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Abstract: In this paper, a new analytical method called the ARA-Residual power series method (ARA- RPSM) is implemented to

solve some fractional physical equations. The methodology of the proposed method based on applying the ARA-transform to the given

fractional differential equations, followed by the creation of approximate series solutions using Taylor’s expansion. Then the series

solution is transformed using the inverse of the ARA-transform to get the solution in the original space. Accuracy, effectiveness, and

validity of the suggested method are demonstrated through the discussion of three attractive applications. The solution obtained using

ARA-RPSM demonstrates good agreement when compared to the solutions found using other methods.
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1 Introduction

Many events in physics and other disciplines may be
efficiently described using fractional calculus because
accurate modeling of physical phenomena depends not
only on immediate time but also on past time [1], [2], [3],
[4], [5], [6], [7], [8], [9] and [10]. To solve fractional
order differential equations (FODEs), various methods
are used, including the fractional vibrational iteration
method, the homotopy perturbation method, the
exp-function method, the homotopy analysis method, the
Adomian decomposition method, the adaptive finite
element method, the sinc-collocation method and the
residual power series method (RPSM) and other methods.
The most often used techniques can be found in
references [11], [12], [13], [14], [15], [16], [17] and [18].
The RPSM has been used to solve analytically a wide
number of major models of linear and nonlinear equations
that have appeared in numerous engineering and science
fields. In a different evolution, the Laplace residual power
series method (LRPSM), which is established in 2020,
see [19] and [20], is created by combining the RPSM and
the Laplace transform. The RPSM is further developed in
this article by combining with the ARA transform
(ARAT), [21], [22], [23], [24] and [25]. The advantage of
the current method, the ARA residual power series
method (ARA-RPSM), is that it is quick, requiring little

computer memory, and not being influenced by
computational round off errors. This paper is structured as
follows: In the next section, we go through several
definitions, concepts and properties associated to the
ARAT and the fractional derivatives. In Section 3, the
ARA- RPSM is used to formulate solutions of nonlinear
FODEs. Section 4 illustrates how the current approach
has been used to explore and solve several fractional
physical equations. Finally, a summary of our findings
appears in the conclusion section.

2 Materials and Methods

This section provides a definition of the Caputo fractional
derivative. Concepts and properties associated with the
ARA-RPSM are also supplied.

Definition 1. The Caputo fractional derivative of order β ,

of the function Q(x, t), with respect to the variable t, is

given by

D
β
t Q(x, t) = J

m−β
t Dm

t Q(x, t),0 < m− 1 < β ≤ m,

where m ∈ N, Dm
t = ∂ m

∂ tm , and

J
γ
t Q(x, t)=

{

1
Γ (γ)

∫ t
0(t − τ)γ−1Q(x,τ)dτ, t > τ > 0, γ > 0,

Q(x, t),γ = 0.
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Definition 2. [21] The ARAT of the continuous function

Q(x, t) of order n, for the variable t >, is given by

Gn [Q(x, t)] (r) = r

∫ ∞

0
tn−1e−rtQ(x, t)dt,r > 0.

Several of the ARAT properties that are essential in our
analysis are covered in the next lemma.

Lemma 1. [22], [23] If Q(x, t) is a continuous function,

then

1. limr→∞rG2 [Q(x, t)] = Q(x,0), x ∈ I, r > 0.

2. G2

[

D
β
t Q(x, t)

]

= rβ G2 [Q(x, t)]−β rβ−1G1 [Q(x, t)]+

(β − 1)rβ−1Q(x,0), r > 0, 0 < β ≤ 1.

3.G1

[

D
nβ
t Q(x, t)

]

(r) = rnβ G1 [Q(x, t)] (r) −

Σn
k=0r(n−k)β D

kβ
t Q(x,0), r > 0, 0 < β ≤ 1.

4. G2

[

tβ
]

= Γ (β+2)

rβ+1 , r > 0, β > 0.

Theorem 1. [23] Suppose that the ARAT of the

continuous function Q(x, t) for the variable t exists and

has the fractional series representation

G2 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

rnβ+1
,r > 0,0 < β ≤ 1. (1)

Then

ℓn(x) = (nβ + 1)D
nβ
t Q(x,0). (2)

Remark 1.

i. The jth truncated series of the fractional
representation (1) is

G2 [Q(x, t)] j (r) = Σ
j

n=0

ℓn(x)

rnβ+1
. (3)

ii. If G2 [Q(x, t)] (r) has the fractional representation (1),
then G1 [Q(x, t)] (r) can be expressed as

G1 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

(nβ + 1)rnβ
, (4)

and the jth truncated series is given by

G1 [Q(x, t)] j (r) = Σ j
n=0

ℓn(x)

(nβ + 1)rnβ
. (5)

iii. The inverse ARAT of the fractional representation (1)
is given by

Q(x, t) = G
−1
2

[

Σ ∞
n=0∞

ℓn(x)

rnβ+1

]

(t) = Σ ∞
n=0

D
nβ
t Q(x,0)

Γ (nβ +1)
tnβ .

(6)

The next theorem, depending on the relationship
between G1 [Q(x, t)] (r) and G2 [Q(x, t)] (r) and the
characteristics of Taylor’s series, includes the
convergence conditions of the series representation
introduced in Theorem 1.

Theorem 2. Assume that Q(x, t) is continuous on I× [0,µ ]
where the ARAT for the variable t exists. Let G1 [Q(x, t)] (r)
has the expansion

G1 [Q(x, t)] (r) = Σ∞
n=0

D
(nβ )
t Q(x,0)

rnβ
.

If |G1

[

D
(n+1)β
t Q(x, t)

]

(r)| ≤ L(x) on 0 < r ≤ d, then the

remainder Rn(x,r) satisfies

|Rn(x,r)| ≤
L(x)

r(n+1)β
,x ∈ I,0 < r ≤ d.

Proof. Assume that G1

[

D
kβ
t Q(x, t)

]

(r) exists on 0 < r ≤ d

for k = 0, ...,n. Then

Rn(x,r) = G1 [Q(x, t)] (r)−Σn
k=0

D
kβ
t Q(x,0)

rkβ
.

Multiplying the last equation by r(n+1)β , part (3) of
Lemma 1 yields that

r(n+1)β Rn(x,r)= r(n+1)β
G1 [Q(x, t)] (r)−Σ n

k=0

D
kβ
t Q(x,0)

rkβ
r(n+1)β

= G1

[

D
(n+1)β
t Q(x, t)

]

(r).

Thus,

|r(n+1)β Rn(x,r)| = |G1

[

D
(n+1)β
t Q(x, t)

]

(r)| ≤ L(x).

This yields that

|Rn(x,r)| ≤
L(x)

r(n+1)β
,0 < r ≤ d.

The objective of the ARA-RPSM is to find the power
series solutions of FODEs related to physical phenomena.
The following nonlinear differential equation will be used
to illustrate the procedure of the ARA-RPSM

D
β
t Q(x, t)−N(Q)−L(Q) = 0 (7)

subject to the initial condition

Q(x,0) = H(x), (8)

where N(Q) is a nonlinear term and L(Q) is a linear term,

and D
β
t denotes the Caputo derivative of order β , 0 < β ≤

1, t ≥ 0.
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Applying the ARAT of order two on equation (7), we
obtain

G2

[

D
β
t Q(x, t)

]

(r)−G2 [N(Q)] (r)−G2 [L(Q)] (r) = 0.

(9)
Using Lemma 1 part (2) and the initial condition (8),
equation (9) becomes

G2 [Q(x, t)](r)−
β

r
G1 [Q(x, t)] (r)+

β − 1

r
H(x)

−
1

rβ
G2 [N(Q)] (r)−

1

rβ
G2 [L(Q)] (r) = 0.

(10)

Assume that the ARA-residual power series solution
(ARA-RPSS) of equation (10) is expanded as follows,

G1 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

(nβ + 1)rnβ
. (11)

G2 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

r(nβ+1)
. (12)

The fact limr→∞rG2 [Q(x, t)] (r) = Q(x,0) produces
ℓ0(x) = H(x). Hence, the ARA-RPSS of equation (10)
can be written as,

G1 [Q(x, t)] (r) = H(x)+Σ∞
n=1

ℓn(x)

(nβ + 1)rnβ
, (13)

G2 [Q(x, t)] (r) =
H(x)

r
+Σ∞

n=1

ℓn(x)

r(nβ+1)
. (14)

Therefore, the jth truncated series of equations (13) and
(14) have the following forms

G1 [Q(x, t)] j (r) = H(x)+Σ j
n=1

ℓn(x)

(nβ + 1)rnβ
, (15)

G2 [Q(x, t)] j (r) =
H(x)

r
+Σ j

n=1

ℓn(x)

r(nβ+1)
. (16)

Now, define the ARA-residual function and the jth ARA-
residual function of equation (10), respectively as follows

G2Res(x,r) = G2 [Q(x, t)] (r)−
β

r
G1 [Q(x, t)] (r)

+
(β − 1)

r
H(x) −

1

rβ
G2 [N(Q)] (r)−

1

rβ
G2 [L(Q)] (r),

(17)

G2Res j(x,r) = G2 [Q(x, t)] j (r)−
β

r
G1 [Q(x, t)] j (r)+

(β −1)

r
H(x)

−
1

rβ
G2 [N(Q)] j (r)−

1

rβ
G2 [L(Q)] j (r), j = 2,3, ...

(18)

Now, we introduce some facts that are necessary to get
the ARA-RPSS.

• G2Res(x,r) = 0, x ∈ I, r > 0.

• limr→∞G2Res j(x,r) = G2Res(x,r), x ∈ I, r > 0.

• limr→∞rG2Res(x,r) = limr→∞rG2Res j(x,r) = 0,
x ∈ I, r > 0.

• limr→∞r jβ+1G2Res(x,r) = limr→∞r jβ+1G2Res j(x,r)
= 0, x ∈ I, r > 0.

To determine the coefficients ℓn(x),n ≥ 2, substitute
G1 [Q(x, t)] j ,G2 [Q(x, t)] j into equation (18), multiply

both sides by r jβ+1, j = 2,3, · · · , then solve the equations

limr→∞r jβ+1
G2Res j(x,r) = 0, j = 2,3, · · · .

Finally, after substituting the coefficients in the series
solution (12), operate the inverse ARAT of order two to
the resulting series to obtain the solution of the initial
value problem (7), (8).

3 Results and Discussion

Three examples connected to physical phenomena are
given in this section to illustrate the effectiveness,
precision, and simplicity of the ARA-RPSM.

Example 1. Consider the radioactive decay FODE

D
β
t W (t) =−µW(t), 0 < β ≤ 1, (19)

subject to the initial condition

W (0) =W◦. (20)

Now, applying the procedures of ARA-RPSM as described
in Section 2, we obtain

G2

[

D
β
t W (t)

]

(r) =−µG2 [W (t)] (r). (21)

According to Lemma 1 part (2) and the initial condition
(20), equation (21) can be written on the form

G2 [W (t)] (r)−
β

r
G1 [W (t)] (r)+

(β − 1)

r
W◦

+
µ

rβ
G2 [W (t)] (r) = 0.

(22)

Suppose that the expansions of the solution to equation
(22) are as follows,

G1 [W (t)] (r) = Σ∞
n=0

ℓn(x)

(nβ + 1)rnβ
, (23)

G2 [W (t)] (r) = Σ∞
n=0

ℓn(x)

rnβ+1
. (24)
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According to the given initial condition in equation (20)
and using Lemma 1 part (2), the jth-truncated series of
(23) and (24) can be written as

G1 [W (t)] j (r) =W◦+Σ j
n=1

ℓn(x)

(nβ + 1)rnβ
, (25)

G2 [W (t)] j (r) =
W◦

r
+Σ j

n=1

ℓn(x)

rnβ+1
. (26)

For the purpose of determining the series expansions’
coefficients in equations (25) and (26), we define the
ARA-residual function of equation (22) as

G2Res(r) = G2 [W (t)] (r)−
β

r
G1 [W (t)] (r)

+
(β − 1)

r
W◦+

µ

rβ
G2 [W (t)] (r),

(27)

and the jth ARA-residual function is

G2Res j(r) =G2 [W (t)] j (r)−
β

r
G1 [W (t)] j (r)+

(β − 1)

r
W◦

+
µ

rβ
G2 [W (t)] j (r), j = 1,2,3, · · · .

(28)

The first unknown coefficient ℓ1(x) is determined by
substituting G1 [W (t)]1 (r) and G2 [W (t)]1 (r) into
G2Res1(r) to obtain

G2Res1(r) =
W◦

r
+

ℓ1(x)

rβ+1
−

β

r

(

W◦+
ℓ1(x)

(β + 1)rβ

)

+
β − 1

r
W◦+

µ

rβ

(

W◦

r
+

ℓ1(x)

rβ+1

)

.

(29)

After simple computations, we get

G2Res1(r) =
ℓ1(x)

rβ+1
−

β

r

(

ℓ1(x)

(β +1)rβ

)

+
µ

rβ

(

W◦

r
+

ℓ1(x)

rβ+1

)

.

(30)

By taking the limit as r → ∞ after multiplying equation

(30) by rβ+1, the fact limr→∞

(

rβ+1G2Res1(r)
)

= 0 yields
that

ℓ1(x) =−µ(β + 1)W◦. (31)

In a similar manner, to find the next coefficient ℓ2(x),

substitute G1 [W (t)]2 (r) = ℓ0(x)+
ℓ1(x)

(β+1)rβ + ℓ2(x)

(2β+1)r2β and

G2 [W (t)]2 (r) = ℓ0(x)
r

+ ℓ1(x)

rβ+1 + ℓ2(x)

r2β+1 into G2Res2(r) to

obtain

G2Res2(r) =
ℓ1(x)

rβ+1
+

ℓ2(x)

r2β+1
−

β

r

(

ℓ1(x)

(β +1)rβ
+

ℓ2(x)

(2β +1)r2β

)

+
µ

rβ

(

ℓ0(x)

r
+

ℓ1(x)

rβ+1
+

ℓ2(x)

r2β+1

)

.

(32)

Again, by taking the limit as r → ∞ after multiplying

equation (32) by r2β+1, then the fact that

limr→∞

(

r2β+1G2Res2(r)
)

= 0, yields that

ℓ2(x) = µ2(2β + 1)W◦. (33)

If we proceed in the same manner, we arrive to the
conclusion that the jth coefficient of the series (25) and
(26) has the following general form

ℓ j(x) = (−µ) j( jβ + 1)W◦, j = 1,2, · · · . (34)

According to what was presented, the series solution of
equation (22) is

G2 [W (t)]2 (r)=
W◦

r
−µ

(β +1)W◦

rβ+1
+µ2 (2β +1)W◦

r2β+1
+· · · (35)

So, the series solution of the radioactive decay FODE (19)
can be obtained by transforming the solution in equation
(35), using the inverse ARAT of order two to get

W (t) =W◦− µ
W◦

Γ (β + 1)
tβ + µ2 W◦

Γ (2β + 1)
t2β

− µ3 W◦

Γ (3β + 1)
t3β + · · ·

(36)

W (t) =W◦(1−
µ

Γ (β + 1)
tβ +

µ2

Γ (2β + 1)
t2β

−
µ3

Γ (3β + 1)
t3β + · · · ),

(37)

which is equivalent to

W (t) =W◦Eβ (−µtβ ), (38)

where Eβ (−µtβ ) = Σ∞
k=0

(−µtβ )k

Γ (kβ+1) is the Mittag-Leffler

function. In case β = 1, the solution will be

W (t) =W◦e−µt (39)

which coincides with exact solution obtained in [26] as in
Figure 1.

Example 2. Consider the Rosenau-Hyman FODE

D
β
t Q(x, t)−Q(x, t)Qxxx(x, t)−Q(x, t)Qx(x, t)

− 3Qx(x, t)Qxx(x, t) = 0, t > 0, 0 < β ≤ 1,
(40)

subject to the initial condition

Q(x,0) =−
8c

3
cos2

( x

4

)

. (41)
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Fig. 1: The ARA-RPSS plot of equation (19) with W◦ = 1,µ = 1

for different values of β .

Operating ARAT of order two on equation (40), we get

G2

[

D
β
t Q(x, t)

]

−G2

[

G
−1
2 [G2 [Q(x, t)]]∂xxxG

−1
2 [G2 [Q(x, t)]]

]

−G2

[

G
−1
2 [G2 [Q(x, t)]]∂xG

−1
2 [G2 [Q(x, t)]]

]

−3G2

[

∂xG
−1
2 [G2 [Q(x, t)]]∂xxG

−1
2 [G2 [Q(x, t)]]

]

= 0.

(42)

Which is equivalent to

rβ
G2 [Q(x, t)]−β rβ−1

G1 [Q(x, t)]+(β −1)rβ−1Q(x,0)

−G2

[

G
−1
2 [G2 [Q(x, t)]]∂xxxG

−1
2 [G2 [Q(x, t)]]

]

−G2

[

G
−1
2 [G2 [Q(x, t)]]∂xG

−1
2 [G2 [Q(x, t)]]

]

−3G2

[

∂xG
−1
2 [G2 [Q(x, t)]]∂xxG

−1
2 [G2 [Q(x, t)]]

]

= 0.

(43)

Simplifying equation (43), we have

G2 [Q(x, t)]−
β

r
G1 [Q(x, t)]+

(β −1)

r
Q(x,0)

–
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]]∂xxxG

−1
2 [G2 [Q(x, t)]]

]

−
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]]∂xG

−1
2 [G2 [Q(x, t)]]

]

−
3

rβ
G2

[

∂xG
−1
2 [G2 [Q(x, t)]]∂xxG

−1
2 [G2 [Q(x, t)]]

]

= 0.

(44)

Consider expanding the ARA-RPSS of equation (44) as
follows,

G1 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

(nβ + 1)rnβ
, (45)

G2 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

rnβ+1
. (46)

The jth truncated series of the expansions (45) and (46)
are

G1 [Q(x, t)] j (r) = Σ j
n=0

ℓn(x)

(nβ + 1)rnβ
, (47)

G2 [Q(x, t)] j (r) = Σ j
n=0

ℓn(x)

rnβ+1
. (48)

By taking the limit as r → ∞ after multiplying both sides
of equation (48) by r, we get

limr→∞rG2 [Q(x, t)] j (r) = ℓ0(x)+ limr→∞Σ j
n=1

ℓn(x)

rnβ
.

Using the fact

limr→∞rG2 [Q(x, t)] j (r) = Q(x,0),

and the initial condition in equation (41), we get

ℓ0(x) = –
8c

3
cos2

( x

4

)

.

Hence, the series representations (47) and (48) become

G1 [Q(x, t)] j (r) =−
8c

3
cos2

( x

4

)

+Σ j
n=1

ℓn(x)

(nβ + 1)rnβ
,

(49)

G2 [Q(x, t)] j (r) =−
8c

3r
cos2

( x

4

)

+Σ
j

n=1

ℓn(x)

rnβ+1
. (50)

The ARA-residual function of equation (44) is now given
by

G2Res(x,r) = G2 [Q(x, t)]−
β

r
G1 [Q(x, t)]+

(β − 1)

r
ℓ0(x)

−
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]]∂xxxG

−1
2 [G2 [Q(x, t)]]

]

−
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]]∂xG

−1
2 [G2 [Q(x, t)]]

]

−
3

rβ
G2

[

∂xG
−1
2 [G2 [Q(x, t)]]∂xxG

−1
2 [G2 [Q(x, t)]]

]

.

(51)

The jth ARA-residual function is

G2Res j(x,r) = G2 [Q(x, t)] j −
β

r
G1 [Q(x, t)] j +

(β −1)

r
ℓ0(x)

−
1

rβ
G2

[

G
−1
2

[

G2 [Q(x, t)] j

]

∂xxxG
−1
2

[

G2 [Q(x, t)] j

]]

−
1

rβ
G2

[

G
−1
2

[

G2 [Q(x, t)] j

]

∂xG
−1
2

[

G2 [Q(x, t)] j

]]

−
3

rβ
G2

[

∂xG
−1
2

[

G2 [Q(x, t)] j

]

∂xxG
−1
2

[

G2 [Q(x, t)] j

]]

.

(52)
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To determine the first unknown coefficient ℓ1(x) in
equation (49) and equation (50), we substitute
G1 [Q(x, t)]1 (r) and G2 [Q(x, t)]1 (r) into G2Res1(x,r) to
obtain,

G2Res1(x,r) = G2 [Q(x, t)]1 −
β

r
G1 [Q(x, t)]1 +

(β −1)

r
ℓ0(x)

–
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]1]∂xxxG

−1
2 [G2 [Q(x, t)]1]

]

−
1

rβ
G2

[

G
−1
2 [G2 [Q(x, t)]1]∂xG

−1
2 [G2 [Q(x, t)]1]

]

–
3

rβ
G2

[

∂xG
−1
2 [G2 [Q(x, t)]1]∂xxG

−1
2 [G2 [Q(x, t)]1]

]

.

(53)

Substituting G1 [Q(x, t)]1 (r) = ℓ0(x) + ℓ1(x)

(β+1)rβ and

G2 [Q(x, t)]1 (r) = ℓ0(x)
r

+ ℓ1(x)

rβ+1 in equation (53). After

simple computations, we have

G2Res1(x,r) =
ℓ1(x)

rβ+1
−

β

(β + 1)

ℓ1(x)

rβ+1

−
1

rβ
G2

[

G
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]

∂xxxG
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]]

−
1

rβ
G2

[

G
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]

∂xG
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]]

−
3

rβ
G2

[

∂xG
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]

∂xxG
−1
2

[

ℓ0(x)

r
+

ℓ1(x)

rβ+1

]]

.

(54)

Thus,

G2Res1(x,r) =
ℓ1(x)

rβ+1
−

β

(β +1)

ℓ1(x)

rβ+1
−

ℓ0(x)ℓ
′′′
0 (x)

rβ+1

−
ℓ0(x)ℓ

′′′
1 (x)

r2β+1
−

ℓ′′′0 (x)ℓ1(x)

r2β+1
−

Γ (2β +2)ℓ1(x)ℓ
′′′
1 (x)

Γ 2(β +2)r3β+1

−
ℓ0(x)ℓ

′
0(x)

rβ+1
−

ℓ0(x)ℓ
′
1(x)

r2β+1
−

ℓ′0(x)ℓ1(x)

r2β+1

−
Γ (2β +2)ℓ1(x)ℓ

′
1(x)

Γ 2(β +2)r3β+1
−3

ℓ′0(x)ℓ
′′
0(x)

rβ+1

−3

(

ℓ′0(x)ℓ
′′
1(x)

r2β+1
+

ℓ′′0(x)ℓ
′
1(x)

r2β+1
+

Γ (2β +2)ℓ′1(x)ℓ
′′
1(x)

Γ 2(β +2)r3β+1

)

.

(55)

By taking the limit as r → ∞ after multiplying equation

(55) by rβ+1, the fact limr→∞

(

rβ+1G2Res1(r)
)

= 0, yields
that

ℓ1(x) = (β + 1)
(

ℓ0(x)ℓ
′′′
0 (x)+ ℓ0(x)ℓ

′
0(x)+ ℓ′0(x)ℓ

′′
0(x)

)

.
(56)

Substituting ℓ0(x) =− 8c
3

cos2 x
4

in equation (56), we get

ℓ1(x) =−(β + 1)
2c2

3
sin
( x

2

)

.

Similarly, to find ℓ2(x), we substitute

G1 [Q(x, t)]2 (r) = ℓ0(x) + ℓ1(x)

(β+1)rβ + ℓ2(x)

(2β+1)r2β and

G2 [Q(x, t)]2 (r) =
ℓ0(x)

r
+ ℓ1(x)

rβ+1 +
ℓ2(x)

r2β+1 into G2Res2(s) and

solve the equation limr→∞r2β+1G2Res2(x,r) = 0 to get

ℓ2(x) = (2β + 1)[ℓ0(x)ℓ
′′′
0 (x)+ ℓ1(x)ℓ

′′′
0 (x)+ ℓ1(x)ℓ

′
1(x)+

ℓ0(x)ℓ
′
0(x)+ ℓ1(x)ℓ

′
0(x)+ ℓ1(x)ℓ

′
1(x)+ 3(ℓ′1(x)ℓ

′′
1(x)+

ℓ′1(x)ℓ
′′
0(x)+ ℓ′1(x)ℓ

′′
1(x))]. (57)

Substituting ℓ0(x) = − 8c
3

cos2
(

x
4

)

and

ℓ1(x) =−(β + 1) 2c2

3
sin
(

x
2

)

in (2), we get

ℓ2(x) = (2β + 1)

(

c3

3
cos
( x

2

)

)

.

Repeating the same arguments as before, we get the
solution of equation (44) as

G2[Q(x, t)] =−
8c

3r
cos2

( x

4

)

−
2c2(β + 1)

3rβ+1
sin
( x

2

)

+
(2β + 1)

r2β+1

(

c3

3
cos
( x

2

)

)

+ · · ·

(58)

Applying the inverse ARAT on equation (58), the solution
of the problem (40) and (41), is obtained as follows

Q(x, t) = –
8c

3
cos2

( x

4

)

−
2c2

3
sin
( x

2

) tβ

Γ (β + 1)

+
c3

3
cos
( x

2

) t2β

Γ (2β + 1)
+ · · · .

(59)

It is worth mentioning that when β = 1, we get from
equation (59) that

Q(x, t) = –
8c

3
cos2

( x

4

)

−
2c2

3
sin
( x

2

)

t +
c3

6
cos
( x

2

)

t2 + · · ·

(60)

which coincides with the exact solution of the given
problem. Moreover, it is completely confirmed by the
solution found in [26], [27] and [28], as in Figure 2.
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Figure 2. The solution of equation (40) for different
values of β with c = 1.

Example 3. Consider the backward Kolmogorov FODE,

D
β
t Q(x, t)− (x+ 1)Qx(x, t)− x2etQxx(x, t) = 0,

t > 0, 0 < β ≤ 1,
(61)

with the initial condition

Q(x,0) = x+ 1,x ∈ R. (62)

When we apply the ARAT on equation (61), we obtain

rβ
G2 [Q(x, t)]−β rβ−1

G1 [Q(x, t)]+ (β − 1)rβ−1Q(x,0)

− (x+ 1)G2

[

∂xG
−1
2 [G2 [Q(x, t)]]

]

− x2G2

[

et∂xxG
−1
2 [G2 [Q(x, t)]]

]

= 0.

(63)

Suppose that the ARA-RPSS of equation (63) has the
Laurent expansions as follows

G1 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

(nβ + 1)rnβ
, (64)

G2 [Q(x, t)] (r) = Σ∞
n=0

ℓn(x)

rnβ+1
. (65)

Similar to the previous applications using ARA-RPSM, we
get

ℓ0(x)= x+1, ℓ1(x)= (β +1)(x+1), ℓ2(x)= (2β +1)(x+1),

and so on ... .

Thus, the series solution of equation (63) is the following,

G2 [Q(x, t)] = (x+1)

(

1+
(β +1)

rβ+1
+

(2β +1)

r2β+1
+ ...

)

(66)

So, the series solution of the backward Kolmogorov
FODE (61) is obtained by transforming the solution in
equation (66) using the inverse ARAT of order two.
Therefore, the ARA-RPSS has the following expression,

Q(x, t)= (x+1)

(

1+
tβ

Γ (β +1)
+

t2β

Γ (2β +1)
+

t3β

Γ (3β +1)
+ ...

)

,

(67)

which is equivalent to

Q(x, t) = (x+ 1)Eβ(t
β ). (68)

For β = 1 the solution will be

Q(x, t) = (x+ 1)et ,

that is the exact solution of the given problem which is
completely confirmed by the solution found in [29], [30]
and [31].

4 Conclusion

In this article, a novel technique to determine accurate
solutions of physical phenomena in the fractional order
was successfully implemented. The results attained
demonstrate great agreement with both the exact and
other known approaches. The ARA-RPSM performance
demonstrates its efficiency, accuracy, and ability for
obtaining analytical and numerical solutions to a wide
range of fractional physical phenomena that occur in
engineering and physics. In later work, we plan to solve
fractional integral equations both linearly and nonlinearly
using the ARA-RPSM.
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