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Abstract: This paper uses the Generalized Extreme Value Distribution - Archimedean Gumbel copula modelling approach to quantify

diversification effects in a bivariate portfolio of financial asset returns. This paper estimates Value at Risk (VaR) and Expected Shortfall

(ES) of a portfolio consisting of the South African Industrial and Financial Indices using Monte-Carlo simulation. Results show that

the portfolio risks are smaller than the sum of the individual component risks, indicating diversification benefits for investors. This

approach is valuable for assessing, preparing, and mitigating risks in investment decisions, particularly for international investors

considering cross-market diversification.
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Abbreviations

VaR - Value-at-Risk
IFM - Inference Function for Margins
SAR/(ZAR) - South African Rand
ES - Expected Shortfall
BM- Block Maxima
GBP - British Pound
GFC - Global Financial Crisis
EUR - European Union euro
CVaR - Conditional Value-at-Risk
ALSI - All Share Index
EVT - Extreme Value Theory
KLSE - Malaysian futures markets
USD - United States Dollar
DCE - Dalian Commodity Exchange
ADF - Augmented Dickey Fuller
J520 - South African Industrial Index
MLE - Maximum Likelihood Estimation
J580 - South African Financial Index
BM - Block Maxima
GPD - Generalised Pareto Distribution
GEVD - Generalised Extreme Value Distribution
BRICS - Brazil, Russia, India, China and South Africa

SGX-DT - Singapore Exchange Derivatives Trading
Limited
G7 - Canada, France, Germany, Italy, Japan, the United
Kingdom and the United States

1 Introduction

In the world of investment, the subject of building a
portfolio is still one of the frequently discussed subjects
and unquestionably vital for investors and practitioners.
Understanding and forecasting the portfolio risk is worth
investigating since there are diversification benefits to be
harvested. In finance, multivariate analysis is used mainly
to model risk for the joint large losses, which may lead to
disaster in the event of say, a stock market crash.
According to [1] investors and practitioners need to know
how strongly stock markets are interconnected in order to
make the appropriate financial decisions as they face
difficult financial situations in choosing how much of
their assets to invest in each sub-market. This paper
extends studies by [2,3,4] who used bivariate portfolios
to estimate bivariate portfolio risk, however this paper
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goes further in estimating diversification effects/benefits
for the portfolio under consideration. According to [5]
diversification benefits of international investing are on
the decrease since there is higher dependence and
correlation between Global stock markets (which mainly
excluded developing countries’ stock markets). The
developing countries’ markets are less dependent on
major Global stock markets. The benefit of diversification
is minimised when there is positive correlation between
the assets, making the risk of the portfolio equivalent to
that of any individual equity or even greater [6]. Efforts
have been made to explore interdependence among stock
returns at the industry/sector level [7]. The South African
Industrial and Financial sectors are used in this paper to
show such diversification benefits. The main metrics of
risk measure are the Value at Risk (VaR) and Expected
Shortfall (ES). [8] stated that investors and practitioners
commonly use the VaR metric as a risk measure, although
it is not sub-additive, and hence an incoherent risk
measure. Practically VaR can be sub-additive in certain
situations [9], and hence consistent with the
diversification concept of modern portfolio theory. This
property of sub-additivity is a mathematical description of
diversification which illustrates the many benefits of
portfolio diversification [6] to be estimated and quantified
in this paper and is discussed in Section 3.5. [10]
proposed to apply a combination of the heavy-tailed EVT
statistical distributions and copula functions to overcome
the limitations of using the Normal distribution approach
to estimating VaR and ES.

This paper will quantify diversification effects of a
portfolio consisting of the South African Industrial
Index(J520) and the South African Financial Index (J580)
using the Generalised Extreme Value Distribution
(GEVD)-Archimedean Gumbel copula modelling
approach. The financial returns are fitted separately to the
GEVD as an estimate of the marginal distributions to both
tails (gains and losses). The dependence structure
(co-movement) is explained by the Archimedean Gumbel
copula, and hence the construction of the joint probability
distribution to the two financial risks, allowing for
heavy-tailedness, asymmetry and nonlinearity in the
financial returns distribution. This paper is confined to a
bivariate case using an equally weighted portfolio,
although in principle the ideas discussed can be applied to
higher dimension models. Often univariate risks of
component assets and portfolio risks are forecasted before
quantifying diversification effects when portfolios are
formed.

1.1 Statement of the problem

In finance, one of the challenging problems is managing
risk, specifically forecasting portfolio risk, used in turn to
quantify diversification effects. Extreme events that have
catastrophic consequences do not only happen in
isolation, but are made worse as a result of

inter-connectedness/interaction/dependence of risky
events. The Global Financial Crisis (GFC) of 2007-2008
exposed how interconnected the financial systems have
become globally [1]. Each event or risk alone can be
devastating, but together the risk level is compounded.
Therefore the ability to quantify diversification effects of
compound multivariate extreme values is important to
allow for assessment, preparation and risk mitigation, for
better investment decisions. If the portfolio risks are not
estimated correctly, the incorrect estimates would result
in failure to properly diversify risk with resultant potential
disastrous consequences. The main reason investors seek
diversification is to reduce the portfolio risk inherent in
investing in risky assets. This paper will estimate
diverification effects/benefits of a bivariate portfolio
consisting of two financial assets, viz; J520 and J580
indices

1.2 Justification of the Study

The rapid increase in Globalisation of information and
capital has created dependencies among the stock markets
and industrial sectors [11]. To estimate dependence in
risks is crucial for portfolio diversification aims. If there
is low correlation between two markets, a portfolio
comprising of financial assets from those markets might
be used to create a diversified portfolio. The use of the
GEVD-Archimedean Gumbel copula modelling approach
between financial assets provides a more efficient method
to estimate portfolio risk and the subsequent
diversification effects. The copula approach, circumvents
the limitations of multivariate dependence analysis by
defining dependence structures that are determined by the
properties of the data [12]. [3] found that univariate and
multivariate models based on traditional Normal
distribution-based models produced much less accurate
risk estimations in the majority of cases.

1.3 Objective of the Study

The main objective of this paper is to estimate portfolio
risk in order to quantify diversification effects of investing
in a portfolio consisting of two financial Indices: the J520
and the J580, using the GEVD-Archimedean Gumbel
copula model and Monte - Carlo simulation of an equally
weighted portfolio. The specific objectives are:

–To fit the GEVD marginals to the two Indices returns
(separately for losses and gains).

–Estimate univariate VaR and ES using the GEVD
model.

–To determine which bivariate copula is to be fitted to
the bivariate distribution (in this case it was found to
be the Archimedean Gumbel copula which was fitted
to the GEVD marginal distributions)
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–Estimate the portfolio risks using GEVD-
Archimedean Gumbel copula model and to interpret
the risk measures associated with the portfolio.

–To quantify the diversification effects thereof.

Given the limited empirical investigations of the
dependence structure (co-movements) of the South
African sector Indices, extreme correlations and
diversification effects at a sector level, the bivariate
portfolio consisting of the South Africa Industrial and
Financial Sectors and Indices is considered in this paper.
To the best of our knowledge, no such application has
been done to the South African assets, more specifically
to the mentioned assets. The paper is organised as
follows: section 2: Literature Review, section 3: Research
Methodology, section 4: Empirical results and discussion
and section 5: Conclusions and future possible research.

2 Literature Review

The Extreme Value Theory (EVT) - copula model offers
to investors and practitioners, a powerful tool to model
the portfolio risk and diversification effects/benefits
between the different financial assets and are preferable to
the traditional linear correlation-based methods [3].
According to literature, the common marginal
distributions used in the presence of extremes, are the
GEVD and GPD marginals [12].

[13] used the GEVD marginals to investigate the tail
behaviour of the palm oil futures markets. The copula
model was used estimate the dependence structure and
the joint probability distribution between the returns of
palm oil futures markets. The Gumbel-copula and Husler
Reiss- copula were used to estimate this dependence
structure. The results reveal that the KLSE and SGX-DT
are highly dependent. The findings also show that there is
no dependence between KLSE and DCE, SGX-DT and
DCE. These findings are beneficial to investors and
practitioners who wish to get involved the in trading of
palm oil commercially, whilst minimising their portfolio
investment risk.

The VaR of an investment portfolio consisting of
IBOVESPA (Brazil) and MERVAL (Argentina) Indices
was estimated using the EVT-Archimedean copula model
[14]. The GPD marginals were used to describe the tails
of the left tail (large losses). The Monte-Carlo simulation
method was used to quantify portfolio VaR and the
findings were compared with other traditional methods.
The EVT-Archimedean copula model outperformed other
traditional methods. The GPD-Gumbel copula model
produced the better model for the losses. The model can
also be applied to model the largest gains. The results
illustrate that the EVT-copula model is a robust method
which can be very useful in estimating the VaR of a
portfolio in the presence of extremes in the data.

[4] forecasted the portfolio VaR of currency exchange
rates using an EVT- copula model. The data set included

exchange rates between the US dollar (USD), British
pound sterling (GBP), Euro (EUR), and South African
Rand (SAR) and the Kenyan shilling (KES). The GPD
was used to characterise the tails of the distribution of the
returns. A copula was used to construct the dependence
structure/ the joint probability distribution among the
currencies returns. The Monte Carlo simulation of an
equally weighted portfolio of four currency exchange
rates was used to estimate the portfolio VaR. The results
showed that the Student-t-copula as the most suitable
copula to construct the dependence structure/joint
probability distributions of the currency exchange rates.

[15] estimated diversification effects of financial assets
using the GPD and a Student-t-copula. Financial returns
data from the United States of America banks was used.
The GPD was used to model the tails of the financial return
distributions of the data from the banks. The dependence
structure (co-movements) was modelled using a Student-t-
copula since the main interest was the joint extreme values.
The univariate VaR and ES were estimated, including the
portfolio VaR and ES. These risk measures were used to
estimate the diversification effects. The results showed that
U.S. diversification effects range widely from 20% to 70%.

[16] used the GPD- copula approach to estimate the
multivariate portfolio risk of natural gas. The
ARMA-GARCH was applied to fit natural gas return
series. The GPD was used as the marginal distribution.
The Gaussian and Student-t-copula were used to estimate
the dependence structure of the natural gas portfolio. The
researchers used the Mote-Carlo simulation method to
estimate VaR and CVaR. The results revealed that the
portfolio risk estimated from the Student-t-copula were
larger and more appropriate than those from the Gaussian
copula.

[17] used a Skewed-Student-t-distribution and a
copula to model diversification effects for Japanese Stock
Indices and bonds. The researcher quantified
diversification effects using the Archmedian Gumbel
copula functions, Student-t- distribution and the Gaussian
copula. The researcher used high quantiles to estimate the
VaR and ES. For the Japanese stock Indices and bonds,
the Skewed-Student-t-distribution was used as the
marginal distribution. The results indicate that the
dependence structure increased estimates for portfolio
risk and thus reducing diversification benefits.

[18] applied the EVT-copula model to estimate the
dependence structure of a portfolio of stock market
returns for the G7, BRICS and other 14 emerging stock
markets. The GPD was used to characterise the tails of
the lower and upper tails in order to forecast the portfolio
risk. The returns were simulated to estimate portfolio risk.
The EVT-copula model results were more accurate than
historical simulation.

There are many other studies in literature which
include [19,20,21,22,23,24,25,26] that have applied
copula functions to describe the multivariate dependence
structure between stock markets with the different
statistical distributions as marginals to estimate portfolio
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risk for the returns. This paper uses the GEVD marginal
distributions which requires the Block Maxima (BM)
method in modelling the data. The BM method has the
advantage of producing less auto-correlated data and is
hence adopted in this paper. This paper also differs from
the other studies discussed as it uses an unconditional
approach which involves the direct application of GEVD
as the marginal distribution to model extreme risk in the
context of South African asset returns. This paper will
provide investors and practitioners a model framework
that will allow for portfolio risk and diversification effects
to be estimated more accurately, whilst providing
information on the South African assets.

3 Methodology

This paper uses the GEVD for modelling the marginal
returns distributions and the Archimedean Gumbel copula
for modelling the dependence structure (co-movement) of
the bivariate financial asset returns. In general, it is argued
that the EVT-copula performs better than the traditional
Normal distribution-based models in estimating portfolio
VaR [12]. According to [27] copula functions provide
alternative interpretations of non-linear relationships
between associated random variables or their marginals.
Monte Carlo simulation is used to estimate portfolio risk,
which in turn , is then used to quantify diversification
effects. According to [28] it is challenging to estimate the
joint distribution of risk components, but the copula
approach offers a method for separating the marginal
behaviour from the dependence structure.

3.1 Marginal distributions

Copulas are the functions that describe the dependence
structure between random variables and couple say, the
GEVD marginal distributions of these variables into their
joint distribution function. Given the descriptive statistics,
the conclusion is that the data is heavy-tailed, and hence
the GEVD was deemed suitable for characterising the
tails of the marginal distributions.

Generalised Extreme Value Distribution (GEVD)

The GEVD is presented by [29] and [30] as follows;

Gξ ,µ,σ (x) = exp

(

−

[

1+ ξ

(

x− µ

σ

)]
−1
ξ

)

if ξ 6= 0

(1)

Gξ ,µ,σ (x) = exp[−exp(
(x− µ)

σ
)] if ξ = 0, (2)

where, σ > 0 and 1+ξ ( (x−µ)
σ )> 0, mu is the location

parameter, σ is the scale parameter and ξ is the shape
parameter.

When ξ > 0, G becomes the heavy-tailed Fretchet
class distribution. When ξ < 0, G becomes a short-tailed
Weibull class distribution. ξ = 0 gives G as a light-tailed
Gumbel class distribution. Practically, to select the data to
use for parameter estimation, the monthly data is first
divided into non-overlapping blocks (eg quarterly
blocks), and the maximum in each block is identified. The
maxima are then used in parameter estimation.

The Maximum Likelihood Estimate (MLE) of the
unknown parameters µ , σ , and ξ is optimised from the
logarithmic likelihood of the GEVD model with respect
to the parameters [31]. The equation of logarithmic
likelihood of the model with n observations is represented
as follows:

Iξ ,µ,σ (x) =−n lnσ

(

1+ 1
ξ ∑n

i=1 ln
(

1+ ξ
(

xi−µ
σ

))

−∑n
i=1 ln

(

1+ ξ
(

xi−µ
σ

))

−1
ξ

)

(3)

Where 1+ ξ
(

xi−µ
σ

)

> 0 for i = 1, ........n.

Differentiating the log of the likelihood of the GEVD
model with respect to the parameters will result in the
estimated parameters when the equations are equated to
zero. Numerical methods are often used to find solutions
do the equations, as the solutions are not in closed form.

3.2 The concept of Archimedean copula model

The bivariate Archimedean copula is expressed as follows:

C(µ1,µ2 = φ−1(φ(µ1)+φ(µ2)), (4)

Where φ(x)) is the generator function with a convex
decreasing function defined in [0,1], satisfying φ(1) = 0
and limt→0(φ(t)) = 1. Where φ−1(x) is an inverse
function. The function φ represents various types of
Archimedean copulas, including the Archimedean
Gumbel copula which is adopted in this paper. In this
section, the basic properties for the Archimedean copulas
are presented. The Archimedean copulas are used widely
in practice because:

–They are simple to formulate.
–Most of the parametric families of copulas belong to
the Archimedean copula

–They give various types of dependence structure
–They use straightforward simple closed form
expressions

–They reduce multivariate copulas to single univariate
functions

–They are very useful in empirical modelling

In many financial applications, there is a strong upper
tail dependence between extreme/maximum losses
compared to extreme/maximum gains [32]. The
Archimedean Gumbel copula is an asymmetric copula
that exhibits upper tail dependence in the upper corner
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[33]. The Archimedean Gumbel copula is defined by [34]
and [35] as:

CGµ (µ1,µ2,θ ) = exp

(

−
[

(− log µ1)
θ +(− logµ2)

θ
]

1
θ

)

(5)
Where, parameter θ ∈ [1,∞), µ1 and µ2 are say, GEVD

uniform cumulative marginal distributions of the J520 and
J580 returns respectively.

The Archimedean Gumbel parameter θ and Kendall’s
tau (τ) are related by the following function:”

τ =
θ − 1

θ
= 1−θ−1

, (6)

Where, θ is a parameter for dependence. The
Archimedean Gumbel copula’s upper (λU ) and lower (λL)
tail dependence are estimated by the following functions:
λU = 2− 2−θ and λL = 0.

3.3 Parameter Estimation

The MLE approach is used to quantify the parameters for
the GEVD marginal distributions. The Inference Function
for Margins (IFM) method is used estimate the copula
parameters.

3.4 Estimation of Risk

X and Y are, let’s say, two financial asset returns, and a
risk measure ρ() is coherent if the following four axioms
are satisfied, according to [36]:

Axiom 1: Monotonicity

ρ(Y )≥ ρ(X), if X ≤ Y (7)

A higher predicted loss necessitates holding more capital.

Axiom 2: Sub-additivity

ρ(X +Y )≤ ρ(X)+ρ(Y) (8)

The level of risk will not increase when two or more
risk factors are combined or merged. The diversification
benefits in a portfolio are captured by this axiom. A
portfolio’s risk should be less than (or equal to) the
combined risk of its constituent securities [6]. This is the
mathematical description of diversification which is
applied in this paper.

Axiom 3: Homogeneity
For any number k > 0, ρ(αX) = kρ(X) where, k is a
constant positive amount; If we say, k = 2, then doubling
the size of the loss situation, will double the risk.

Axiom 4: Translation Invariance

ρ(X +Y)≤ ρ(X)− k, (9)

for any value of k which is a constant.

The capital needed to lessen the effects of the loss rises
by the same amount if we increase the observed loss by a
certain amount.

The risk measures adopted are associated with gains
and losses for the GEVD-Archimedean Gumbel copula
model are estimated. The estimation of the portfolio
VaR/ES is done using the Monte Carlo simulation of an
equally weighted portfolio. According to [37], VaR is
common risk measure that is of interest to investors and
practitioners as it enables them to evaluate the portfolio
risks, and thus allowing them to mitigate against any
potential losses.

3.5 Monte-Carlo Simulation method

A five -step estimation procedure [4,14,16] is followed
when fitting the GEVD- Archimedean Gumbel copula
model in this paper to arrive at the portfolio results:

Step 1: Fit the GEVD to the quarterly BM of the
losses and gains separately using the two separate log
return series, and thus arrive at univariate parameter
estimates for the J520 and J580 returns (losses and gains)
(see Table 4).

Step 2: Determine which bivariate copula is to be
fitted to the bivariate return series for the gains and losses
using a plot of the transformed variables µ1 and µ2 (see
Figure 5 and Figure 6).

Step 3: The transformed return series pair should be
fitted to the copula. Utilize the Inference Function for
Margins (IFM) estimation method to calculate the
dependence parameter. Again the gains and losses for the
J520 and J580 returns are handled separately for the two
series.

Step 4: Simulate N uniform random numbers (N =
5000 in this case) using the determined copula parameters
representing the joint uniform cumulative distribution of
the portfolio. Use the inverse quantile function of the
distribution to transform the uniform random variable to
the original scales of the log returns. Use the average of
the input parameters (weighted) as the new parameters of
the portfolio (see Table 5).

Step Step 5: two Indices were assumed to be equal,
however this is optional and they can be adjusted freely
[38]. The VaR and the ES risk measures are estimated by
the Monte-Carlo simulation method and then they are used
to estimate diversification effects.
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3.6 Diversification effects

According to [15,17,39,40] the difference between the
portfolio risk (diversified value) and the simple sum of
individual component risks (undiversified values)
expressed as a percentage of simple sum of individual
component risks (undiversified value) is a measure of the
diversification effects. This paper uses a diversification
effects formula which is consistent with past studies.

The diversification effects formula is given as follows:

Diversi f ication e f f ects = Simple Sum VaR−Aggregate VaR
Simple Sum VaR

× 100%

(10)

Diversi f ication e f f ects = Simple Sum ES−Aggregate ES
Simple Sum ES

× 100%

(11)
Where, Simple sum VaR: it total sum from the

addition of the VaR values of the two risk factors used in
this paper and is greater than the portifolio VaR (i.e
Simple Sum VaR = VaR1 + VaR2 > VaRporti f olio)
Simple sum ES: it total sum from the addition of the
ES values of the two risk factors used in this paper and is
greater than the portfolio ES (i.e
Simple Sum ES = ES1 + ES2 > ESporti f olio)
Aggregate VaR: the portfolio VaR of the two risky
factors VaRporti f olio Aggregate ES: the portfolio ES of
the two risky factors = ESporti f olio The formula 10 and 11
will be used to estimate the diversification effects of a
portfolio for VaR and ES.

3.7 Tests for stationarity, heteroscedasticity and

autocorrelation

Table 1: Test for stationarity, heteroscedasticity and

autocorrelation.

Test Method

Stationarity The Augmented Dickey Fuller (ADF)

test (a unit root or non-stationary test) is

used to test for stationarity [41] in J520

and J580 return series.

Heteroscedasticity To test for the presence of Arch effect,

the Lagrange Multiplier (LM) Test

is used to test for the presence of

heteroscedasticity [42], in residuals of

J520 and J580 return series.

Auto-correlation The Ljung-Box test is used to test for

autocorrelation [43] of each of the J520

and J580 returns series.

Table 1 describes the tests for, heteroscedasticity,
stationarity and autocorrelation adopted in this paper.

4 Research findings and discussion

This paper applied the GEVD-Archimedean Gumbel
copula model to the monthly J520 and J580 returns over
the period 1995 to 2018 in analysing a bivariate portfolio
and the diversification effects thereof.

4.1 Software used and Research Data

The following packages were used for data analysis in the
R programming environment: actuar, Copula, fCopula,
QRM, Mass, evir, eva, fExtremes, and extRemes.

This paper makes use of secondary data of the South
African stock market that was taken, with permission,
from the website iress expert at https://expert.inetbfa.com.
The analysis involved the use of the J520 and the J580
returns gains/loss distributions (data spanning the years:
1995-2018). These Indices are calculated from values of
stocks in the Industrial and Financial sector companies
listed on the South African stock market, and represents
the performance of those specific industries within the
stock market. The monthly logarithmic returns for both
Indices are calculated as follows:

Xt = ln
Mt

Mt−1

(12)

where, xt represents the monthly log returns at month in
t, Mt is the monthly Index value at month t and ln- the
natural logarithm.

4.2 Descriptive Statistics

The descriptive statistics for the monthly J520 and the
monthly J580 Indices return series are given in Table 2.

Table 2: Descriptive statistics..

Industrial Index (J520) Financial Index(J580)

Observations 271 271

Minimum -0.140273 -0.216516

Maximum 0.328471 0.511949

Mean -0.009366 -0.008353

Median -0.010478 -0.010155

Variance 0.003302 0.003651

Skewness 1.016932 2.194276

Kurtosis 4.420852 19.439520

In Table 2, the maximum and minimum values for the
two indices are quite far apart from the mean, suggesting
the presence of some extreme returns. The mean returns
for the two log return distributions are small and near
zero, showing that the trend in the return distribution is
not significant. The skewness is positive for both Indices
returns, which also suggests that the extreme values are
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present in the return series. The data exhibits excess
kurtosis, which implies that the return distributions are
fat-tailed and leptokurtic. The various attributes of returns
distributions, such as skewness and high kurtosis are
present which allows one to conclude that both Indices as
heavy-tailed. The two financial assets are heavy-tailed
arguing for the use of the GEVD marginal distributions in
this paper.

[44] stated that the sub-Indices of the South Africa’s
All Share Index (ALSI) may not be informationally
efficient, although the ALSI is weakly efficient. This may
allow investor s to make excess profits when invested in
the sub-Indices which are not informationally efficient.
This implies that the sub-Indices returns for the J520 and
J580 Indices returns may be modelled using extreme
value distributions such as the GEVD. This confirms the
results of descriptive statistics which revealed that the
data sets are heavy-tailed. A loss distribution of the
returns distribution will have gains on the left tail and
losses on the right tail.

4.3 Tests for Stationarity, Heteroscedasticity

and Auto-correlation

The return series data are checked for stationarity,
heteroscedasticity and auto-correlation in order to confirm
certain properties in the use of the statistical
methodologies.

Testing for stationarity
The ADF test was used to investigate whether the
monthly J520 and J580 Indices returns are stationary
series. A p-value of greater than 0.05 confirmed the
returns series data to be stationary.

Testing for heteroscedasticity
The Arch (LM) test is applied to test for
heteroscedasticity in the J520 and J580 Indices returns
series. The Arch (LM) test checks for the presence of
ARCH effects. There were no ARCH effects in the J520
returns: χ2 = 8.37, degrees of freedom = 12, p-value =
0.76 and the J580 returns: χ2 = 6.24, df = 12, p-value =
0.90. The p-values are greater than 0.05 for both the
return series data, which led to the acceptance of H0
(there are no Arch effects).

Testing for auto-correlation

The Box-Ljung test is used to test for auto-correlation in
the monthly J520 and J580 Indices returns series. The
results gave a p-value ¿ 0.05 for each of the returns series
data, indicating weak evidence against the null
hypothesis, so we fail to reject the null hypothesis of no
auto-correlation. This means that the returns distribution
can be considered independently distributed. Therefore,
applying the EVT to the return series is appropriate as
each series is independently and identically distributed.

The two series however, may be dependent to each other
as discussed in the next section.

4.4 Analyzing the gains and losses using the

GEVD model

The gains and losses are separated and modelled
separately. for each of the series. Losses are mainly
negative returns multiplied by negative one to make them
positive. The GEVD is fitted to the two log return series
data points for both the upper tail (gains) and lower tail
(losses) of the distribution using the Block Maxima (BM)
method.

Fig. 1: The quarterly block maxima for J520 losses.

To use the GEVD, the data is put into quarterly
blocks, and the maximum in each block is selected.
Figure 1 and Figure 2 shows how the block maxima for
losses are determined for the two indices. The data points
obtained above from the BM method are fitted to the
GEVD and used to estimate the model parameters. The
gains maxima are selected similarly.

4.5 Model diagnostics for the quarterly block

minima and maxima.

The diagnostic plots of the minima (losses) of the quarterly
blocks are shown in Figures 3 and Figure 4 to assess the
GEVD model’s goodness of fit. The conclusion is that the
GEVD model offers a strong model fit for the data at the
tails of the distribution. This is supported by the Return
Level plot, density plots, P-P plot , and the Q-Q plot which
does not deviate from the straight line. The diagnostic plots
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Fig. 2: The quarterly block maxima for the J580 losses.

Fig. 3: Diagnostic plots for the quarterly block minima of the

return distribution of the J520 losses.

support the fitted model at the tails of the J520 and J580
return distributions. The diagnostic plots for the maxima
returns were done and are also in favour of the fitted model
but are not presented in the paper.

The parameters obtained from fitting the GEVD
model to the two financial asset return distributions are
estimated in Table 3. The gains have a negative shape
parameter, indicating that they are bounded. The losses
have a positive shape parameter, a sign that heavy losses
are indeed possible. These parameters are used to
estimate the univariate VaR and ES) for the individual
asset returns.

Fig. 4: Diagnostic plots for the quarterly block minima of the

return distribution of the J580 losses.

Table 3: GEVD Model Parameters

Asset Shape ξ Scale (σ ) Location (µ)
Left / Upper Tail

J520 -0.2915 0.0392 0.0384

J580 -0.0673 0.0362 0.0327

Average -0.1794 0.0377 0.0356

Right / Lower Tail

J520 0.0535 0.0400 0.0077

J580 0.0582 0.0385 0.0082

Average 0.0559 0.0393 0.0080

Table 4: Average Parameters for Inverse Copula Distribution.

Parameter Shape (ξ ) Scale σ Location (µ)
Left Tail/Gains -0.1794 0.0362 0.0356

Right Tail/Losses 0.0559 0.0393 0.0080

In Table 4 the average parameters for the two financial
assets are calculated and used in the simulation of the J520
and J580 marginals which are used in the determination of
inverse distribution of the Archimedean Gumbel copula.

4.6 Selection of appropriate copula function for

bivariate analysis

The scatterplots are used as one of the methods for
choosing the right copula function for fitting to the
financial returns series data. The scatterplots are plotted in
order to determine the type of copula to fit to the bivariate
gains and the bivariate losses. In Figure 5, the bivariate
series for gains seems to have an increasing pattern and
convergence in upper tail, hence dependence could be
modelled with the Archimedean Gumbel copula. The
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Fig. 5: Scatterplot of GEVD marginal distributions µ1 and µ2 for

the bivariate gains

Archimedean Gumbel copula is thus proposed, and is able
to capture dependency in extreme values.

Fig. 6: Scatterplot of GEVD marginal distributions µ1 and µ2 for

the bivariate losses

In Figure 6, The bivariate series shows an increasing
pattern with an upper tail dependence, so this could again
be modelled using the Archimedean Gumbel copula for
the losses. The losses follow a Archimedean Gumbel
copula in dependency since there is evidence of strong
upper tail dependence and no distinct strong lower tail
dependence.

4.7 Kendall?s tau and the copula (upper tail

dependence) parameter measures

A test for the degree to which non-Normal returns data are
dependent, is the Kendall’s tau. A statistic called Kendall’s
tau is used to quantify the ordinal relationship between two
measured quantities. Kendal’s tau values are τ̂ =0.5921856
for the losses and τ̂ = 0.4554335 for the gains show that
there is a positive correlation between the variables but not
very strong (Table 6).

Table 5: Kendall’s tau and copula parameters.

Copula τ̂ θ̂ Upper λ̂U Lower λ̂L

Gains 0.455 1.836 0.643 0

Losses 0.592 2.452 0.671 0

In Table 5, the estimated Archimedean Gumbel
copula parameters (θ ) for the losses and gains are

θ̂=2.452 and θ̂ =1.832 respectively . The parameters
imply the presence of tail dependence in the losses and
gains. The two stock indices have dependence in the
extremities for both the losses and gains analysed
separately. The large losses and large gains from the two
stock indices have greater probability to co-move together
concurrently [32]. Expressed in other words, the two
stock markets indices may tend to rise and fall together
during periods of economic recessions and economic
booms. The upper tail dependence measures for the gains
and losses estimated using Archimedean Gumbel copula

are λ̂U is 0.6425575 and λ̂U is 0.6713104 respectively.
The large gains and losses from the two stock indices
have a greater probability to co-move together
concurrently. Tail dependence measures indicate the
degree of extreme co-movements of large gains and losses
in the stock markets, which allows investors and
practitioners to quantify portfolio risk and quantify
diversification effects.

4.8 Archimedean Gumbel copula density and

contour plots

The Archimedean copulas allows modelling multivariate
dependence with a one parameter to estimate the strength
of the dependence.

In Figure 7, the density plots for the Archimedean
Gumbel copula for the gains and losses are given.
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Fig. 7: Density plots of the joint distribution for the Gumbel

copula (θ=1.836) for the gains and Gumbel copula (θ=2.439)

for the losses.

Fig. 8: Contour plots of the joint distribution for the Gumbel

copula (θ=1.836) for the gains and Gumbel copula (θ=2.439)

for the losses.

In Figure 8, the contour plots using the estimated
parameters confirm the presence of the upper tail
dependence for both the gains and losses respectively.
The Archimedean Gumbel copula is characterised by the
presence of the upper tail dependence as can be concluded
from the density and contour plots respectively.

4.9 Estimation of univariate risk measures

The quarterly losses and gains are fitted to the GEVD to
model the tails of the distributions to obtain the model
parameters used to estimate VaR and ES.

Table 6: Estimates of univariate risk measures.

J520 J580

Alpha VaR ES VaR ES

Measures of Risk (Left Tail / Gains)

0.950 0.1163 0.1642 0.1302 0.1759

0.990 0.1377 0.1887 0.1759 0.2258

0.995 0.1442 0.1956 0.1940 0.2445

Measures of Risk (Right Tail / Losses)

0.950 0.1365 0.1614 0.1330 0.1578

0.990 0.2164 0.2470 0.2112 0.2426

0.995 0.2527 0.2843 0.2469 0.2783

In Table 6, the univariate VaR and ES of the J520 and
J580 Indices returns are given. The J580 gains are riskier
than the J520 gains since the risk measures are greater. The
J520 losses are riskier than the J580 losses since the risk
measures for the former are bigger. These risk measures
are also used to determine the diversification effects of the
portfolio.

4.10 Estimation of portfolio risk using the

GEVD-Archimedean copula model.

The portfolio risk is estimated using the
GEVD-Archimedean Gumbel copula model. Using the
Monte-Carlo simulation of an evenly weighted portfolio,
the portfolio VaR and ES are forecasted.

Table 7: Estimates of portfolio risk using the Monte-Carlo simulation method

Copula Marginals Portfolio VaR Portfolio ES

95% 99% 99.5% 95% 99% 99.5%

Left Tail of loss distribution / Gains

Gumbel GEVD 0.1211 0.1534 0.1644 0.1409 0.1692 0.1802

Left Tail of loss distribution / Gains

Gumbel GEVD 0.1307 0.2138 0.2488 0.1839 0.2741 0.3483

Table 8: Kendall’s tau and copula parameters.

Copula τ̂ θ̂ Upper λ̂U Lower λ̂L

Gains 0.455 1.836 0.643 0

Losses 0.592 2.452 0.671 0

In Table 5, the estimated Archimedean Gumbel
copula parameters (θ ) for the losses and gains are
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θ̂=2.452 and θ̂ =1.832 respectively . The parameters
imply the presence of tail dependence in the losses and
gains. The two stock indices have dependence in the
extremities for both the losses and gains analysed
separately. The large losses and large gains from the two
stock indices have greater probability to co-move together
concurrently [32]. Expressed in other words, the two
stock markets indices may tend to rise and fall together
during periods of economic recessions and economic
booms. The upper tail dependence measures for the gains
and losses estimated using Archimedean Gumbel copula

are λ̂U is 0.6425575 and λ̂U is 0.6713104 respectively.
The large gains and losses from the two stock indices
have a greater probability to co-move together
concurrently. Tail dependence measures indicate the
degree of extreme co-movements of large gains and losses
in the stock markets, which allows investors and
practitioners to quantify portfolio risk and quantify
diversification effects.

4.11 Archimedean Gumbel copula density and

contour plots

The Archimedean copulas allows modelling multivariate
dependence with a one parameter to estimate the strength
of the dependence.

Fig. 9: Density plots of the joint distribution for the Gumbel

copula (θ=1.836) for the gains and Gumbel copula (θ=2.439)

for the losses.

In Figure 7, the density plots for the Archimedean
Gumbel copula for the gains and losses are given.

Fig. 10: Contour plots of the joint distribution for the Gumbel

copula (θ=1.836) for the gains and Gumbel copula (θ=2.439)

for the losses.

In Figure 8, the contour plots using the estimated
parameters confirm the presence of the upper tail
dependence for both the gains and losses respectively.
The Archimedean Gumbel copula is characterised by the
presence of the upper tail dependence as can be concluded
from the density and contour plots respectively.

4.12 Estimation of univariate risk measures

The quarterly losses and gains are fitted to the GEVD to
model the tails of the distributions to obtain the model
parameters used to estimate VaR and ES.

Table 9: Estimates of univariate risk measures.

J520 J580

Alpha VaR ES VaR ES

Measures of Risk (Left Tail / Gains)

0.950 0.1163 0.1642 0.1302 0.1759

0.990 0.1377 0.1887 0.1759 0.2258

0.995 0.1442 0.1956 0.1940 0.2445

Measures of Risk (Right Tail / Losses)

0.950 0.1365 0.1614 0.1330 0.1578

0.990 0.2164 0.2470 0.2112 0.2426

0.995 0.2527 0.2843 0.2469 0.2783

In Table 6, the univariate VaR and ES of the J520 and
J580 Indices returns are given. The J580 gains are riskier
than the J520 gains since the risk measures are greater. The
J520 losses are riskier than the J580 losses since the risk
measures for the former are bigger. These risk measures
are also used to determine the diversification effects of the
portfolio.
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4.13 Estimation of portfolio risk using the

GEVD-Archimedean copula model.

The portfolio risk is estimated using the
GEVD-Archimedean Gumbel copula model. Using the
Monte-Carlo simulation of an evenly weighted portfolio,
the portfolio VaR and ES are forecasted.

For the gains, with a 95 % level of confidence, the
GEVD- Archimedean Gumbel copula model gives
portfolio VaR and ES estimates of 12.11% (0.1211) and
14.09% (0.1409) respectively (Table 7). The results are
interpreted as follows: the expected market gains will not
go above 12.11% (0.1211) at this level of confidence
level, if it goes beyond, it will average 14.09% (0.1409) at
the same confidence level. The interpretation is the same
for the losses. The estimated portfolio risk in a bivariate
setting can be used to account for the diversification
effects.

4.14 Estimation of diversification effects

The main reason investors seek diversification is to reduce
the portfolio risk inherent in investing in risky assets. The
degree of risk diversification is determined by how much
the portfolio risk deviates from the sum of its individual
component risks [15,17,39]. In this section diversification
effects are determined.

In Table 8 at 95 level of confidence for the gains, and
using VaR, the portfolio incurs diversification effects of
50.87%. For the losses, at 95% level of confidence, the
portfolio incurs diversification effects of 51.50%. There is
a reduction of risk in the portfolio when compared to the
risk of the simple sum of single securities which implies
that there are diversification benefits to be harvested.

In Table 9 at 95% level of confidence, for the gains,
and using ES, the portfolio incurs diversification effects
of 58.57%. For the losses at 95% level of confidence, the
portfolio incurs diversification effects of 42.41%. The ES
is a coherent risk measure and the diversification benefits
for gains and losses are more in line with each other.
These findings have significant implications for investors’
decisions on diversification that are made to lower risk
exposure. For VaR and ES the diversification effects
imply that there is a trade-off for less gains for the
portfolio whilst there is protection against large loss.
These results imply that there is reduction in the portfolio
risk.

4.15 Discussion

The GEVD marginals and Archimedean Gumbel copula
are used to model the joint and individual behavior of the
financial returns data of the Indices. The GEVD is used as
the marginal distribution because the two datasets were
found to be heavy-tailed. The Archimedean Gumbel

copula was applied because of its key characteristic in
bringing the separate marginal distributions to form the
joint distribution of the returns [12]. The EVT-copula
model is a robust method which can be very useful in
estimating the VaR of a portfolio in the presence of
extremes in the data from any stock market [14]. The
Archimedean Gumbel copula is well suited to combining
an extreme value marginal distributions with other
extreme value distributions in estimating portfolio risk
and diversification effects. [45] confirm that Archimedean
copula functions are useful for modelling bivariate
distributions in finance, and this can be extended to
include the use of other or different extreme value
distribution marginals depending on the dataset. The
diversification effects estimated are consistent with results
estimated by [15,17,40] when analysing the results which
can go up to 60%. The implication is that, for those who
wish to invest in the South African stock market, such
diversification effects will cushion against large losses.
The limitation of GEVD-Archimedean Gumbel copula
model is that, it uses maxima data only, it ignores the rest
of the data and thus is not efficient in data usage. The
form of the dependence is assumed to be in the upper tail
only and not in the lower tail.

5 Concluding Remarks and future possible

research

5.1 Conclusions

This paper estimated portfolio VaR and ES in order to
quantify diversification benefits of two financial assets,
viz: J520 and the J580 Indices using the
GEVD-Archimedean Gumbel copula model. The
portfolio diversification results point to a reduction in
losses for investors holding the portfolio. The average
mean return of the portfolio remains the same and stable
when compared to individual returns as the risk is
mitigated. The model can be used as a case for reducing
exposure to risk by diversification of risk for the same
expected returns. This will be appealing to the risk averse
investor wishing to avoid making extreme losses when
invested in a single. There is also a reduction in size of
potential gain when invested in the portfolio. According
to [46], accurate risk evaluation can result in better
trading and investment decisions. The information is
important to local and international investors who wish to
include developing countries’ stock containing financial
assets from the South African Industrial and Financial
markets.

5.2 Future possible research

Future research will be in the application of the
two-parameter copula to increase flexibility in modelling
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Table 10: Estimates of portfolio risk using the Monte-Carlo simulation method

Copula Marginals Portfolio VaR Portfolio ES

95% 99% 99.5% 95% 99% 99.5%

Left Tail of loss distribution / Gains

Gumbel GEVD 0.1211 0.1534 0.1644 0.1409 0.1692 0.1802

Left Tail of loss distribution / Gains

Gumbel GEVD 0.1307 0.2138 0.2488 0.1839 0.2741 0.3483

Table 11: Estimates of portfolio risk using the Monte-Carlo simulation method

Copula Marginals Portfolio VaR Portfolio ES

95% 99% 99.5% 95% 99% 99.5%

Left Tail / Gains

Gumbel GEVD 0.1211 0.1534 0.1644 0.1409 0.1692 0.1802

Right Tail / Losses

Gumbel GEVD 0.1307 0.2138 0.2488 0.1839 0.2741 0.3483

Table 12: Estimates of diversification effects for ES.

Alpha ES for J520 ES for J580 Simple Sum for ES ES for portfolio Diversification effects

Archimedean Gumbel Copula - Gains

95 0.1642 0.1759 0.3401 0.1409 58.57%

99 0.1887 0.2258 0.4145 0.1693 59.16%

99.5 0.1956 0.2445 0.4401 0.1802 59.05%

Archimedean Gumbel Copula - Losses

95 0.1615 0.1578 0.3193 0.1839 42.41%

99 0.2470 0.2426 0.4896 0.2741 44.02%

99.5 0.2843 0.2783 0.5626 0.3183 43.42%

the nature of the dependence and explore the
generalisation of this model.
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