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Abstract: The multiple logistic regression model is commonly used in scientific researches. It is a regression model with 
more than two categories of response variable and multi explanatory variables. The conventional maximum likelihood 
estimator (MLE) is widely used to determine parameter values. It is used because it is famous and easy to apply. However, 
this estimator is highly sensitive to leverage points and outliers. The main objective of this research is to get the best 
estimation of the multiple logistic regression parameters with problem of leverage points. Two robust estimators based on 
robust Mahalanobis distance (RMD) are established.  They are named (MLERMD1 and MLERMD2). The proposed robust 
methods are compared with MLE and some other famous robust methods. The bias and mean square error are considered as 
measures for comparison. Simulation study is conducted with different sample sizes and percentages of leverage points. 
Besides, real example data are applied to compare among the methods. Results of simulation and real example show that 
the performance of the proposed methods (MLERMD1 and MLERMD2) is more efficient than those of MLE and the other 
robust methods. The MLERMD2 have the least values of bias and mean square error with different percentage of leverage 
points. 

Keywords: Logistic regression model; Maximum likelihood estimator; Leverage points; Outliers, Robust estimation.

1 Introduction 

The multiple logistic regression model is widely used in the field of medical and behavioral sciences. The model considers 
response variable with more than one explanatory variable. The logistic regression model has two types, either nominal 
logistic (that response variable has more than two categories) or binary logistic (that response variable has only two 
categories). The binary logistic regression model is assumed that the response variable (Y) follows Bernoulli distribution 
which takes (1) for occurrence and (0) for non-occurrence with unknown distribution of explanatory variables. The 
outcome of binary logistic regression is the probability of an occurrence (Pr. (y=1)) or non-occurrence (Pr. (y=0)), this is.  
The maximum likelihood estimator (MLE) is widely used to estimate the parameters of multiple logistic regression because 
it has good optimality properties and easy to apply. However, the MLE is extremely sensitive to outliers and leverage 
points [1, 2, 3]. The outliers are defined as the observations that are deviated from the others in the response variable. The 
observations that are deviated from the majority of data set in the explanatory variables are called leverage points. To solve 
this problem, several robust methods have been proposed. Pregibon [4] proposed robust formula of the logistic regression 
model. Unfortunately, this estimator did not down-weight influential observations successfully and it was not consistent. 
Johnson [5] suggested to identify influential observations to estimate parameters of logistic regression model. Künsch et al. 
[6] studied robust estimation in generalized linear regression model and logistic regression. They proposed to use 
conditionally unbiased bounded influence (CUBIF) method and they showed that the optimal estimator does not depend on 
the distribution of the explanatory variables. 

Carroll and Pederson [7] suggested a method that down-weight the basis of leverage points and outliers. This estimator is 
known as the Mallows-class. 

Bianco and Yohai [1] suggested class of robust and Fisher- consistent M estimates to estimate parameters of logistic 
regression model. The estimator is known as (BY) estimator, it was shown to be consistent, asymptotically normal and has 
good bias. However, this estimator may be effected by existing some leverage points in the covariate space. Therefore, 
Croux and Haesbroeck [8] suggested to add weight to (BY) estimator to down-weight the high leverage point. The weight 
is computed according to the value of robust Mahalanobis distance. This method is named (WBY) estimator. 

Rousseeuw and Christmann [9] proposed to apply weighted maximum estimated likelihood estimator (WEMEL) to down-
weight the leverage points, it is defined as 

             ∑ [y$ − F(x$)β)]w$x$.
$/0 = 0 
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where, RMD is robust Mahalanobis distance and M is the 75th percentile of RMD2. 

Plan and Vershynin [10] proposed a convex programming method for the spare parameters of logistic regression 
model. However, this is not robust outliers in covariate matrix. Feng et al. [3] proposed robust logistic regression 
(RoLR) to estimate the parameters when the explanatory variable follows normal distribution. They proved that 
RoLR is robust estimator when the data has outliers. However, this method is not considered that the explanatory 
variable may follow another distribution. Xu and Principe [11] proposed methods to deal with the problems of logistic 
regression with outliers and class imbalance. Hobza et al. [12] proposed robust method to estimate parameters of the 
logistic regression model based on the modified median estimator. 

Ahmed and Cheng [13] suggested two techniques to estimate parameters of the logistic regression model. The robust 
techniques are weighted maximum likelihood estimator (WMLEw1, WMLEw2), they are considered two different 
weights of the Mallows class.  

Kızılarslan and Camkıran [14] compared the performance of some robust estimators for the different distributions of 
the explanatory variables with high leverage points in the logistic regression model.  

In this paper, we propose two robust methods to estimate parameters of multiple logistic regression model. The 
proposed methods consider the robust Mahalanobis distance (RMD) based on minimum covariance determinant 
(MCD) to identify leverage points. 

 

2. Materials and Methods 

2.1 Maximum Likelihood Estimator (MLE) 

The multiple logistic regression model is defined as 

           Y=Xβ+e                                                                                                                   (1) 

where, Y is (n*1) vector of the response variable follows Bernoulli distribution which takes 1 for occurrence and 0 for 
non-occurrence, X is (n*k) matrix of explanatory variables, β is (k*1) vector of parameters model and e is (n*1) 
vector of random error.  

A logarithm transformation of the binary logistic regression model is given as [13]: 

          𝑦A = log E F
0GF

H = Xβ                                                                                                 (2) 

              F
0GF

= 𝑒KL 

where, 𝑝 = 	𝑃𝑟. (𝑦 = 1) and 1 − 𝑝 = 	𝑃𝑟. (𝑦 = 0) 

           𝑝 = 𝐹(Xβ) = S6T	(KL)
0US6T	(KL)

                                                                                           (3) 

Because of that y follows Bernoulli distribution, the probability density function of y is defined as  

            𝑔(𝑦W) = 𝑝W
XY(1 − 𝑝W)0GXY        i = 1, 2, …, n                                                          (4) 

   

So the joint probability density function is define as 

           𝑙(𝑦0, 𝑦[, . . , 𝑦\) = ∏ 𝑝W
XY(1 − 𝑝W)0GXY\

W/0  

The MLE is defined by maximizing the algorithm of the likelihood function as  

           log[𝑙(𝑦0, 𝑦[, . . , 𝑦\)] = ∑ 𝑦Wlog	(
^Y
0G^Y

)\
W/0 + ∑ log	(\

W/0 1 − 𝑝W) 

                                            = ∑ 𝑦W(Xβ\
W/0 ) − ∑ log	(\

W/0 1 + exp	(Xβ)                              (5)  

By differentiating Eq. (5) with respect to (β), we can obtain MLE of 𝛽 as 

            ∑ [𝑦W − 𝐹(𝑥W)𝛽)]𝑥W\
W/0 = 0                                                                                      (6) 
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Newton-Raphson method is applied to solve Eq. (6) [15]. 

 

2.2 Robust Estimation Methods 

Robust methods have been proposed to remedy outliers and high leverage points by researchers. In this section, some of 
these methods have been explained. 

2.2.1 Conditionally Unbiased Bounded Influence Function (CUBIF) 

The CUBIF estimator depends on the asymptotic covariance matrix to abound on a measure of infinitesimal sensitivity. It is 
considered the following function [16] :  

          𝜓ef\g(𝑦, 𝑥, 𝛼, 𝛽) = 𝑑(𝑦, 𝑥, 𝛼, 𝛽)𝑤k(|𝑑(𝑦, 𝑥, 𝛼, 𝛽)|(𝑥)𝛽G0𝑥)m.n)𝑥 

where,  

         𝑑(𝑦, 𝑥, 𝛼, 𝛽) = 𝑦 − 𝑔(𝑥)𝛼) − 𝑐(𝑥)𝛼, k
(p=qrsp)t.u

)                                                      (7) 

𝑤k(𝑎) = 𝐻k(𝑎)/𝑎, where 𝐻k is the Huber function 𝐻k(𝑎) = max	(−𝑏,min(𝑎, 𝑏)). 

The main difference between CUBIF results and Mallows class is that 𝑤k in (7) factors into two parts: The first one 
depends on x ((𝑥)𝛽G0𝑥)m.n) and the second one depends on 𝑑(𝑦, 𝑥, 𝛽) = 𝑦 − 𝑔(𝑥)𝛼) − 𝑐(𝑥)𝛼, k

(p=qrsp)t.u
) 

Because of the distribution F of the (x) is unknown, it is replaced by empirical distribution, this means that we solve  

           ∑ 𝜓ef\g;𝑦, 𝑥, 𝛼A~, 𝛽�~>~
W/0 = 0 

and 

           𝑁G0 ∑ 𝑥W𝑥W)𝑣 �𝑥W)𝛼A~,
k

;pY
=q��
rspY>

t.u� = 𝛽�~~
W/0   

where, 

𝑣(𝛽, 𝑎) = �;𝑦 − 𝑔(𝛽) − 𝑐(𝛽, 𝑎)>[ 𝑤[(𝑦, 𝛽, 𝑎). exp	(𝑦𝛽 − 𝐺(𝛽) − 𝑆(𝑦))𝜇(𝑑𝑦) 

and  

          𝑤(𝑦, 𝛽, 𝑎) = min	(1, �
|XG�(q)Ge(q,�)|

) 

 

2.2.2 Mallows Class 

In general, the robust estimates is defined by finding the solution of the following equation: 

          ∑ 𝑤W𝑥W[𝑦W − 𝐹(𝑥W)𝛽) − 𝑐(𝑥W, 𝛽)]\
W/0 = 0                                                               (8) 

where, 𝑤W are weights. If 𝑤W = 1 and 𝑐(𝑥W, 𝛽) = 0, the solution of equation (8) yields MLE. If 𝑤W = 𝑤(𝑥W, 𝑥W)𝛽) and 
𝑐(𝑥W, 𝑥W)𝛽) = 0, then the solution is called Mallows class [17, 18]. 

The Mallows-class aims to down-weight leverage points by consider function of predictors and the parameter β that can. 
So, the Mallows estimators have bias smaller than MLE estimators. The method can be defined as [7]   

            𝑀\�(𝛽) = 𝑛G0 ∑ 𝑤W
�𝑥W𝑥W)𝐹(0)(𝑥W)𝛽)\

W/0                                                                (9) 

          𝑇\�(𝛽) = 𝑀\0
G0(𝛽)𝑛G0 ∑ 𝑤W

([G�)𝑥W𝑥W)𝑀\0
G0(𝛽)𝑀\[(𝛽)𝑀\0

G0(𝛽)𝑥W𝐹(�)(𝑥W)𝛽)\
W/0  

where, 𝑤W
([G�) is the (2-j)th derivative of w(u,m), 𝑢 = 𝑥W and 𝑚 = 𝑥W)𝛽. The consistent solutions 𝛽� to equation (8) are 

asymptotically normal distribution 

            𝑛0/[(𝛽� − 𝛽) ≈ 𝑁(0,𝑀\0
G0(𝛽)𝑀\[(𝛽)𝑀\0

G0(𝛽)) 

The covariance matrix of 𝛽�  is estimated as 
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 𝑛G0𝑀\0
G0(𝛽�)𝑀\[(𝛽�)𝑀\0

G0(𝛽�) 

 

2.2.3 Bianco and Yohai (BY) 

The robust formula of the logistic regression model was proposed by Pregibon [4] as 

        𝛽� = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜌[𝐷W(𝑥W)𝛽, 𝑦W)]\
W/0                                                                          (10) 

where, 𝜌 is Huber's type function given as 

            𝜌(𝑡) = �
𝑡																																𝑖𝑓			𝑡 ≤ 𝑐
2(𝑡𝑐)0/[ − 𝑐											𝑖𝑓			𝑡 > 𝑐                                                               (11) 

However, the estimators are not consistent, bias and not robust with high leverage points. Bianco and Yohai [1] 
improved these estimators by minimizing it as follows 

           𝛽� = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜌[𝐷W(𝑥W)𝛽, 𝑦W) + 𝐺;𝐹(𝑥W)𝛽)> + 𝐺;1 − 𝐹(𝑥W)𝛽)>]\
W/0                 (12) 

 The 𝜌 is defined as 

                𝜌(𝑡) = �
𝑡 − (�

:

[e
)																																𝑖𝑓			𝑡 ≤ 𝑐

e
[
																																											𝑖𝑓			𝑡 > 𝑐

                                               (13) 

where, c is positive number. 

                𝐺(𝑡) = ∫ �́�(− ln 𝑢)𝑑𝑢�
m  

 

2.2.4 Weighted Bianco and Yohai (WBY) 

Croux and Haesbroeck [8] complemented the (BY) estimator by providing a fast and stable algorithm. They 
developed the (BY) estimator by adding weight to down-weight high leverage points. They considered robust 
Mahalanobis distance (RMD) as measure to identify leverage points. The estimator is given as 

     𝛽� = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝑤W𝜌[𝐷W(𝑥W)𝛽, 𝑦W) + 𝐺;𝐹(𝑥W)𝛽)> + 𝐺;1 − 𝐹(𝑥W)𝛽)>]\
W/0                   (14) 

             𝑤W = �		1																																			𝑖𝑓			RMD$
[ ≤ 𝜒[

0																																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (15) 

 

2.2.5 Robust Logistic Regression (RoLR) 

The (RoLR) is considered to remove the samples with very big size and then is maximized trimmed correlation of the 
remained samples. The sample is trimmed for all || xi || > T, [3]  

                𝑇 = 4¨©ª«(^)U©ª«	(\)
^

                                                                                     (16) 

where, p is No. of parameters. 

The MLE is applied for the trimmed sample. They showed that this estimator is robust of existing outliers and high 
leverage points. 

 

2.2.6 Proposed Robust Methods 

The robust Mahalanobis distance (RMD) that is computed from explanatory variables is useful to identify leverage 
points in the regression model [19, 20]. It depends on the location and scatter parameters. In the literature, many 
methods have been proposed to find robust estimation of multivariate location and scatter. The Minimum Covariance 
Determinant (MCD) method is highly robust method to estimate multivariate location and scatter [21, 22, 23]. So, in 
this research, the robust Mahalanobis distance based on MCD method is considered to identify leverage points in the 
logistic regression model.  
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Let X(n*p) be a matrix of explanatory variables, n = sample size and p = number of parameters. The RMD is given as 

        𝑅𝑀𝐷W = (𝑥W − 𝜇®¯°))Σ²egG0 (𝑥W − 𝜇®¯°)        i = 1, 2, …, n                            (17) 

where, 

µ3´9 (n*1) is a vector of  the MCD estimates of location. 

Σ3´9  (n*p) is a matrix of the MCD estimates of scatter. 

Midi et al. [24] and Alguraibawi et al. [19]  proposed the following formula to compute the cut-off point: 

                 𝑐𝑢𝑡^fW\� = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑅𝑀𝐷W) + 3 ∗ 𝑀𝐴𝐷(𝑅𝑀𝐷W)                                      (18) 

where, MAD is the median absolute deviation of RMD. 

The main objective of the robust estimation methods is down-weight the influence of leverage points.  So, two 
formulas are proposed to compute the weight as 

                                     1                  If  𝑅𝑀𝐷W ≤ 𝑐𝑢𝑡^fW\�  

                 w1(i) =                                                                                                         (19) 

                                      0                 If  𝑅𝑀𝐷W > 𝑐𝑢𝑡^fW\� 

               

                                     1                  If  𝑅𝑀𝐷W ≤ 𝑐𝑢𝑡^fW\�  

                 w2(i) =                                                                                                            (20) 

                                      
e¸�¹ºY»¼
½®°Y

      If  𝑅𝑀𝐷W > 𝑐𝑢𝑡^fW\� 

After reduce the effect of the leverage points, the MLE method can be applied successfully. The proposed estimators 
are named MLERMD1 and MLERMD2, respectively. 

 

3. Results and Discussion 

3.1 Simulation Study 

A simulation study was carried out by using R-program to examine the performance of the proposed robust methods. 
The performance of the proposed methods (MLERMD1 and MLERMD2) were compared with MLE and five robust 
methods (CUBIF, Mallows, BY, WBY and RoLR). Two explanatory variables were generated, x1~N (0,1) and 
x2~N(0,1), parameter values of β0= 0.5, β1=0.1 and β2=0.2 with three different sample sizes, n = (100, 200 and 300). 
Because of the response variable (y) is following binomial distribution, it was generated with parameter (p) that is 
defined in eq. (3). Four different scenarios are then examined, uncontaminated and contaminated data with 5%, 10% 
and 15%. Following by Midi and Syaiba [2], both of the explanatory variables are contaminated according to the 
following formulas: 

               xi = xi+5                                                                                                         (21) 

The simulation was repeated 2000 times for the four scenarios. The performance of the proposed methods is 
evaluated based on the bias and MSE. The bias and MSE are given as [2]:  

             𝐵𝑖𝑎𝑠 = ¿∑ (q�YGq)
:ttt
YÀs
[mmm

¿                                                                                        (22) 

             𝑀𝑆𝐸 = ∑ (q�YGq):
:ttt
YÀs

0ÂÂÂ
                                                                                         (23) 

The results of estimated parameters, bias and MSE of all the methods of uncontaminated and contaminated with 
sample sizes 100 and 200 are exhibited in Tables 1-8, respectively. Nevertheless, the complete tables of estimated 
parameters, bias and MSE could not be attached for the sample size (n=300) due to space limitation. Generally, the 
performance of MLE and the robust methods of estimated parameters are reasonably closer for the sample sizes (100 
and 200). 
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Table 1: Estimated Parameters, bias and MSE for sample size (n=100) and uncontaminated data 

Method 
β0 β1 β2 MSE 

Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.513 0.013 0.047 0.109 0.009 0.050 0.216 0.016 0.050 0.007 

CUBIF 0.513 0.013 0.047 0.109 0.009 0.050 0.216 0.016 0.050 0.007 
Mallows 0.512 0.012 0.047 0.109 0.009 0.050 0.216 0.016 0.050 0.007 

BY 0.514 0.014 0.047 0.109 0.009 0.051 0.216 0.016 0.049 0.007 
WBY 0.514 0.014 0.047 0.109 0.009 0.051 0.216 0.016 0.049 0.007 
RoLR 0.539 0.039 0.131 0.119 0.019 0.542 0.239 0.039 0.516 0.021 

MLERMD1 0.514 0.014 0.048 0.108 0.008 0.054 0.216 0.016 0.052 0.009 
MLERMD2 0.513 0.013 0.047 0.108 0.008 0.052 0.211 0.011 0.056 0.007 

 

Table 2: Estimated Parameters, bias and MSE for sample size (n=100) with 5% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.496 0.004 0.046 0.055 0.045 0.030 0.209 0.009 0.053 0.008 

CUBIF 0.499 0.001 0.046 0.068 0.032 0.032 0.209 0.009 0.053 0.008 
Mallows 0.499 0.001 0.046 0.066 0.034 0.031 0.208 0.008 0.053 0.008 

BY 0.497 0.003 0.046 0.058 0.042 0.031 0.209 0.009 0.053 0.008 
WBY - - - - - - - - - - 
RoLR 0.531 0.031 0.131 0.072 0.028 0.545 0.216 0.016 0.530 0.020 

MLERMD1 0.509 0.009 0.048 0.100 0.000 0.059 0.209 0.009 0.059 0.013 
MLERMD2 0.510 0.010 0.048 0.106 0.006 0.041 0.217 0.017 0.058 0.008 

 

Table 3: Estimated Parameters, bias and MSE for sample size (n=100) with 10% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.472 0.028 0.048 0.060 0.040 0.027 0.115 0.085 0.037 0.009 

CUBIF 0.481 0.019 0.049 0.071 0.029 0.029 0.139 0.061 0.037 0.009 
Mallows 0.480 0.020 0.048 0.069 0.031 0.028 0.136 0.064 0.034 0.009 

BY 0.475 0.025 0.049 0.063 0.037 0.029 0.124 0.076 0.039 0.009 
WBY - - - - - - - - - - 
RoLR 0.541 0.041 0.151 0.113 0.013 0.646 0.241 0.041 0.597 0.022 

MLERMD1 0.511 0.011 0.053 0.110 0.010 0.056 0.213 0.013 0.056 0.013 
MLERMD2 0.477 0.023 0.045 0.065 0.035 0.029 0.117 0.083 0.035 0.008 

 

Table 4: Estimated Parameters, bias and MSE for sample size (n=100) with 15% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.480 0.020 0.053 0.039 0.061 0.021 0.107 0.093 0.037 0.009 

CUBIF 0.487 0.013 0.053 0.045 0.055 0.022 0.126 0.074 0.037 0.009 
Mallows 0.487 0.013 0.052 0.045 0.055 0.021 0.124 0.076 0.035 0.009 

BY 0.483 0.017 0.053 0.040 0.060 0.022 0.115 0.085 0.039 0.009 
WBY - - - - - - - - - - 
RoLR 0.557 0.057 0.160 0.133 0.033 0.650 0.216 0.016 0.644 0.023 

MLERMD1 0.527 0.027 0.060 0.105 0.005 0.060 0.210 0.010 0.061 0.012 
MLERMD2 0.500 0.000 0.047 0.094 0.006 0.059 0.205 0.005 0.061 0.008 
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Table 5: Estimated Parameters, bias and MSE for sample size (n=200) and uncontaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.511 0.011 0.023 0.105 0.005 0.024 0.204 0.004 0.023 0.004 

CUBIF 0.511 0.011 0.023 0.105 0.005 0.024 0.204 0.004 0.023 0.004 
Mallows 0.511 0.011 0.023 0.105 0.005 0.024 0.203 0.003 0.023 0.004 

BY 0.511 0.011 0.023 0.105 0.005 0.024 0.204 0.004 0.023 0.004 
WBY 0.511 0.011 0.023 0.105 0.005 0.024 0.204 0.004 0.023 0.004 
RoLR 0.532 0.032 0.099 0.136 0.036 0.622 0.216 0.016 0.593 0.016 

MLERMD1 0.511 0.011 0.023 0.106 0.006 0.025 0.204 0.004 0.024 0.006 
MLERMD2 0.511 0.011 0.022 0.105 0.005 0.024 0.209 0.009 0.024 0.004 

 

Table 6: Estimated Parameters, bias and MSE for sample size (n=200) with 5% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.485 0.015 0.022 0.068 0.032 0.017 0.140 0.060 0.022 0.004 

CUBIF 0.494 0.006 0.022 0.080 0.020 0.018 0.164 0.036 0.020 0.005 
Mallows 0.493 0.007 0.022 0.078 0.022 0.017 0.160 0.040 0.020 0.004 

BY 0.487 0.013 0.022 0.070 0.030 0.018 0.148 0.052 0.023 0.005 
WBY 0.486 0.014 0.022 0.070 0.030 0.018 0.148 0.052 0.023 0.005 
RoLR 0.534 0.034 0.106 0.091 0.009 0.639 0.205 0.005 0.662 0.017 

MLERMD1 0.512 0.012 0.024 0.106 0.006 0.025 0.210 0.010 0.025 0.009 
MLERMD2 0.502 0.002 0.021 0.104 0.004 0.025 0.205 0.005 0.024 0.004 

 

Table 7: Estimated Parameters, bias and MSE for sample size (n=200) with 10% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.473 0.023 0.024 0.052 0.048 0.014 0.097 0.103 0.023 0.005 

CUBIF 0.481 0.019 0.024 0.062 0.038 0.015 0.122 0.078 0.021 0.005 
Mallows 0.481 0.019 0.024 0.061 0.039 0.014 0.118 0.082 0.020 0.005 

BY 0.474 0.026 0.024 0.054 0.046 0.015 0.104 0.096 0.024 0.005 
WBY - - - - - - - - - - 
RoLR 0.535 0.035 0.112 0.137 0.037 0.712 0.211 0.011 0.691 0.018 

MLERMD1 0.512 0.012 0.025 0.104 0.004 0.026 0.202 0.002 0.026 0.008 
MLERMD2 0.500 0.000 0.022 0.099 0.001 0.025 0.204 0.004 0.025 0.004 

 

Table 8: Estimated Parameters, bias and MSE for sample size (n=200) with 15% contaminated data 

Method β0 β1 β2 MSE Est. bias MSE Est. bias MSE Est. bias MSE 
MLE 0.466 0.034 0.027 0.041 0.059 0.013 0.077 0.123 0.025 0.005 

CUBIF 0.472 0.028 0.027 0.047 0.053 0.013 0.094 0.106 0.024 0.006 
Mallows 0.473 0.027 0.027 0.048 0.052 0.013 0.093 0.107 0.022 0.005 

BY 0.466 0.034 0.027 0.042 0.058 0.013 0.083 0.117 0.026 0.006 
WBY 0.464 0.036 0.028 0.043 0.057 0.014 0.083 0.117 0.026 0.006 
RoLR 0.552 0.052 0.122 0.098 0.002 0.768 0.222 0.022 0.775 0.019 

MLERMD1 0.511 0.011 0.029 0.095 0.005 0.029 0.200 0.000 0.029 0.009 
MLERMD2 0.492 0.002 0.022 0.094 0.004 0.028 0.193 0.007 0.026 0.004 

Generally, it can be observed from the Table 1 that there is not much difference of estimated parameters, biases and 
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MSEs among all the methods for uncontaminated data for sample size (n=100). The biases and MSEs of the methods 
are close to each other to estimate parameters of the model. However, the estimated parameters, bias and MSE of 
RoLR and MLE are more affected by leverage points especially with high percentages of contamination. Besides, 
unidentifiable parameter estimates in some cases of WBY method because of there is not existence of overlapping, 
they are shown in Tables 2-4 for sample size (n=100). The results of bias of CUBIF, Mallows and BY are slightly less 
than the bias of MLE. The MLERMD1 successfully estimated model parameters with less bias and MSE. Furthermore, 
the MLERMD2 successfully estimated model parameters with the least values of bias and MSE at different percentages 
of contamination.  

Similar results were obtained for the sample size (n=200), these results are given in Tables (5-8) for uncontaminated 
data and (5%, 10% and 15%) contaminated data, respectively. 

In summary, the proposed methods MLERMD1 and MLERMD2 provide the better performance results than the others to 
estimate model parameters with different percentage of contamination. Besides, the MLERMD2 method can be estimate 
the parameters with the least values of bias and MSE. 

3.2 Numerical Example 

A real data set of measurements of (30) leukemia patients is considered to represent the logistic regression model. The 
response variable is represented by (1) if the patient surviving at least 52 weeks and (0) otherwise. The model 
includes two explanatory variables: white blood cell count (WBC) and AG status (one for positive patient and zero 
for negative patient). Cook and Weisberg [25] identified observation number (15) as influential. Table 9 presents the 
estimated parameters and MSE of the model. It is noticed the robust methods give values of MSE smaller than MLE 
except RoLR method (without estimated values). However, the proposed method MLERMD2 successfully estimated 
model parameters with the smallest value of MSE. 

Table 9: Estimated parameters and MSE of leukemia data 

Method 
Est. 

MSE 
β0 β1 β2 

MLE 1.427 0.000 2.286 0.481 

CUBIF 0.733 0.000 2.238 0.370 

Mallows 0.187 0.000 2.534 0.272 

BY 1.385 0.000 2.218 0.333 

WBY 0.159 0.000 1.927 0.296 

RoLR - - - - 

MLERMD1 0.170 0.000 2.531 0.290 

MLERMD2 0.194 0.000 3.217 0.259 

For more illustration, the results of MSE are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Fig.1. MSE of the estimated methods 
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4. Conclusions 

The problem of existing leverage points in the multiple logistic regression model is considered. We proposed two 
robust methods namely MLERMD1 and MLERMD2 to estimate the parameters of the model. A comparison with MLE 
and five robust methods was made by depending on bias and MSE as measures for comparison. According to the 
simulation and example results, the MLE method has the largest values of bias and MSE with existing of leverage 
points. The robust methods were less affected by leverage points except WBY method. However, the proposed robust 
methods are very successful to estimate model parameters with different percentage of contamination.  The MLERMD2 
gives the best result to estimate parameters of the multiple logistic regression model when the explanatory variables 
have some leverage points. 
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