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Abstract: The time-fractional Schrodinger equations (FSEs) have various applications in quantum mechanics and physical sciences

as they describe a wide range of wave propagation phenomena including dust-acoustic, Langmuir and electromagnetic waves in the

plasma physics. This article aims to employ the Laplace fractional residual power series (RPS) scheme to derive exact and approximate

solutions for the FSEs in a time-Caputo sense following a limit concept. By employing the aforementioned Laplace fractional residual

power series method, we establish complex linear and complex nonlinear fractional order models and evaluate efficacy of such a method

by conducting numerical experiments as an application. Throughout the furnished computations, we include a comparison between the

approximate values and their corresponding exact solutions and obtain some analysis on the absolute error. Moreover, 2D and 3D-

graphical representations are introduced to display depiction of the dynamic behaviour of the attained solutions in a specific domain.

Further, we confirm reliability of solutions generated by the method of the suggested scheme by comparing them with previously

established solutions. Such comparisons are shown to be harmonic with the compared methods, which confirms that the Laplace

fractional residual power series approach is an alternative, straightforward, precise and effective for solving both linear and non-linear

partial differential equations of fractional order. Moreover, we provide numerical and graphical forms to validate the approach.

Keywords: Time-fractional Schrodinger equations, Laplace transform, Laplace fractional residual power series, time-Caputo fractional

derivative.

1 Introduction

The fractional calculus has witnessed a rapid growing attention by scientists due to its superb and distinguished
characteristics. The fractional calculus has, consequently, been considered as a convenient tool for modelling and
describing numerous complex fractional problems in varied and prevalent subjects of engineering and science including
chemistry, physics, biology, ecology, mechanics, electrical engineering, medicine etc. [1-5]. From a modelling
viewpoint, the fractional derivative is a powerful instrument which has been applied by scientists and analysts for
simulating and interpreting sophisticated systems of non-linear dynamical processes. The main causes behind this
follows from the fact that the order of derivative could be chosen arbitrary and the fractional derivative may characterize
the memory and hereditary features of varied processes and materials on the past and present situations. Recently,
diverse issues have been introduced to define the fractional derivative concept. The most frequently utilized definitions
are the Atangana–Baleanu, Caputo–Fabrizio, Riemann– Liouville and Caputo issues. Although, the Caputo’s fractional
derivative remains the most preferred by researchers as it can precisely depict physically and practically the phenomena
with the past memory [6-9]. Fractional partial differential equations (FPDEs) have a notable role in designing the
dynamic behaviours of computational fractional models, which have riveted experts’ interest to concentrate on its
enormous applications in distinct scientific fields including diffusion processes, viscoelastic damping, fluid flow,
quantum mechanics, heat transfer, kinetic theory, etc. [10-20]. The mathematical potent modelling of fractional models
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containing complex-valued functions is a challenging task for scholars. Nevertheless, finding the closed-form and the
analytical solutions to these models is intractable and hopeless in several circumstances. As a result, there is an insistent
requirement to dependable numeric-analytic techniques. Further, well-known methods such as Homotopy analysis
method, Adomian decomposition method, differential transform method, reproducing kernel method, variational
iteration method and fractional residual power series method and so on [21-28]. The fractional RPS method is a
semi-analytic technique used to solve differential equations that cannot be solved using other common methods like
separation of variables or integrating factors. In this method, the solution is expressed as a power series and the
coefficients of the series are calculated by using the recurrence relations derived from the differential equation. The
general solution is obtained by combining the power series with the initial conditions. The method is called “residual” as
it calculates the ”residual”, which is the difference between the left-hand side and the right-hand side of the equation.
This residual is then used to calculate the coefficients of the power series. Many researchers have recently focused on the
fractional RPS approach, which has successfully investigated a variety of FPDEs [29-33]. Although the method is a bit
more involved than some other methods, where it is based on (n− 1)-times FD of the residual-error function in each step
and can be useful for solving a wide range of FDEs and FPDEs that cannot be solved by other means. So, this solution
methodology is somewhat difficult for non-linear terms of certain classes of FPDEs. In order to avoid this intractably, the
authors in [34] proposed a novel attractive technique that combines between the LT operator and the fractional RPS
algorithm, namely the Laplace RPS algorithm. This novel method can generate fractional power series expansion (FPSE)
solutions for both linear and non-linear FPDEs which do not require any physical restriction [35]. It also depends on the
limit concept with minimal computations to find the specified coefficients [36-40]. Unlike the fractional RPS algorithm,
which requires a multiple computations to calculate various FDs in the solution steps. As a result, by incorporating a fast
convergence series, this proposed method can produce closed-form solutions as well as accurate approximate solutions.

The fractional Schrodinger equation is a generalization of the classical SE that includes time-FDs [41]. It has been
used to model a wide range of physical phenomena, from anomalous diffusion in complex systems to the behavior of
quantum particles in disordered media. The classical SE is a PDE that describes the evolution of a quantum state over
time. It is written as [42]

ih
∂

∂ t
U = H [U ] ,

where i is the imaginary unit, h is the reduced Planck constant, U is the wave function, t is time, and H is the Hamiltonian
operator. The Hamiltonian operator is a mathematical operator that describes the total energy of a system. FSE is obtained
by replacing the time-derivative in the classical SE with a time-FD of order a. The resulting equation is [43-45]

ihD
a
t U = H [U ] ,

where Da
t is the time-FD .

One of the most interesting properties of the FSE is its non-locality in time. The FD operator depends on the fact
that the behavior of a system at a given time depends not only on its immediate past, but also on its history. This makes
the equation particularly well-suited for modeling systems that exhibit long-range correlations in time as the anomalous
diffusion in complex systems. Another interesting property of the FSE is its self-similarity. This means that the equation is
invariant under rescaling of the space and time variables. This property has important consequences for the behavior of the
solutions of the equation, which can exhibit fractal-like patterns [46-48]. FSE has been used to model a tremendous range
of physical phenomena. One of the most important applications is in the study of anomalous diffusion in complex systems.
Anomalous diffusion refers to the behavior of particles that do not follow the usual random walk behavior observed in
simple systems. Instead, these particles exhibit long-range correlations in time, which can be captured by the FD operator
in the FSE [49-52]. As well as, the FSE has been applied in the study of quantum particles in disordered media. In these
systems, the Hamiltonian operator is not translationally invariant, which can lead to complex behavior of the quantum
state. The FD operator in the FSE can capture the non-local effects of disorder on the quantum state [53 - 58].

In literature, numerous numerical and analytical methods have been discussed for studying the analytical and exact
solutions of the time-FSEs [59]. These techniques have examined the time-FSEs in the meaning of R-L and Caputo FDs.
But each of the mentioned approaches needs a lot of computational effort and long processing times, and also has its
physical limitations. The novelty of the present work is to consider the Laplace fractional RPS algorithm in investigating
the analytical and closed form solutions for the time-FSEs with an appropriate ICs in view of the time-Caputo-FD. Here,
we have been selecting this type of FDs operator because of its harmonization with the ICs in treating wide range of
FPDEs. The proposed method’s accuracy and effectiveness have been confirmed through an absolute error interpretation
of the studied problems. Additionally, numerical results obtained using the recommended algorithm have been compared
with other techniques in terms of absolute errors. The results demonstrate excellent agreement with those of various other
methods, highlighting the proposed approach’s reliability and efficiency [60-67].
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The remainder of the current article is structured as follows. A quick overview of the time-Caputo-FD concept and
essential results relating to the LT and Laplace fractional RPS algorithm are given in Section 2. The methodology of
performing the recommended approach for solving non-linear time-FSEs is drawn in Section 3. In Section 4, four
applications of time-FSEs are stated to illustrate the accuracy and applicability of our approach. Graphical and numerical
results are discussed and summarized in Section 5. Finally, the conclusion part is given in Section 6 .

2 Essential Concepts

This section provides an overview of the time-FD in a Caputo sense. It also includes a preliminary definitions and
essential theorems concerning the LT and Laplace fractional RPS algorithm, which will be utilized in the subsequent
sections. Understanding the concepts and principles of fractional differentiation is crucial for comprehending the
upcoming discussions. Whereas, familiarity with the relevant definitions and theorems of the LT will be advantageous
for subsequent analyses and interpretations.

Definition 1. The time–FD of the Caputo sense for U (x, t) of order a is defined by [3]

D
a
t U (x, t) =

{

I
n−a

t (Dn
t U (x, t)) , 0 < n− 1 < a ≤ n,

Dn
t U (x, t), a = n,

where Dn
t =

∂ n

∂ tn , and Ittt is the R-L integral operator of U (x, t) .

Definition 2. Let U (x, t) be a piecewise continuous function of exponential order δ on I× [0 , ∞), then the LT of U (x, t)
is defined by [2]

U (x,s) = L [U (x, t)]

∫ ∞

0
e−st

U (x, t)dt, s > δ .

The inverse LT of U(x,s) is defined by

U (x, t) = L
−1 [U(x,s)] =

∫ c+i∞

c−i∞
est

U(x,s)ds, c = Re(s)> δ0,.

Lemma 1. For two piecewise continuous functions U (x, t) and V (x, t), I× [0 , ∞) , of exponential orders δ1 and δ2,
respectively, where δ1 < δ2, we have [2]

1. L [aU (x, t)+ bV (x, t)] = aU(x,s)+ b
∨

(x,s) ,x ∈ I, s> δ1.

2. L −1 [aU(x,s)+ b
∨

(x,s)] = aU (x, t)+ bV (x, t) ,x ∈ I, t ≥ 0.

3. L [eatU (x, t)] = U(x,s− a) ,x ∈ I, s> a+ δ1.

4. lims→∞ s U(x,s) = U (x,0) , x ∈ I.

5. L [Da
t U (x, t) ] = saU(x,s)−∑n−1

k=0 s
a−k−1Dk

t U (x,0) , for a ∈ (n− 1,n],

6. L

[

D
ja
t U (x, t)

]

= s jaU(x,s)−∑
j−1
k=0 s

( j−k)a−1Dka
t U (x,0) , for a ∈ (0,1],

where U(x,s) = L [U (x, t)] ,
∨

(x,s) = L [V (x, t)], and a,b ∈R.

Theorem 1. Let the Laplace fractional expansion (LFE) for the new function U (x, t) , U(x,s) = L [U (x, t)] , is given
by [2]

U(x,s) =
∞

∑
n=0

hn (x)

sna+1
, x ∈ I, s> δ , 0 < a ≤ 1,

then hn (x) =Dna
t U (x,0).

Theorem 2. Suppose that the transformation function U(x,s) can be formulated as in Theorem 1. Then, for all (x,s) ∈

I× (δ , γ], and a ∈ (0,1] such that

∣

∣

∣
sL

[

D
(n+1)a
t U (x,s)

]∣

∣

∣
≤ g, the reminder Rn of the new Laplace expansion fulfills the

following inequality [2]

|Rn (x,s)| ≤
M (x)

s1+(n+1)a
, x ∈ I, δ < s≤ γ,

where M(x) is a function of x.
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3 Principle of Laplace fractional RPS technique for the non-linear time-FSEs

The Laplace fractional RPS scheme is a novel analytical technique proved in [34] to handle complicated non-linear time-
FPDEs arising in various disciplines in natural science and engineering. This section highlights the steps of the Laplace
fractional RPS solution for the considered problem. The first step in this method is to transform the targeted equation to the
Laplace space and discover the algebraic solution (LFE) of the transformed equation in a new space, where the resultant
series coefficients is found via a limit concept. Finally, we find the inverse LT for the previously obtained solution into its
original space and hence, the problem can be solved. To perform the solution methodology of our scheme, let us consider
the following form of the non-linear time-FSE with IC’s







iDa
t U (, t)=H [U (, t)] , 0 <a≤1,

subject to IC′s :
U (,0)=P j () , j= 1,2, . . . ,n

(1)

Subsequent, the guidelines for generating the approximate solution for Equation 1 by the Laplace fractional RPS
algorithm are summarized in the following six steps:

1- We apply the LT to both sides of (1) with the IC’s of (1), relying on Lemma 1, to have

U(,s)=
P j ()

s
+

i

sa
(L {H [U (, t)]}) , (2)

where U(,s) = L [U (, t)] (s) , s>δ .
2- We assume that the approximate solution of the Laplace equation (2) has the following LFE based on Theorem 1,

U(,s)=
P j ()

s
−i

∞

∑
n=1

hn ()

sna+1
, ∈I, s>δ≥0, (3)

and the k−th LFE series solution is written as

Uk (,s)=
P j ()

s
−i

k

∑
n=1

hn ()

sna+1
, ∈I, s>δ≥0 . (4)

3- The k−th Laplace fractional residual-error (LFRE) function of (1) is identified as

L
(

ResUk
(,s)

)

=
P j ()

s
+

i

sa
(L {H [U (, t)]}) , (5)

and the LFRE function of (1) is formulated as

lim
k→∞

L
(

ResUk
(,s)

)

= L (ResU (,s))=
P j ()

s
+

i

sa
(L {H [U (, t)]}) . (6)

As in [34], some useful facts of the LFRE which are important in designing and building the approximate solution are
mentioned below:

1.limk→∞ L
(

ResUk
(,s)

)

= L (ResU (,s)) , for ∈I, s>δ≥0.

2.L (ResU (,s))= 0, for ∈I, s>δ≥0.

3.lims→∞ ska+1L
(

ResUk
(,s)

)

= 0 , for ∈I, s>δ≥0, and k= 1,2,3, . . . .

4.We consider the k− th LFE series solution (4) into the k− th LFRE of (5).

5.We look for the solution of lims→∞ ska+1L
(

ResUk
(,s)

)

= 0 to get the unknown coefficients hk (), for k= 2, 3, 4 . . ..
These unknown variables are then accumulated in terms of the LFE series (4), Uk (,s).

6.The inverse LT operator can be used for both sides of the resulted LFE series solution to find the approximate
solution Uk (, t) of the studied problem (1).
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4 Numerical Applications

To elucidate the features, performance, and applicability of the Laplace fractional RPS algorithm, the different quantum
mechanics applications consisting of both linear and non-linear time-FSEs with time- Caputo FDs are analytically and
numerically shown. In this context, the accurate approximate solutions for four Schrödinger models in light of time-
Caputo meaning are investigated at distinct FD values’ utilizing the solution methodology of our recommended scheme.
The generated solutions carried out with minimal computational work and provides the same exact solutions compared to
well-known approaches [60-67]. It is worth mentioning that we have utilized MATHEMATICA 12 software package to
implement all calculations and graphics.

Application 1. Consider the linear time-FSE in [60, 61, 65, 66]:

D
a
t U +iU xx = 0, (7)

sub jecttotheIC,U (x,0) = 1+ cosh(2x) , where a ∈ (0,1] , i2 =−1 and the complex function U (x, t) :Ω→C. The exact
solutions when a = 1 is U (x, t) = 1+ cosh(2x) e−4it . Following the analysis presented above, we can obtain the Laplace
fractional equation for (7) as

U(x,s) =
1+ cosh(2x)

s
−

i

sa
L

{

∂ 2

∂x2
L

−1 {U}

}

, (8)

where L [U (x, t)] = U(x,s). Also, according to the method discussion, the k− th-LFE series solution Uk (x,s) for (8)
can be written as

Uk (x,s) =
1+ cosh(2x)

s
+

k

∑
n=1

hn (x)

sna+1
. (9)

Next, based on the method, the k− th-truncated LFRE function of (8) can be identified as

L
(

ResUk
(x,s)

)

=
k

∑
n=1

hn (x)

sna+1
+

i

sa
L

{

∂ 2

∂x2
L

−1 {Uk}

}

. (10)

To get the 1− st LFRE function we let k = 1 in (10), one can obtain that

L
(

ResU1
(x,s)

)

=
h1 (x)

sa+1
+

i

sa
L

{

∂ 2

∂x2
L

−1

{

1+ cosh(2x)

s
+

h1 (x)

sa+1

}}

=
h1 (x)+ 4icosh(2x)

sa+1
+

ih1
′′
(x)

s2a+1
. (11)

By performing the following process, lims→∞ sa+1 L
(

ResU1
(x,s)

)

=0, which gives us that h1 (x)=−4icosh(2x) .
And so, the 1− st LFE series solution of (8) can be written as

U1 (x,s) =
1+ cosh(2x)

s
+

(−4i)cosh(2x)

sa+1
. (12)

To get the 2− nd LFRE function we let k = 2 in (10), one can obtain that

L
(

ResU2
(x,s)

)

=
h2 (x)− (−4i)2

cosh(2x)

s2a+1
+

ih2
′′
(x)

s3a+1
(13)

By performing the following process, lims→∞ s2a+1 L
(

ResU2
(x,s)

)

=0, we get that h2 (x)=(−4i)2
cosh(2x) . And

so, the 2−nd LFE series solution of (??) can be formulated as

U3 (x,s)=
1+ cosh(2x)

s
+

(−4i)cosh(2x)

sa+1
+

(−4i)2
cosh(2x)

s2a+1
. (14)

The same matter for k= 3 reveals

L
(

ResU3
(x,s)

)

=
h3 (x)− (−4i)3

cosh(2x)

s3a+1
+

ih3
′′
(x)− (4i)2

cosh(2x)

s4a+1
. (15)
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By solving lims→∞ s3a+1 L (Res3 (x,s))=0, we obtain that h3 (x) = (−4i)3
cosh(2x) . Hence, the 3−rd Laplace series

solution of (8) is

U3 (x,s) =
1+ cosh(2x)

s
+

(−4i)cosh(2x)

sa+1
+

(−4i)2
cosh(2x)

s2a+1
+

(−4i)3
cosh(2x)

s3a+1
. (16)

In a similar way, the above process can be repeated smoothly using Mathematica for k = 4,5,6, . . . , and since

lims→∞ ska+1 L
(

ResUk
(x,s)

)

=0, one can obtain that hk (x) = (−4i)k
cosh(2x) .

Consequently, if we collect all the previous results, the k− th truncated LFE series solution of (8) can be written in
the shape

Uk (x,s) =
1+ cosh(2x)

s
+

(−4i)cosh(2x)

sa+1
+

(−4i)2
cosh(2x)

s2a+1
+

(−4i)3
cosh(2x)

s3a+1
+ · · ·+

(−4i)k
cosh(2x)

ska+1

=
1

s
+ cosh(2x)

(

k

∑
n=0

(−4i)n

sna+1

)

. (17)

If we transform back expansion (17), one can rewrite the k−th truncated approximate solution of (7) in the following
expansion

Uk (x, t) = 1+ cosh(2x)

(

k

∑
n=0

(−4i)n tna

Γ(na+ 1)

)

. (18)

For the stander case a= 1, the solution of (7) can be expressed in term of infinite series in (18) as follows

U (x, t) = 1+ cosh(2x)

(

∞

∑
n=0

(−4it)n

n!

)

= 1+ cosh(2x) e
−4it

, (19)

which is in perfect accordance with the exact solution as in [60, 61, 65, 66].

Application 2. Consider the linear time-FSE [67]

D
a
t U +iU xx = 0, (20)

sub jecttoICU (x,0) = e3ix, where a ∈ (0,1] , i2 = −1, and the complex function U (x, t) :Ω→C. The exact solutions

when a = 1 is U (x, t) = e3i(x+3t). Following the analysis presented above, we can obtain the Laplace fractional equation
for (20) as

U(x,s) =
e3ix

s
−

i

sa
L

{

∂ 2

∂x2
L

−1 {U}

}

. (21)

Also, the k− th-truncated LFE series solution Uk (x,s) for (21) can be expressed as

Uk (x,s) =
e3ix

s
+

k

∑
n=1

hn (x)

sna+1
. (22)

Next, based on the method, the k− th-truncated LFRE function of (21) can be defined as

L
(

ResUk
(x,s)

)

=
k

∑
n=1

hn (x)

sna+1
+

i

sa
L

{

∂ 2

∂x2
L

−1 {Uk}

}

. (23)

To get the 1− st LFRE function we let k = 1 in (23). Therefore, one can obtain

L
(

ResU1
(x,s)

)

=
h1 (x)

sa+1
+

i

sa
L

{

∂ 2

∂x2
L

−1

{

e3ix

s
+

h1 (x)

sa+1

}}

=
h1 (x)− 9ie3ix

sa+1
+

ih1
′′
(x)

s2a+1
. (24)
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By performing the following process lims→∞ sa+1 L
(

ResU1
(x,s)

)

=0, it gives us h1 (x)=9ie3ix. And so, the 1− st

LFE series solution of (21) can be expressed as

U1 (x,s) =
e3ix

s
+

9ie3ix

sa+1
. (25)

To get the 2− nd LFER function we let k = 2 in (23), one can obtain

L
(

ResU2
(x,s)

)

=
9ie3ix

sa+1
+

h2 (x)

s2a+1
+

i

sa
L

{

∂ 2

∂x2
L

−1

{

e3ix

s
+

9ie3ix

sa+1
+

h2 (x)

s2a+1

}}

=
h2 (x)− (9i)2

e3ix

s2a+1
+

ih2
′′
(x)

s3a+1
. (26)

Performing the process lims→∞ s2a+1 L
(

ResU2
(x,s)

)

=0 gives us that h2 (x)=(9i)2
e3ix. Therefore, the 2-nd LFE

series solution of (21) can be expressed as

U3 (x,s)=
e3ix

s
+

9ie3ix

sa+1
+

(9i)2
e3ix

s2a+1
. (27)

The same matter for k= 3 implies

L
(

ResU3
(x,s)

)

=
h3 (x)− (9i)3

e3ix

s3a+1
+

ih3
′′
(x)

s4a+1
. (28)

Looking for the solution of lims→∞ s3a+1 L (Res3 (x,s))=0 yields that h3 (x) = (9i)3
e3ix. Hence, the 3−rd LFE series

solution of (21) is

U3 (x,s) =
e3ix

s
+

9ie3ix

sa+1
+

(9i)2
e3ix

s2a+1
+

(9i)3
e3ix

s3a+1
. (29)

In a similar way, the above process can be repeated smoothly using Mathematica for k = 4,5,6, . . . , and the fact

lims→∞ ska+1 L
(

ResUk
(x,s)

)

=0 yields hk (x) = (9i)k
e3ix.

Consequently, if we collect the previous results, the k− th truncated LFE series solution of (21) can be written in the
following fractional expansion

Uk (x,s) =
e3ix

s
+

9ie3ix

sa+1
+

(9i)2
e3ix

s2a+1
+

(9i)3
e3ix

s3a+1
+ · · ·+

(9i)k
e3ix

ska+1
= e3ix

(

k

∑
n=0

(9i)n

sna+1

)

. (30)

If we transform back expansion (30), one can get the k−th truncated approximate solution of (20) as

Uk (x, t) = e3ix

(

k

∑
n=0

(9i)n tna

Γ(na+ 1)

)

. (31)

For the stander case a= 1, the solution of (20) can be formulated in term of infinite series in (31) as follows

U (x, t) = e3ix

(

∞

∑
n=0

(9it)n

n!

)

= e3i(x+3t)
, (32)

which is in perfect in accordance to the exact solution [67].

Application 3. Consider the nonlinear time-FSE [60, 65-67]

iDa
t U +U xx +ψ |U |2U = 0, (33)

subject to IC , U (x,0) = eφ ix, where ψ , φ are two constant, a ∈ (0,1] , i2 = −1, |U |2 = U U , U , is the conjugate of

U , and the complex function U (x, t) :Ω→C. The exact solutions for a = 1 is U (x, t) = ei(φx+(ψ−φ 2)t).

Following the analysis presented above and multiply (33) by −i, we can obtain the Laplace fractional equation for
(33) as

U(x,s) =
eφ ix

s
+

i

sa
L

{

∂ 2

∂x2
L

−1 {U}

}

+
ψ i

sa
L

{

∣

∣L
−1 {U}

∣

∣

2
L

−1 {U}
}

. (34)
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Further, the k− th-truncated LFE series solution Uk (x,s) for (34) can be expressed as

Uk (x,s) =
eφ ix

s
+

k

∑
n=1

hn (x)

sna+1
. (35)

Next, based on the method, the k− th-truncated LFER of (34) can be written in the form

L
(

ResUk
(x,s)

)

=
k

∑
n=1

hn (x)

sna+1
−

i

sa
L

{

∂ 2

∂x2
L

−1{Uk}

}

−
ψ i

sa
L

{

∣

∣L
−1 {Uk}

∣

∣

2
L

−1 {Uk}
}

. (36)

To get the 1− st LFRE function we let k = 1 in (36), one can obtain that

L
(

ResU1
(x,s)

)

=
h1 (x)−

(

ψ −φ2
)

ieφ ix

sa+1
+

ih1
′′
(x)− 2ψh1 (x)−ψe2φ ix

s2a+1
−ψ

2eφ ix − e−φ ix

s3a+1

Γ(1+ 2a)

(Γ(1+ a))2

−ψ
h1

2 (x)− h1
3 (x)

s4a+1

Γ(1+ 3a)

(Γ(1+ a))3
. (37)

By performing the following process, lims→∞ s
a+1 L

(

ResU1
(x,s)

)

=0, which gives that h1 (x)=
(

ψ −φ2
)

ieφ ix. Hence,
the 1− st LFE series solution of (34) can be expressed as

U1 (x,s) =
eφ ix

s
+

(

ψ −φ2
)

ieφ ix

sa+1
. (38)

Remark 4.1. To find the hk (x) we multiply the k− th LFRE function by ska+1. If θ > ka+1, then by performing the
process lims→∞ ska+1 L

(

ResUk
(x,s)

)

=0, any term divided by sω , ω ≥ θ will be zero.
To get the 2nd LFRE we let k= 2 in (36), one can obtain that:

L
(

ResU2
(x,s)

)

=

(

ψ −φ2
)

ienix

sa+1
+

h2 (x)

s2a+1
−

i

sa
L

{

∂ 2

∂x2
L

−1

{

eφ ix

s
+

(

ψ −φ2
)

ieφ ix

sa+1
+

h2 (x)

s2a+1

}}

−
ψ i

sa
L .

−
ψ i

sa
L







∣

∣

∣

∣

∣

L
−1

{

eφ ix

s
+

(

ψ −φ2
)

ieφ ix

sa+1
+

h2 (x)

s2a+1

}
∣

∣

∣

∣

∣

2

L
−1

{

eφ ix

s
+

(

ψ −φ2
)

ienix

sa+1
+

h2 (x)

s2a+1

}







(39)

By performing the process lims→∞ s2a+1 L
(

ResU2
(x,s)

)

=0, and by using Remark 1, h2 (x)=
((

ψ −φ2
)

i
)2

eφ ix. Thus,
the 2-nd

LFE series solution of (34) can be expressed as

U3 (x,s)=
eφ ix

s
+

(

ψ −φ2
)

ienix

sa+1
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
. (40)

The same matter for k= 3 reveals

L
(

ResU3
(x,s)

)

=

(

ψ −φ2
)

ienix

sa+1
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

h3 (x)

s3a+1

−
i

sa
L

{

∂ 2

∂x2
L

−1

{

eφ ix

s
+

(

ψ −φ2
)

ieφ ix

sa+1
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

h3 (x)

s3a+1

}}

−
ψ i

sa
L







∣

∣

∣

∣

∣

L
−1

{

eφ ix

s
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

h3 (x)

s3a+1

}∣

∣

∣

∣

∣

2

L
−1

{

eφ ix

s
+ ....+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

h3 (x)

s3a+1

(

ψ −φ2
)

ieφ ix

sa+1
+

h2 (x)

s2a+1

}







(41)
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Looking for the solution of lims→∞ s3a+1 L (Res3 (x,s))=0 give us that h3 (x) =
((

ψ −φ2
)

i
)3

eφ ix. Hence, by Remark
4.1, the 3− rd LFE series solution of (34) becomes

U3 (x,s) =
eφ ix

s
+

(

ψ −φ2
)

ieφ ix

sa+1
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

((

ψ −φ2
)

i
)3

eφ ix

s3a+1
, (42)

Similarly, the above process can be repeated smoothly using Mathematica for k = 4,5,6, . . . , and since

lims→∞ ska+1 L
(

ResUk
(x,s)

)

=0, we have hk (x) =
((

ψ −φ2
)

i
)k

eφ ix.
Consequently, if we collect all the previous results, the k− th LFE series solution of (34) can be written as

Uk (x,s) =
eφ ix

s
+

(

ψ −φ2
)

ienix

sa+1
+

((

ψ −φ2
)

i
)2

eφ ix

s2a+1
+

((

ψ −φ2
)

i
)3

eφ ix

s3a+1
+ · · ·+

((

ψ −φ2
)

i
)k

eφ ix

ska+1

= eφ ix

(

k

∑
n=0

((

ψ −φ2
)

i
)n

sna+1

)

. (43)

If we transform back expansion (34), one can get the k−th truncated approximate solution of (33) in the form

Uk (x, t) = eφ ix

(

k

∑
n=0

((

ψ −φ2
)

i
)n tna

Γ(na+ 1)

)

. (44)

For the stander case a= 1 and in term of infinite series in (44), the solution of (33) can be written as

U (x, t) = eφ ix

(

∞

∑
n=0

((

ψ −φ2
)

it
)n

n!

)

= eφ ixe((ψ−φ 2)it) = ei(φx+(ψ−φ 2)t), (45)

which is in perfect accordance with the exact solution [60, 65-67].
Application 4. Consider the cubic nonlinear time-FSE [60, 62-65, 67]:

iDa
t U +

1

2
U

xx
−U cos2x −|U |2U = 0, (46)

subject to IC: U (x,0) = sinx , where ∈ (0,1] , i2 =−1, |U |2 =U U , U is the conjugate of U , and the complex function

U (x, t) :Ω→C. The exact solutions when a = 1 is U (x, t) = sinx e
−3i

2 t .

Following the analysis presented above, and upon multiplying (46) by −i, we can obtain the Laplace fractional
equation for (46) as

U(x,s) =
sinx

s
+

i

2sa
L

{

∂ 2

∂x2
L

−1 {U}

}

−
i

sa
L
{

L
−1 {U}

}

cos2x −
i

sa
L

{

∣

∣L
−1 {U}

∣

∣

2
}

L
{

L
−1{U}

}

. (47)

Moreover, the k− th LFE series solution Uk (x,s) for (47) can be written as

Uk (x,s) =
sinx

s
+

k

∑
n=1

hn (x)

sna+1
. (48)

Next, based on the method, the k− th LFRE function of (47) can be defined in the form

L
(

ResUk
(x,s)

)

=
k

∑
n=1

hn (x)

sna+1
−

i

2sa
L

{

∂ 2

∂x2
L

−1 {Uk}

}

+
i

sa
L

{

L
−1 {Uk}

}

cos2x +
i

sa
L

{

∣

∣

∣
L

−1 {Uk}
∣

∣

∣

2
}

L

{

L
−1 {Uk}

}

.

(49)

To get the 1− st LRFE function we put k = 1 in (49) to have

lim
s→∞

s
a+1

L
(

ResU1
(x,s)

)

= h1 (x)+
3i

2
sinx . (50)

By performing the following process lims→∞ sa+1 L
(

ResU1
(x,s)

)

=0, we establish that h1 (x)=− 3i
2

sinx . Hence, the
1− st LFE series solution of (47) can be expressed as

U1 (x,s) =
sinx

s
+

(

−
3i

2

)

sinx

sa+1
. (51)
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To get the 2 −nd LFRE function we let k= 2 in (49), one can obtain that:

lim
s→∞

s
2a+1

L
(

ResU2
(x,s)

)

) = h2 (x)+
9

4
sinx . (52)

By performing the following process, lims→∞ s2a+1 L
(

ResU2
(x,s)

)

=0, and by Remark 4.1, h2 (x)=− 9
4
sinx . So,

the 2−nd LFE series solution of (??) can be expressed as

U2 (x,s)=
sinx

s
+

(

−
3i

2

)

sinx

sa+1
+

(

−
3i

2

)2
sinx

s2a+1
. (53)

The same matter for k= 3 implies

lim
s→∞

s
3a+1

L
(

ResU3
(x,s)

)

= h3 (x)−
27i

8
sinx . (54)

By solving lims→∞ s
3a+1 L (Res3 (x,s))=0, we obtain that h3 (x) =

(

− 3i
2

)3
sinx . Hence, by Remark 4.1, the 3− rd

Laplace series solution of (47) becomes

U3 (x,s) =
sinx

s
+

(

−
3i

2

)

sinx

sa+1
+

(

−
3i

2

)2
sinx

s2a+1
+

(

−
3i

2

)3
sinx

s3a+1
. (55)

In a similar manner, the above process can be repeated smoothly using Mathematica for k = 4,5,6, . . . , and the fact

that lims→∞ ska+1 L
(

ResUk
(x,s)

)

=0 leads to hk (x) =
(

− 3i
2

)k
sinx .

Consequently, if we collect all the previous results, the k− th LFE series solution of (47) can be written as

Uk (x,s) =
sinx

s
+

(

−
3i

2

)

sinx

sa+1
+

(

−
3i

2

)2
sinx

s2a+1
+

(

−
3i

2

)3
sinx

s3a+1
+ · · ·+

(

−
3i

2

)k
sinx

ska+1
= sinx

(

k

∑
n=0

(

− 3i
2

)n

sna+1

)

. (56)

If we transform back the expansion (56), one can get that the k−th truncated approximate solution of (46) has the
following expansion

Uk (x, t) = sinx

(

k

∑
n=0

(

−
3i

2

)n
tna

Γ(na+ 1)

)

. (57)

For the case a= 1 and in term of infinite series in (57), the solution of (??) can be expressed as follows

U (x, t) = sinx

(

∞

∑
n=0

(

− 3i
2

t
)n

n!

)

= sinx e−
3i
2 t
, (58)

which is in perfect accordance with the exact solution as in [60, 62-65, 67].

5 Numerical and Graphical Results

This section is devoted to study numerical and graphical simulations of the examined Caputo time-FSEs via Laplace
fractional RPS technique. The merit of utilizing the present algorithm is to attain exact and approximate solutions in a
simple fashion with no assumptions on the constructed model. As well, it is provide a rapid convergence with minimal
computational work compared to other techniques. 2D, and 3D graphs for different FD values are plotted for giving a
clear conception of the dynamic behavior of considered models. To demonstrate the simplicity and efficiency of the
recommended scheme, errors of the approximate solution and some numerical comparisons are conducted and
summarized.

Following, are some graphically and numerically representatives for Applications 3, and 4. Tables 1 and 2 display
the absolute error between the 5− th approximate and exact solutions of the real and imaginary parts of U (x, t) for
Application 3, respectively, at ψ = 2, φ = 1, x= 0.3 and x= 0.2, with a value of 1 for a and t ranging from 0 to 1. It is
worth noting that the results were identical to those of other methods, as shown in Tables 1 and 2. Tables 3 and 4 compare
the absolute error of the 5− th approximate solutions for the real and imaginary parts, respectively, with other methods
for Application 3 at = 2, φ = 1, t= 0.1, x ranging from 0 to 1, and a values of 0.7, 0.8, and 0.9. The results obtained using
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Laplace fractional RPS method are better than those obtained using other methods. Similarly, Tables 5 and 6 compare
the absolute error of the 5− th approximate solutions for the real and imaginary parts, respectively, with other methods
for Application 4 at t= 0.1, x ranging from 0 to 1, and a values of 0.7, 0.8, and 0.9. The results obtained using Laplace
fractional RPS method are better than those obtained using other methods.

Figs. 1 and 2 depict the impact of the variable x and the fractional-order derivative a on the solution profile by
showing the exact and approximate solutions. The 2D graphs in Figs. 1 and 2 display the 5−th approximate solutions
achieved by Laplace fractional RPS method with t= 0.3 at fractional-order derivative values of a= 0.6, 0.7, 0.8, 0.9,
and 1, along with the exact solutions for Applications 3 when ψ = 2, φ = 1 and 4, respectively. The figures demonstrate
that the approximate solutions obtained by Laplace fractional RPS method are more accurate as a approaches 1, with
the approximate solutions closely matching the exact solutions at a= 1. This provides evidence of the effectiveness and
precision of the proposed method.

Figs. 3-6 present 3D-graphs of the 5−th approximate solutions derived using Laplace fractional RPS method at
different values of a= 0.6, 0.7, 0.8, 0.9 for Applications 3, and 4 at ψ = 2, φ = 1 and 4, along with their exact
solutions. These figures demonstrate that the approximate solutions obtained using Laplace fractional RPS method
become increasingly like the exact solutions as a approaches 1. Moreover, the approximate solutions coincide with the
exact solutions at a= 1, which confirms the effectiveness of the recommended method. Based on the graphical results, it
can be concluded that the suggested approach produces highly accurate solutions in the form of a series with minimal
computational effort.

Table 1. The absolute error comparison with various approaches for Application 3 when = 2, φ = 1, a= 1, x = 0.3, and
n = 5

tiii Exact of the
real part of
U (x, t)

Abs. error
of the real
part of

U555 (x, t)

Abs. error
of the real
part of

U555 (x, t)

Exact of the
imaginary
part of

U (x, t)

Abs. error
of the
imaginary

part of
U555 (x, t)

Abs. error
of the
imaginary

part of
U555 (x, t)

Present

Method

[60] Present

Method

[60]

000...000555 999...333999333777333 ×××
111000−−−111

222...000666888555333 ×××
111000−−−111111

222...000666888555333 ×××
111000−−−111111

333...444222888999888 ×××
111000−−−111

666...555666000999222 ×××
111000−−−111222

666...555666000999222 ×××
111000−−−111222

000...111555 999...000000444444777 ×××
111000−−−111

111...555000000777555 ×××
111000−−−888

111...555000000777555 ×××
111000−−−888

444...333444999666666 ×××
111000−−−111

444...999999777111111 ×××
111000−−−999

444...999999777111111 ×××
111000−−−999

000...222555 888...555222555222555 ×××
111000−−−111

3.20003 ×××
111000−−−777

3.20003 ×××
111000−−−777

555...222222666888777 ×××
111000−−−111

111...111111666555444 ×××
111000−−−777

111...111111666555444 ×××
111000−−−777

000...333555 777...999666000888444 ×××
111000−−−111

222...333999666111222 ×××
111000−−−666

222...333999666111222 ×××
111000−−−666

666...000555111888666 ×××
111000−−−111

888...777444666000777 ×××
111000−−−777

888...777444666000777 ×××
111000−−−777

000...444555 777...333111666888999 ×××
111000−−−111

111...000777555999777 ×××
111000−−−555

111...000777555999777 ×××
111000−−−555

666...888111666333999 ×××
111000−−−111

444...111000222222555 ×××
111000−−−666

444...111000222222555 ×××
111000−−−666

000...555555 666...555999999888333 ×××
111000−−−111

333...555666444111666 ×××
111000−−−555

333...555666444111666 ×××
111000−−−555

777...555111222888000 ×××
111000−−−111

111...444111777333999 ×××
111000−−−555

111...444111777333999 ×××
111000−−−555

000...666555 555...888111666888333 ×××
111000−−−111

999...666444666000999 ×××
111000−−−555

999...666444666000999 ×××
111000−−−555

888...111333444111666 ×××
111000−−−111

333...999999666000777 ×××
111000−−−555

333...999999666000777 ×××
111000−−−555

000...777555 444...999777555777111 ×××
111000−−−111

222...666000222999000 ×××
111000−−−444

222...666000222999000 ×××
111000−−−444

888...666777444222333 ×××
111000−−−111

999...777444222666555 ×××
111000−−−555

999...777444222666555 ×××
111000−−−555

000...888555 444...000888444888777 ×××
111000−−−111

444...777555444000999 ×××
111000−−−444

444...777555444000999 ×××
111000−−−444

999...111222777666444 ×××
111000−−−111

222...111222999777888 ×××
111000−−−444

222...111222999777888 ×××
111000−−−444

000...999555 333...111555333222222 ×××
111000−−−111

999...111999333666111 ×××
111000−−−444

999...111999333666111 ×××
111000−−−444

999...444888999888555 ×××
111000−−−111

444...222777666222555 ×××
111000−−−444

444...222777666222555 ×××
111000−−−444
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Table 2. The absolute error comparison with various approaches for Application 3 when = 2, φ = 1, a= 1, x = 0.2,
and n = 5.

tiii Exact of the

real part of
U (x, t)

Abs. error

of the real
part of
U555 (x, t)

Abs. error

of the real
part of
U555 (x, t)

Exact of the

imaginary
part of
U (x, t)

Abs. error

of the
imaginary
part of

U555 (x, t)

Abs. error

of the
imaginary
part of

U555 (x, t)
Present
Method

[60] Present
Method

[60]

000...111 999...555555333333666 ×××
111000−−−111

1.35702 ×××
111000−−−999

1.35702 ×××
111000−−−999

222...999555555222000 ×××
111000−−−111

2.95323 ×××
111000−−−111000

2.95323 ×××
111000−−−111000

000...222 999...222111000666111 ×××
111000−−−111

8.65506 ×××
111000−−−888

8.65506 ×××
111000−−−888

333...888999444111888 ×××
111000−−−111

2.01346 ×××
111000−−−888

2.01346 ×××
111000−−−888

000...333 888...777777555888333 ×××
111000−−−111

9.82114 ×××
111000−−−777

9.82114 ×××
111000−−−777

444...777999444222666 ×××
111000−−−111

2.43305 ×××
111000−−−777

2.43305 ×××
111000−−−777

000...444 888...222555333333666 ×××
111000−−−111

5.49515 ×××
111000−−−666

5.49515 ×××
111000−−−666

555...666444666444222 ×××
111000−−−111

1.44488 ×××
111000−−−666

1.44488 ×××
111000−−−666

000...555 777...666444888444222 ×××
111000−−−111

2.08672 ×××
111000−−−555

2.08672 ×××
111000−−−555

666...444444222111888 ×××
111000−−−111

5.80614 ×××
111000−−−666

5.80614 ×××
111000−−−666

000...666 666...999666777000777 ×××
111000−−−111

6.20037 ×××
111000−−−555

6.20037 ×××
111000−−−555

777...111777333555666 ×××
111000−−−111

1.82078 ×××
111000−−−555

1.82078 ×××
111000−−−555

000...777 666...222111666111000 ×××
111000−−−111

1.55526 ×××
111000−−−444

1.55526 ×××
111000−−−444

777...888333333222777 ×××
111000−−−111

4.80863 ×××
111000−−−555

4.80863 ×××
111000−−−555

000...888 555...444000333000222 ×××
111000−−−111

3.44589 ×××
111000−−−444

3.44589 ×××
111000−−−444

888...444111444777111 ×××
111000−−−111

1.11933 ×××
111000−−−444

1.11933 ×××
111000−−−444

000...999 444...555333555999666 ×××
111000−−−111

6.94386 ×××
111000−−−444

6.94386 ×××
111000−−−444

888...999111222000777 ×××
111000−−−111

2.36508 ×××
111000−−−444

2.36508 ×××
111000−−−444

111...000 333...666222333555888 ×××
111000−−−111

1.29829 ×××
111000−−−333

1.29829 ×××
111000−−−333

999...333222000333999 ×××
111000−−−111

4.62838 ×××
111000−−−444

4.62838 ×××
111000−−−444

Table 3. The absolute error comparison with other method for the real part at various values of a for Application 3
when = 2, φ = 1, t = 0.1, and n= 5.

xiii U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t)
a=0.7 a=0.7 a=0.8 a=0.8 a=0.9 a=0.9

Present
Method

[60] Present
Method

[60] Present
Method

[60]

000...111 333...888111777999888 ×××
111000−−−222

5.32815 ×××
111000−−−222

111...999333111999222 ×××
111000−−−222

2.41737 ×××
111000−−−222

777...444777000333666 ×××
111000−−−333

8.70022 ×××
111000−−−333

000...222 444...999222666222222 ×××
111000−−−222

7.06783 ×××
111000−−−222

222...555999555222444 ×××
111000−−−222

3.35417 ×××
111000−−−222

111...000444222777111 ×××
111000−−−222

1.25420 ×××
111000−−−222

000...333 555...999888555222555 ×××
111000−−−222

8.73689 ×××
111000−−−222

333...222333222666222 ×××
111000−−−222

4.25746 ×××
111000−−−222

111...333222777999666 ×××
111000−−−222

1.62585 ×××
111000−−−222

000...444 666...999888444444777 ×××
111000−−−222

1.03187 ×××
111000−−−111

333...888333777777111 ×××
111000−−−222

5.11821 ×××
111000−−−222

111...555999999999444 ×××
111000−−−222

1.98125 ×××
111000−−−222

000...555 777...999111333999000 ×××
111000−−−222

1.17973 ×××
111000−−−111

444...444000444444444 ×××
111000−−−222

5.92782 ×××
111000−−−222

111...888555555999444 ×××
111000−−−222

2.31685 ×××
111000−−−222

000...666 888...777666444222666 ×××
111000−−−222

1.31581 ×××
111000−−−111

444...999222777111888 ×××
111000−−−222

6.67820 ×××
111000−−−222

222...000999333333999 ×××
111000−−−222

2.62931 ×××
111000−−−222

000...777 999...555222777000555 ×××
111000−−−222

1.43874 ×××
111000−−−111

555...444000000666888 ×××
111000−−−222

7.36186 ×××
111000−−−222

222...333000999999222 ×××
111000−−−222

2.91550 ×××
111000−−−222

000...888 111...000111999444666 ×××
111000−−−111

1.54730 ×××
111000−−−111

555...888222000222111 ×××
111000−−−222

7.97196 ×××
111000−−−222

222...555000333333888 ×××
111000−−−222

3.17255 ×××
111000−−−222

000...999 111...000777666000444 ×××
111000−−−111

111...64040 ×××
111000−−−111

666...111888111666000 ×××
111000−−−222

8.50240 ×××
111000−−−222

222...666777111888222 ×××
111000−−−222

3.17255 ×××
111000−−−222

111...000 111...111222111888666 ×××
111000−−−111

1.71710 ×××
111000−−−111

666...444888111222222 ×××
111000−−−222

8.94790 ×××
111000−−−222

222...888111333555777 ×××
111000−−−222

3.58931 ×××
111000−−−222
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Table 4. The absolute error comparison with other method for the imaginary part at various values of a for Application 3
when = 2, φ = 1, t = 0.1, and n= 5.

xiii U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t)
a=0.7 a=0.7 a=0.8 a=0.8 a=0.9 a=0.9

Present
Method

[60] Present
Method

[60] Present
Method

[60]

000...111 111...111222999222000 ×××
111000−−−111

1.76925 ×××
111000−−−111

666...777444000888888 ×××
111000−−−222

9.50464 ×××
111000−−−222

222...999999999000111 ×××
111000−−−222

3.89173 ×××
111000−−−222

000...222 111...000888555444444 ×××
111000−−−111

1.70721 ×××
111000−−−111

666...555111444333444 ×××
111000−−−222

9.21582 ×××
111000−−−222

222...999000999444555 ×××
111000−−−222

3.78543 ×××
111000−−−222

000...333 111...000333000888444 ×××
111000−−−111

1.62813 ×××
111000−−−111

666...222222222777000 ×××
111000−−−222

8.83492 ×××
111000−−−222

222...777999000888222 ×××
111000−−−222

3.64131 ×××
111000−−−222

000...444 999...666555999333666 ×××
111000−−−222

1.53277 ×××
111000−−−111

555...888666888888999 ×××
111000−−−222

8.36574 ×××
111000−−−222

222...666444444333000 ×××
111000−−−222

3.46080 ×××
111000−−−222

000...555 888...999111333888222 ×××
111000−−−222

1.42210 ×××
111000−−−111

555...444555666444444 ×××
111000−−−222

7.81298 ×××
111000−−−222

222...444777111333666 ×××
111000−−−222

3.24572 ×××
111000−−−222

000...666 888...000777999222111 ×××
111000−−−222

1.29721 ×××
111000−−−111

444...999888999444777 ×××
111000−−−222

7.18215 ×××
111000−−−222

222...222777333777333 ×××
111000−−−222

2.99821 ×××
111000−−−222

000...777 777...111666333888888 ×××
111000−−−222

1.15937 ×××
111000−−−111

444...444777222666555 ×××
111000−−−222

6.47957 ×××
111000−−−222

222...000555333333888 ×××
111000−−−222

2.72073 ×××
111000−−−222

000...888 666...111777666999888 ×××
111000−−−222

1.00995 ×××
111000−−−111

333...999111111111333 ×××
111000−−−222

5.71224 ×××
111000−−−222

111...888111222555222 ×××
111000−−−222

2.41608 ×××
111000−−−222

000...999 555...111222888333555 ×××
111000−−−222

8.50428 ×××
111000−−−222

333...333111000555444 ×××
111000−−−222

4.88783 ×××
111000−−−222

111...555555333555444 ×××
111000−−−222

2.08728 ×××
111000−−−222

111...000 444...000222888444888 ×××
111000−−−222

6.82413 ×××
111000−−−222

222...666777666888777 ×××
111000−−−222

4.01459 ×××
111000−−−222

111...222777999000444 ×××
111000−−−222

1.73763 ×××
111000−−−222

Table 5. The absolute error comparison with other method for the real part at various values of a for Application 4
when t = 0.1, and n= 5.

xiii U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t)
a=0.7 a=0.7 a=0.8 a=0.8 a=0.9 a=0.9

Present
Method

[60] Present
Method

[60] Present
Method

[60]

000...111 555...999000777444333 ×××
111000−−−333

777.888666555888000 ×××
111000−−−333

222...777888444555999 ×××
111000−−−333

333...222555444777000 ×××
111000−−−333

999...999333000111666 ×××
111000−−−444

111.000666888555000 ×××
111000−−−333

000...222 111...111777555555888 ×××
111000−−−222

111.555666555333000 ×××
111000−−−222

555...555444111333555 ×××
111000−−−333

666.444777666888999 ×××
111000−−−333

111...999777666111111 ×××
111000−−−333

222.111222666333333 ×××
111000−−−333

000...333 111...777444888666888 ×××
111000−−−222

222.333222888333888 ×××
111000−−−222

888...222444222777555 ×××
111000−−−333

999.666333444333666 ×××
111000−−−333

222...999333999444666 ×××
111000−−−333

333.111666222999111 ×××
111000−−−333

000...444 222...333000444333000 ×××
111000−−−222

333.000666888222000 ×××
111000−−−222

111...000888666111888 ×××
111000−−−222

111.222666999555666 ×××
111000−−−222

333...888777333444444 ×××
111000−−−333

111.666777888888000 ×××
111000−−−333

000...555 222...888333666999000 ×××
111000−−−222

333.777777777333666 ×××
111000−−−222

111...333333777222333 ×××
111000−−−222

111.555666222999999 ×××
111000−−−222

444...777666888777111 ×××
111000−−−333

555.111333111222222 ×××
111000−−−333

000...666 333...333444111111555 ×××
111000−−−222

444.444444888777888 ×××
111000−−−222

111...555777444999222 ×××
111000−−−222

111.888444000888111 ×××
111000−−−222

555...666111666333444 ×××
111000−−−333

666.000444333222888 ×××
111000−−−333

000...777 333...888111222000222 ×××
111000−−−222

555.000777555777555 ×××
111000−−−222

111...777999666888777 ×××
111000−−−222

222.111000000222444 ×××
111000−−−222

666...444000777888666 ×××
111000−−−333

666.888999444999666 ×××
111000−−−333

000...888 444...222444444888000 ×××
111000−−−222

555.666555222000000 ×××
111000−−−222

222...000000000888777 ×××
111000−−−222

222.333333888666888 ×××
111000−−−222

777...111333555333444 ×××
111000−−−333

777.666777777777555 ×××
111000−−−333

000...999 444...666333555111777 ×××
111000−−−222

666.111777111777888 ×××
111000−−−222

222...111888444888888 ×××
111000−−−222

222.555555333777555 ×××
111000−−−222

777...777999111555444 ×××
111000−−−333

888.333888333888333 ×××
111000−−−333

111...000 444...999777999222222 ×××
111000−−−222

666.666222999888999 ×××
111000−−−222

222...333444777000666 ×××
111000−−−222

222.777444333333111 ×××
111000−−−222

888...333666999888888 ×××
111000−−−333

999.000000666111333 ×××
111000−−−333
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,

(a) “ (b)

∗∗∗∗Exact, ∗∗∗∗a === 111, ∗∗∗∗ a === 000.999, ∗∗∗∗a === 000.888, ∗∗∗∗ a === 000.777, ∗∗∗∗ a === 000.666

Fig. 1: (a): The 2D-Plot of the real part of U (x, t), against the real part of U5 (x, t), for Application 3, with ψ = 2, φ = 1, x∈ [−3π,3π],
and t = 0.3, at distinct a values’ (b): The 2D-Plot of the exact solution of the imaginary part of U (x, t), against the imaginary part of

U5 (x, t), for Application 3, with ψ = 2, φ = 1, x ∈ [−3π,3π], and t = 0.3, at distinct a values’.

Table 6. The absolute error comparison with other method for the imaginary part at various values of a for Application
4 when t = 0.1, and n= 5.

xiii U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t) U555 (x, t)
a=0.7 a=0.7 a=0.8 a=0.8 a=0.9 a=0.9

Present

Method

[60] Present

Method

[60] Present

Method

[60]

000...111 111...666777666777222 ×××
111000−−−222

222.666444777666888 ×××
111000−−−222

111...000111111666666 ×××
111000−−−222

111.444333111333666 ×××
111000−−−222

444...555222222222333 ×××
111000−−−333

555.888777444888666 ×××
111000−−−333

000...222 333...333333666666888 ×××
111000−−−222

555.222666888999111 ×××
111000−−−222

222...000111333222111 ×××
111000−−−222

222.888444888444222 ×××
111000−−−222

888...999999999222888 ×××
111000−−−333

111.111666999111000 ×××
111000−−−222

000...333 444...999666333333111 ×××
111000−−−222

777.888333777444999 ×××
111000−−−222

222...999999444666555 ×××
111000−−−222

444.222333777000222 ×××
111000−−−222

111...333333888666444 ×××
111000−−−222

111.777333999000444 ×××
111000−−−222

000...444 666...555444000333444 ×××
111000−−−222

111.000333222777888 ×××
111000−−−111

333...999444666111666 ×××
111000−−−222

555.555888333222888 ×××
111000−−−222

111...777666333999888 ×××
111000−−−222

222.222999111555999 ×××
111000−−−222

000...555 888...000555222000222 ×××
111000−−−222

111.222777111444888 ×××
111000−−−111

444...888555888222444 ×××
111000−−−222

666.888777333777666 ×××
111000−−−222

222...111777111666999 ×××
111000−−−222

222.888222111222666 ×××
111000−−−222

000...666 999...444888333222666 ×××
111000−−−222

111.444999777444999 ×××
111000−−−111

555...777222111777999 ×××
111000−−−222

888.000999555555555 ×××
111000−−−222

222...555555777777000 ×××
111000−−−222

333.333222222777333 ×××
111000−−−222

000...777 111...000888111999777 ×××
111000−−−111

111.777000888555333 ×××
111000−−−111

666...555222888111666 ×××
111000−−−222

999.222333666444666 ×××
111000−−−222

222...999111888111666 ×××
111000−−−222

333.777999111000000 ×××
111000−−−222

000...888 111...222000444888111 ×××
111000−−−111

111.999000222555000 ×××
111000−−−111

777...222666999333111 ×××
111000−−−222

111.000222888555111 ×××
111000−−−111

333...222444999444666 ×××
111000−−−222

444.222222111444000 ×××
111000−−−222

000...999 111...333111555666111 ×××
111000−−−111

222.000777777444666 ×××
111000−−−111

777...999333777888222 ×××
111000−−−222

111.111222333000999 ×××
111000−−−111

333...555444888333000 ×××
111000−−−222

444.666000999666111 ×××
111000−−−222

111...000 111...444111333222666 ×××
111000−−−111

222.222333111666777 ×××
111000−−−111

888...555222777000222 ×××
111000−−−222

111.222000666444666 ×××
111000−−−111

333...888111111666888 ×××
111000−−−222

444.999555111777777 ×××
111000−−−222
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(a) (b)

∗∗∗∗Exact, ∗∗∗∗a === 111, ∗∗∗∗ a === 000.999, ∗∗∗∗a === 000.888, ∗∗∗∗ a === 000.777, ∗∗∗∗ a === 000.666

Fig. 2: (a): The 2D-Plot of the real part of U (x, t), against the real part of U5 (x, t), for Application 4, with x∈ [−3π,3π], and t= 0.3, at

distinct a values’, (b): The 2D-Plot n of the imaginary part of U (x, t), against f the imaginary part of U5 (x, t), for Application 4, with

x∈ [−3π,3π], and t= 0.3, at distinct a values’.

6 Conclusion

This article proposes a novel iterative strategy for solving time-FSEs using the time-Caputo FD. The recommended
method couples the LT with the fractional RPS scheme to generate accurate approximate and exact analytical solutions
to linear and non-linear fractional models. The Laplace fractional RPS method has several advantages, including the ease
of obtaining exact solutions to non-linear fractional problems, minimal calculations, depending on the limit idea, and the
absence of physical parameter assumptions. The efficiency of this method is demonstrated through numerical and
graphical simulation of the attained solutions, which are compared with other techniques that also use the under
time-Caputo FD. From simulation view, the comparison shows that our present method provides the same exact solutions
which are found via the other methods. Additionally, from 2D, and 3D-graphs the physical understanding has been
illustrated with diverse FD values’. The accuracy of the future method has been highlighted in studied applications. The
article concludes that the Caputo derivative is suitable for modelling time-FSEs and that the Laplace fractional RPS
method is an accurate, adaptive, and efficient technique. It can also be applied to solve other types of ordinary and PDEs
of non-integer order. In the future, the Laplace fractional RPS method can be used to solve more complex systems of
FPDEs in various scientific fields.
Abbreviations: time-FSEs : time-fractional Schrödinger equations ; RPS :Laplace fractional residual power series;
R-L : Riemann– Liouville; FD: Fractional Derivative; FPDEs: Fractional partial differential equations; LT: Laplace
Transform; FPSE: fractional power series expansion; LFRE: Laplace fractional residual-error

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


192 H. Aljarrah et al. : Laplace Fractional Residual Power Series Scheme For ...

,

(a) (b)

,

(c) ‘ (d)

,

(e) ‘ (f)

Fig. 3: 3D-Surfaces Plots of the real part of U (x, t), against the real part of U5 (x, t) for Application 3, with ψ = 2, φ = 1, t ∈ [0,2],
and x ∈ [−3π,3π], at distinct a values’ :(a) The real part of U (x, t), (b): The real part of U (x, t) at a = 1, (c): The real part of U (x, t)
at a = 0.9, (d): The real part of U (x, t) at a = 0.8, (e): The real part of U (x, t) at a = 0.7, (f): The real part of U (x, t) at a = 0.6.
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,

(a) (b)

,

(c) ‘ (d)

,

(e) (f)

Fig. 4: 3D-Surfaces of the imaginary part of U (x, t), against the imaginary part of U5 (x, t) for Application 3, with ψ = 2, φ = 1,

t ∈ [0,2], and x ∈ [−3π,3π], at distinct a values’ (a): The imaginary part of U (x, t), (b): The imaginary part of U5 (x, t) at a = 1, (c):

The imaginary part of U5 (x, t) at a = 0.9, (d): The imaginary part of U5 (x, t) at a = 0.8, (e): The imaginary part of U5 (x, t) at a = 0.7,

(f): The 5imaginary part of U5 (x, t) at a = 0.6.
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,

(a) (b)

, ,

(c) (d)

, ,

(e) (f)

Fig. 5: 3D-Surfaces Plots real part of U (x, t), against the real part of U5 (x, t) for Application 4, with t ∈ [0,2], and x ∈ [−3π,3π], at

distinct a values’ (a): The real part of U (x, t), (b): The real part of U5 (x, t) at a = 1, (c): The real part of U5 (x, t) at a = 0.9, (d): The

real part of U5 (x, t) at a = 0.8, (e): The real part of U5 (x, t) at a = 0.7, (f): The real part of U5 (x, t) (x, t) at a = 0.6.

c© 2025 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 11, No. 1, 177-198 (2025) / www.naturalspublishing.com/Journals.asp 195

, ,

, (a) ‘ (b)

, ,

, (c) (d)

, ,
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Fig. 6: 3D-Surfaces Plots of the imaginary part of U (x, t), against of the imaginary part of U5 (x, t) for Application 4, with t ∈ [0,2],
and x ∈ [−3π,3π], at distinct a values’ (a): The imaginary part of U (x, t), (b): The imaginary part of U5 (x, t) at a = 1, (c): The

imaginary part of U5 (x, t) at a = 0.9, (d): The imaginary part of U5 (x, t) at a = 0.8, (e): The imaginary part of U5 (x, t) at a = 0.7, (f):

The imaginary part of U5 (x, t) at a = 0.6
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