∫ r

r0

v(r,s)G(r,z(s))∆s
)

∆r
]

+
∫ b

ζ0

A(r)ΨA(ζ ,ρ(r))ω
(

r,za(r),∫ r

r0

l(r,s)E3(r,z(s))∆s
)

∆r

+ ∑
ζ0<ζk<ζ

ΨA(ζ ,ζk)V1k(ζk,z(ζ
−
k )).

We need to show that Π : B → B to use the Banach
contraction theorem. Now, for ζ ∈ I & z ∈ B, then

∥(Πz)ζ∥ ≤ MΨ (∥z0 + ε(z)∥+Cω +Mω sup
ζ∈I

∥z(ζ )∥

+Nω (Ml(ME3
+NE3

sup
ζ∈I

∥z(ζ )∥))

+Cω +Mω sup
ζ∈I

∥z(ζ )∥

+Nω (Ml(ME3
+NE3

sup
ζ∈I

∥z(ζ )∥))

+MAMΨ b
(
Cω +Mω sup

ζ∈I
∥z(ζ )∥
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+Nω (Ml(ME3
+NE3

sup
ζ∈I

∥z(ζ )∥))
)

+M2
Ψ bM2

BMW∥P(z)∥
+MΨ b(Cf+Mf sup

ζ∈I
∥z(ζ )∥+Nf(Mv(Mω

+Nω sup
ζ∈I

∥z(ζ )∥))+mMΨ (MV1

+NV1
sup
ζ∈I

∥z(ζ )∥)

≤ MΨ (∥z0 + ε(z)∥)+(1+MΨ +MAMΨ b)

(Cω +NωMlME3
)+MΨ b(Cf+NfMvMω )

+mMΨMV1
+

[
(1+MΨ +MAMΨ b)

(Mω +NωMlNE3
)+MΨ b(Mf+NfMvNω )

+mMΨNV1

]
bsup

ζ∈I
∥z(ζ )∥+M2

Ψ M2
BMWb

[
∥zb +MΨ∥z0 + ε(z)∥+M∗+M∗∗ sup

ζ∈I
∥z(ζ )∥

]
MΨ∥z0 + ε(z)∥+M∗+M∗∗ sup

ζ∈I
∥z(ζ )∥

+M2
Ψ M2

BMW∥zb∥+M2
Ψ M2

BMWb[MΨ∥z0 + ε(z)∥
+M∗+M∗∗ sup

ζ∈I
∥z(ζ )∥]

≤ (1+M2
Ψ M2

BMWb)(MΨ∥z0 + ε(z)∥+M∗)

+M2
Ψ M2

BMWb∥zb∥+(1+M2
Ψ M2

BMWb)M∗∗
β

≤ K1+K2β

≤ K1+K2
K1

1−K2

≤ K1−K1K2+K2K1

1−K2

≤ K1

1−K2

≤ β

∴ ∥Πz∥PC ≤ β . ∴ Π : B → B
For z,y ∈ B & ζ ∈ I, then:

∥(Πz)ζ − (Πy)ζ∥ ≤∥∥∥∥ω

(
ζ ,za(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,z(s))∆s
)

−ω

(
ζ ,ya(ζ ),

∫
ζ

ζ0

l(ζ ,s)E3(ζ ,y(s))∆s
)∥∥∥∥

+

∥∥∥∥ΨA(ζ ,ζ0)

[
z0 + ε(z)−ω

(
ζ0,za(ζ0),∫

ζ

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)
− y0 − ε(y)

+ω

(
ζ0,ya(ζ0),

∫
ζ

ζ0

l(ζ0,s)E3(ζ0,y(s))∆s
)]∥∥∥∥

+
∫ b

ζ0

∥∥∥∥A(r)ΨA(ζ ,ρ(r))
[

ω

(
r,za(r),

∫ r

r0

l(r,s)E3(r,z(s))∆s
)

−ω

(
r,ya(r),

∫ r

r0

l(r,s)E3(r,y(s))∆s
)]

∆r
∥∥∥∥

+

∥∥∥∥∫ ζ

ζ0

ΨA(ζ ,ρ(r))
[

f
(

r,z(r),
∫ r

r0

v(r,s)G(r,z(s))∆s
)

− f
(

r,y(r),
∫ r

r0

v(r,s)G(r,y(s))∆s
)]

∆r
∥∥∥∥

+

∥∥∥∥ m

∑
k=1

ΨA(ζ ,ζk)[V1k(ζk,z(ζ
−
k ))−V1k(ζk,y(ζ

−
k ))]

∥∥∥∥
+

∥∥∥∥∫ ζ

ζ0

ΨA(ζ ,ρ(r))B(r)BT (r)Ψ T
A (ζ ,ρ(r))(W b

ζ0
)−1

[
zb − yb

+ΨA(b,ζ0)

[
z0 + ε(z)− y0 − ε(y)

−ω

(
ζ0,za(ζ0),

∫ b

ζ0

l(ζ0,s)E3(ζ0,z(s))∆s
)

+ω

(
ζ0,ya(ζ0),

∫ b

ζ0

l(ζ0,s)E3(ζ0,y(s))∆s
)]

+ω

(
b,ya(b),

∫ b

ζ0

l(b,s)E3(b,y(s))∆s
)

−ω

(
b,za(b),

∫ b

ζ0

l(b,s)E3(b,z(s))∆s
)

+
∫ b

ζ0

A(r)ΨA(b,ρ(r))
[

ω

(
r,za(r),

∫ r

r0

l(r,s)E3(r,z(s))∆s
)

−ω

(
r,ya(r),

∫ r

r0

l(r,s)E3(r,y(s))∆s
)

∆r
]

+
∫ b

ζ0

ΨA(b,ρ(r))
[

f
(

r,za(r),
∫ r

r0

v(r,s)G(r,z(s))∆s
)

− f
(

r,ya(r),
∫ r

r0

v(r,s)G(r,y(s))∆s
)]

∆r

+
m

∑
k=1

ΨA(b,ζk)(V1k(ζk,z(ζ
−
k ))−V1k(ζk,y(ζ

−
k )))

]∥∥∥∥
∥(Πz)ζ − (Πy)ζ∥ ≤ Lω1∥z− y∥+Lω2MlLE3

∥z− y∥
+MΨ (Lε∥z− y∥+Lω1∥z− y∥+Lω2MlLE3

∥z− y∥)
+MAMΨ b(Lω1∥z− y∥+Lω2MlLE3

∥z− y∥)
+MΨ b(Lf1∥z− y∥+Lf2MvLG∥z− y∥)+mMΨLV1

∥z− y∥

bM2
ΨMB

2MW(MΨ (Lε∥z− y∥+Lω1∥z− y∥+Lω2MlLE3
∥z− y∥)

+Lω1∥z− y∥+Lω2MlLE3
∥z− y∥+MAMΨ b(Lω1∥z− y∥

+Lω2MlLE3
∥z− y∥)+MΨ b(Lf1∥z− y∥+Lf2MvLG∥z− y∥)

+mMΨLV1
∥z− y∥)
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≤ (1+M2
ΨMB

2MW)(MΨ (Lε +Lω1 +Lω2MlLE3
)

+Lω1 +Lω2MlLE3
+MAMΨ b(Lω1 +Lω2MlLE3

)

+MΨ b(Lf1 +Lf2MvLG)+mMΨLV1
)∥z− y∥

≤ (Lω1 +Lω2MlLE3
+MΨ (Lε +Lω1 +Lω2MlLE3

+mLV1

+MAb(Lω1 +Lω2MlLE3
)+b(Lf1 +Lf2MvLG)))

(1+M2
ΨMB

2MW)∥z− y∥.

Hence,

∥Πz−Πy∥PC ≤ Lα∥z− y∥PC,

which gives a contradiction to our assumption Πz=Πy⇒
z = y.
∴ Π holds strict contraction. Unique fixed point of Π , as
result of (1.1) is given by Banach contraction theorem.

4 Conclusion

In this study, we investigated the existence & the
controllability properties for a impulsive neutral
functional integrodifferential time-varying equation on
time-scales. These investigations were conducted
employing the BFT. In the coming years, we can strive to
determine the controllability results for fractional
differential equations with impulses occurring at various
time scales.
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