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Abstract: In this paper, we introduce a new generalization of Renyi’s entropy Rα
β
(P) and the most important feature of this generalized

entropy Rα
β
(P) is that it derives most important entropies that are well known and influence information theory and applied mathematics.

Some significant properties of Rα
β
(P) has been undertaken in this article. In addition, we introduce a new generalized exponentiated

mean codeword length Lα
β
(P) in this article then determine how Rα

β
(P) and Lα

β
(P) are related in terms of source coding theorem.
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1 Introduction

Consider a discrete random variable X having values
X = {x1,x2,x3, ...,xn} with respective probabilities
P = {p1, p2, p3, ..., pn}. Claude Shannon [1] defined the
entropy H(P) for a discrete random variable X as:

H(P) =−
n

∑
i=1

pi logD pi (1)

The unit of entropy measure is determined by the base of
the logarithm D, if D = 2, then the entropy measure is
known as bit, if D = e, then the entropy measure is known
as nat and if D = 10, then the entropy measure is known
as hartley. Various generalized versions of Shannon’s
entropy under discrete random variable have been
introduced in the literature of information theory. These
generalized entropies are classified among parametric,

trigonometric and weighted entropies. Firstly Renyi [2]
gave the idea of parametric entropy and defined the
entropy of order α as:

Rα(P) =
1

1−α
logD

[

n

∑
i=1

pα
i

]

,α 6= 1,α > 0 (2)

After Renyi [2], other researchers viz., Havrda and
Charvat [3], Sharma and Mittal [4], Bhat and Baig[5,6,7,
8,9,10,11], Bhat et.al [12] etc., developed various
generalized entropy measures to the literature of
information theory and the application of entropy
measures have been discussed in different aspects in
statistics and mathematics see papers [13,14,15,16,17].
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2 Generalization of Renyi’s entropy

In this article we define we define a new generalization of
Renyi’s entropy Rα

β (P), for a random variable

X = {x1,x2,x3, ...,xn} with respective probabilities
P = {p1, p2, p3, . . . , pn} as:

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

,α > 0,β > 0,α 6= β .

(3)
The following interpretation of α and β is interesting
from an application point of view. Considering a
cybernetic system [xi, pi], where xi are the events and pi

be the corresponding probabilities, then α and β can be
taken as flexibility parameters or as a pre-determined
numbers linked to several cybernetic systems. Suppose
two cybernetic systems, having same set of xi, pi, but
may have different informations (with regard to the same
aim) for different values of α and β . The parameters α
and β can be considered as the environment factors, such
as temperature, humidity, etc. Moreover, a variety a
factors affects the diversity in cost. Let α and β are such
factors upon which the information regarding a cybernetic
system [xi, pi] depends.

Particular cases (c.f., (3))

I. For β = 1, equation (3) reduces to Renyi’s [2] entropy
of order α given in equation (2) i.e.,

Rα
β=1(P) = Rα(P) =

1

1−α
logD

[

n

∑
i=1

pα
i

]

II. For α = 1, equation (3) reduces to Renyi’s [2] entropy
of order 1

β i.e.,

Rα=1
β (P) = R

1
β (P) =

1

1− 1
β

logD

[

n

∑
i=1

p
1
β

i

]

III. For α = 2β , equation (3) reduces to Collision entropy
(Also called Renyi’s quadratic entropy) i.e.,

Rα=2β (P) = R2(P) =− logD

[

n

∑
i=1

p2
i

]

IV. For β = 1 and α → 1, then by applying L’ Hopital’s
rule, equation (3) reduces to entropy given by Shannon
[1] i.e.,

Rα→1
β=1 (P) = H(P) =−

n

∑
i=1

pi logD pi

V. For α = 1, β → 1, then by applying L’Hopital’s rule,
equation (3) reduces to entropy given by Shannon[1]
i.e.,

Rα=1
β→1(P) = H(P) =−

n

∑
i=1

pi logD pi

VI. For α → β , then by applying L’Hopital’s rule equation
(3), reduces to entropy given by Shannon [1] i.e.,

Rα→β (P) = H(P) =−
n

∑
i=1

pi logD pi

VII. For α > 0,β > 0 and α 6= β , if all the events are
equally likely, i.e., pi =

1
n
∀i = 1,2, . . . ,n, then we

have

Rα
β

(

1

n

)

= H

(

1

n

)

= logD n.

Which is maximum entropy.

3 Properties of our proposed measure

Some significant aspects of our generalized entropy
measure Rα

β (P) have been investigated in this section:

Property 1: Rα
β (P)> 0 for α and β (c.f., (3)).

Proof: We have

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

,α > 0,β > 0,α 6= β .

Case-I: For α > β .
For α > β , we have α

β > 1. Since, 0 ≤ pi ≤ 1∀ i =

1,2, . . . ,n and ∑n
i=1 pi = 1, which implies that

pi

α
β < pi

After some mathematical manipulation, it follows that:

logD

[

n

∑
i=1

pi

α
β

]

< 0 (4)

As we have α > β , which implies that β −α < 0. Also for
β > 0, so we have

β

(β −α)
< 0 (5)

Combining equation (4) and (5), we have
For α > β

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

> 0 (6)

Case-II: For α < β .
For α < β , we have α

β < 1. Since, 0 ≤ pi ≤ 1∀ i =

1,2, . . . ,n and ∑n
i=1 pi = 1, which implies that

pi

α
β > pi

After some mathematical manipulation, it follows that:

logD

[

n

∑
i=1

pi

α
β

]

> 0 (7)
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As we have α < β , which implies that β −α > 0. Also for
β > 0, so we have

β

(β −α)
> 0 (8)

Combining equation (7) and (8), we get
For α < β

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

> 0 (9)

From equation (6) and (9), we observe that Rα
β (P) is

positive for the defined values of the parameters α and β
i.e.,

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

> 0.

For α > 0,β > 0,α 6= β .

Property 2: Rα
β (P) is a symmetric function on every

pi, i = 1, 2, 3, . . . ,n.

Proof: This property is trivially true, i.e.,

R
β
α (p1, p2, . . . , pn−1, pn) = P

β
α (pn, p1, p2, . . . , pn−1)

Property 3: The maximum value of Rα
β (P) is attained

when the chance of happening of all the events are equal.

Proof: We have

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

,α > 0,β > 0,α 6= β .

Suppose the chance of happening of all the events are
equal i.e., pi =

1
n
∀i = 1,2, . . . ,n, then we have

Rα
β (P) =

β

(β −α)
logD

[

n

∑
i=1

(

1

n

)
α
β

]

After some mathematical manipulation, it follows that:

Rα
β (P) = logD n.

Which is the maximum entropy.

Property 4: The additive property is satisfied by Rα
β (P) in

the following mathematical context:

R
β
α(P∗Q) = R

β
α(P)+R

β
α(Q)

Where

(P∗Q) = (p1q1, . . . , p1qm, p2q1, . . . , pnq1, . . . , pnqm)

is the joint probability mass function of two independent
discrete random variables.

Proof:

Let
(P ∗ Q) = (p1q1, . . . , p1qm, p2q1, . . . , pnq1, . . . , pnqm),
be the joint probability mass function of two independent
discrete random variables, then we have

R
β
α(P∗Q) =

β

β −α

[

logD

(

n

∑
i=1

m

∑
j=1

(piq j)
α
β

)]

=
β

β −α

[

logD

(

n

∑
i=1

m

∑
j=1

p
α
β

i q
α
β

j

)]

=
β

β −α

[

logD

((

n

∑
i=1

p
α
β

i

)(

m

∑
j=1

q
α
β

j

))]

=
β

β −α

[

logD

(

n

∑
i=1

p
α
β

i

)

+ logD

(

m

∑
j=1

q
α
β

j

)]

=
β

β −α
logD

(

n

∑
i=1

p
α
β

i

)

+
β

β −α
logD

(

m

∑
j=1

q
α
β

j

)

= R
β
α(P)+R

β
α(Q).

This completes the proof.

4 Source Coding theorems

Consider a finite input source symbols
X = {x1, x2, x3, . . . , xn} with respective probabilities of
transmission as P = {p1, p2, p3, . . . , pn} and suppose
these input source symbols have to be transmitted to the
receiver, before communicating these input source
symbols to the receiver, the sender first encode these input
source symbols by using any encoding procedure. Let us
suppose that these each input source symbol have been
encoded using alphabet of D symbols by any encoding
procedure. Let L = {l1, l2, l3, . . . , ln} be the code-word
lengths corresponding to encoded symbols, then Shannon
[1] defined the mean code-word length of the source
encoder as:

L(P) =
n

∑
i=1

pili (10)

A code is said to be a uniquely decipherable code over an
alphabet of D symbols with lengths
L = {l1, l2, l3, . . . , ln} iff the Kraft’s inequality holds
i.e.,

n

∑
i=1

D−li ≤ 1 (11)
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For all codes satisfying the inequality (11), then the
mean code-word length L(P) defined at (10), lies between
H(P) and H(P)+ 1 i.e.,

H(P)< L(P)< H(P)+ 1 (12)

Shannon’s noiseless coding theorem is another name of
this result.

Campbell [18] defined the exponentiated mean
codeword length for a discrete channel as:

Lα(P) =
α

1−α
logD

[

n

∑
i=1

piD
−li( α−1

α )

]

,α > 0,α 6= 1

(13)
Campbell [18] generalizes the Shannon’s source

coding theorem and showed that Lα (P) lies between
Rα(P) and Rα(P)+1 under the condition that if the codes
satisfy inequality (11) , i.e.,

Rα(P)< Lα(P)< Rα(P)+ 1

Various generalized source coding theorems under the
condition of unique decipherability have been developed
by various scholars over the last few decades; see, for
example, publications [19,20,21,22,23,24,25,26,27,28,
29].

We introduce a new generalized exponentiated mean
codeword length Lα

β (P) in this article as:

Lα
β (P) =

α

β −α
logD

[

n

∑
i=1

piD
−li

(

α−β
α

)

]

,α > 0,β > 0,α 6= β .

(14)

Where, D is the number of alphabets used to code the input
source symbols.

Particular cases (c.f., (14))

I. For β = 1, (14) reduces to Campbell [18] mean code-
word length i.e.,

Lα
β=1(P) = Lα (P) =

α

1−α
logD

[

n

∑
i=1

piD
−li( α−1

α )

]

II. For α = 1, (14) reduces to Campbell [18] mean
codeword length with parameter 1

β i.e.,

Lα=1
β (P) = L

1
β (P) =

1
β

1− 1
β

logD







n

∑
i=1

piD
−li

(

1
β
−1

1
β

)





III. For β = 1 and α → 1, then by applying L’Hopital’s
rule (14) reduces to optimum mean code-word length
given by Shannon [1] i.e.,

Lα→1
β=1 (P) = L(P) =

n

∑
i=1

pili

IV. For α = 1 and β → 1, then by applying L’Hopital’s
rule (14) reduces to optimum mean codeword length
given by Shannon [1] i.e.,

Lα=1
β→1(P) = L(P) =

n

∑
i=1

pili

V. For α → β , then by applying L’Hopital’s rule (14)
reduces to optimum mean codeword length given by
Shannon [1] i.e.,

Lα→β (P) = L(P) =
n

∑
i=1

pili

Now we derive the relationship between (3) and (14)
in terms of source coding theorem.

Theorem 1: For all alphabets of D > 1 symbols, if the
codeword lengths L = {l1, l2, l3, . . . , ln} satisfy the
Kraft’s inequality, then the relationship between Rα

β (P)

and Lα
β (P) is as follows:

R
β
α(P)≤ L

β
α(P)

The equality i.e., R
β
α(P) = L

β
α(P) holds iff

li =− logD





p
α
β

i

∑n
i=1 p

α
β

i



 (15)

Proof:

For all ai,bi > 0, i = 1, 2, 3, . . . , n and 1
γ +

1
δ = 1, γ <

1(6= 0), δ < 0 or δ < 1(6= 0), γ < 0, then by reverse of
Holder’s inequality we have

(

n

∑
i=1

ai
γ

) 1
γ
(

n

∑
i=1

bi
δ

) 1
δ

≤
n

∑
i=1

aibi (16)

The equality of (16) holds if ∃ c > 0, such that:

a
γ
i = cbδ

i (17)

Let

ai = p
α

α−β

i D−li , bi = p
α

β−α

i

γ =
α −β

α
and δ =

β −α

β

Substitute these values into (16), and after some
mathematical manipulation, we get

[

n

∑
i=1

piD
−li

(

α−β
α

)

]
α

α−β
[

n

∑
i=1

pi

α
β

]

β
β−α

≤
n

∑
i=1

D−li

By using the inequality (16), and after some mathematical
manipulations, we get

[

n

∑
i=1

pi

α
β

]

β
β−α

≤

[

n

∑
i=1

piD
−li

(

α−β
α

)

] α
β−α
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By applying logarithms on both sides with base D to
the above inequality and after performing the necessary
mathematical manipulations, it follows that

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

≤
α

β −α
logD

[

n

∑
i=1

piD
−li

(

α−β
α

)

]

Or we can write the above inequality as:

R
β
α(P)≤ L

β
α (P).

Now we will show the equality i.e., R
β
α(P) = L

β
α(P)

holds if and only if

li =− logD





p
α
β

i

∑n
i=1 p

α
β

i





After suitable mathematical manipulations one gets

D−li =





p
α
β

i

∑n
i=1 p

α
β

i





By applying the appropriate mathematical operations one
gets

D
−li

(

α−β
α

)

= p
α
β
−1

i

[

n

∑
i=1

p
α
β

i

]

β−α
α

Multiply above equation throughout by pi, and after
appropriate mathematical operations it follows that:

n

∑
i=1

piD
−li

(

α−β
α

)

=

[

n

∑
i=1

p
α
β

i

]

β
α

More interestingly, after some mathematical steps, it is
implied that

β

(β −α)
logD

[

n

∑
i=1

pi

α
β

]

=
α

β −α
logD

[

n

∑
i=1

piD
−li

(

α−β
α

)

]

Or we can write the above equality as:

R
β
α(P) = L

β
α (P).

Theorem 2: For every codeword with lengths

L = {l1, l2, l3, . . . , ln} satisfy the Kraft’s inequality, then
Rα

β (P) and Lα
β (P) are related as follows:

Lα
β (P)< R

β
α(P)+ 1. For, α > 0,β > 0,α 6= β

Proof: From the theorem 1 we see that R
β
α(P) = L

β
α(P) is

satisfied iff

li =− logD





p
α
β

i

∑n
i=1 p

α
β

i





The above expression can also be written as:

li =−logD p
α
β

i + logD

[

n

∑
i=1

p
α
β

i

]

Consider the codeword lengths L = {l1, l2, l3, . . . , ln}
in such a manner that the following inequalities hold:

−logD p
α
β

i + logD

[

n

∑
i=1

p
α
β

i

]

≤ li <−logD p
α
β

i + logD

[

n

∑
i=1

p
α
β

i

]

+1

(18)

From the left of inequality (18), it is easy to see that the
code-word length L = {l1, l2, l3, . . . , ln} satisfies the
Kraft’s inequality.

From R.H.S of inequality (18), we have

li <−logD p
α
β

i + logD

[

n

∑
i=1

p
α
β

i

]

+ 1

After suitable mathematical manipulation above
inequality can be written as:

Dli < p
− α

β

i

[

n

∑
i=1

p
α
β

i

]

D (19)

Consider the following two cases:

Case-I: For α > β .
For given values of α and β and for α > β , we

have β−α
α < 0, raising power β−α

α < 0 on both sides to
the inequality (19) and after suitable mathematical
manipulations, we get

D
−li

(

α−β
α

)

> p
α
β

−1

i

[

n

∑
i=1

p
α
β

i

]

β−α
α

D
β−α

α (20)

Multiply pi > 0 , on both sides to the inequality (20),
and then by applying suitable mathematical operations we
get the following inequality:

n

∑
i=1

piD
−li

(

α−β
α

)

>

[

n

∑
i=1

p
α
β

i

]

β
α

D
β−α

α (21)

By the inequality (21), combined with the
increasability property of the logarithmic function and
applying suitable mathematical operations, we get

logD

[

n

∑
i=1

piD
−li

(

α−β
α

)

]

>
β

α
logD

[

n

∑
i=1

p
α
β

i

]

+
β −α

α

(22)
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Since
β−α

α < 0, then α
β− α < 0, multiply α

β− α < 0

both sides to the inequality (22), and after suitable
mathematical manipulations it follows that:

Lα
β (P)< R

β
α(P)+ 1.

Case-II: For α < β .

For given values of α and β and for α < β , we

have β−α
α > 0, raising power β−α

α > 0, on both sides to
the inequality (19) and after suitable mathematical
manipulations, we get

D
−li

(

α−β
α

)

< p
α
β

−1

i

[

n

∑
i=1

p
α
β

i

]

β−α
α

D
β−α

α (23)

Multiply pi > 0 , on both sides to the inequality (23),
and then by applying suitable mathematical operations we
get, the following inequality:

n

∑
i=1

piD
−li

(

α−β
α

)

<

[

n

∑
i=1

p
α
β

i

]

β
α

D
β−α

α (24)

By the inequality (24) combined with the
increasability property of the logarithmic function and
after suitable mathematical operations, we get

logD

[

n

∑
i=1

piD
−li

(

α−β
α

)

]

<
β

α
logD

[

n

∑
i=1

p
α
β

i

]

+
β −α

α

(25)

Since β−α
α > 0, then α

β− α > 0, multiply α
β− α > 0

both sides to the inequality (25) and after suitable
mathematical manipulations, the following inequality
holds

Lα
β (P)< R

β
α(P)+ 1.

Thus based on the above two source coding theorems,
Rα

β (P) and Lα
β (P) are related as follows:

R
β
α(P)≤ L

β
α(P)< R

β
α(P)+ 1.For, α > 0,β > 0,α 6= β .

5 Conclusion and Future Research

The current study introduces a novel generalization of
Renyi’s entropy and the most important feature of this
generalized entropy is that it generalizes most important
entropies that are well known and influences information
theory and applied mathematics. The study of some
significant properties of this novel generalization of
Renyi’s entropy has been undertaken in this paper.
Additionally, we introduced a new generalized
exponentiated mean code-word length in this article then
determine the relation between Rα

β (P) and Lα
β (P) in terms

of source coding theorem. The next phase of this research
includes replacing expression by other higher-level
entropy functionals, for example, Ismail’s entropy,
namely [13]. Also the results presented in this paper can
be used to discuss more insights on quantum algorithms
[30,31,32,33,34,35].
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