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Abstract: In this paper the constrained systems with two primary first class constraints are studied using fractional
Lagrangian, after that we find the fractional Hamiltonian and the corresponding Hamilton Jacobi equation. Using

separation of variables technique, we can find the action function S this function helps us to formulate the wave function

which describe the behavior of our systems also from the action function S we can find the equations of motion and the
corresponding momenta in fractional form. This work is illustrated using one example.
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1 Introduction

The quantization of constrained systems has been started by
Dirac [1,2], converting first class constraints into second
class constraints using gauge constraints has been presented
by [3,4,5,6]. Canonical formalism has been presented for
studying singular systems [7,8,9,10,11].

The Hamilton Jacobi equation play a good role in quantum
mechanics; it says that quantum mechanics reduce to

classical mechanics in the limit h—0 .Studying Hamilton
Jacobi Equation and calculating the Hamilton Jacobi
function to formulate the wave function have been
presented by [12,13,14,15]. The quantization of constrained
systems has been studied using the WKB approximation
[16,17], where the WKB approximation is semiclassical
approximation and is a basic technique for obtaining an
approximate solution to Schrodinger's equation.

The quantization method has been investigated to explain
the dissipative systems by [18] in this field the separation of
variables method was used, and the equations of motion are
obtained using the given Lagrangian, then the Hamilton
Jacobi equation was found to formulate the action integral
and the conjugate momentum which help us to find the
corresponding wave function for the dissipative system.

Recently, Hamilton Jacobi equation and WKB
approximation have been developed for fractional systems
using the canonical technique [19,20]. More recently,
quantization of damped systems using fractional WKB
approximation has been investigated by [21]. In this paper
we wish to quantize the constrained systems using WKB
approximation but in fractional model.

This paper is organized as follows: In section 2, Hamilton
Jacobi formalism and fractional WKB approximation are
discussed. In section 3, one illustrative example is studied

in detail. The work closes with some concluding remarks in
section 4.

2 Fractional Derivatives

The left Riemann—Liouville fractional derivative written as
[22, 23]:

D f() = )(%j [—oy ! fe)ar

I'n-a
( 1)
which is defined as the LRLFD,

and the right Riemann-Liouville fractional derivative
written as:

a 1 d " n—a-1
V\‘Dbf(X):F(n——a)(_Ej f(T—x) f(r)dr

X

()
which is defined as the RRLFD.

where ' represents the Euler's gamma function and & is

the order of the derivative such that 7? —l<acn , and is

not equal to zero. . If @ is an integer, these derivatives are
written as:

D2 f(x) = [%j 1)
3)

and

DEf(x) = (— %j 1)
“4)
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a
The fractional operator, ¢ Dx f (x) can be written as [24].

e =L pr

dx (5)
Where,
a=12,..

Thus, the generalized coordinate ¢ in fractional form is
defined as:

9.=.D"q
and
q4,=D;"'q
Using that
d
D =—
dt (6)
0 _
b =1 (7
Thus, if a= 'B = 1, we find that
d
tD ba =
dt (8)
and
d
D=5
dt )
3 Fractional WKB Approximation
Formulation:

Starting from a Lagrangian containing a fractional
derivative which takes the following form:

L=L(,D/"'q.,D}"q.,D;'q.,D; q.1) 10y

And recalling that, action function for all X €& [a’ b] can be
defined as follows:

b
S = .[L(aDta_lqatDbﬁ_lqaaDtaQ’tDbﬂq’ t)dt

(11
Where the generalized momenta can be obtained from:
R
a o
aaDt q (12)
and

-
B Vi

atD i (13)
The Hamiltonian depending on the fractional time

derivatives is written as:

HO(aDta_lq’tDbﬂ_lq’paapﬂat) =
PoDia+ps Dlq—L(,D; "9, D) "q,,D}q,, D] q,t)

(14)
The Hamilton Jacobi equation is given as:
H'=p,+H, (15)
And by using
_as
Po = o 16)

Where S is the Hamilton Jacobi function which can be
written in fractional form as follows:

S:S(aDtailCInD}’)Bilq’El’Eé’t) (17)

Now by using equation (14) and equation (16) the Hamilton
Jacobi equation (15) will be:

:a—S+HO =0
ot (18)

Thus, the solution of equation (18) takes the following
form:

S =S(,D¢"'q, D} ¢, By, Ey.t) = f () + W, (E
W (E,. D 'q) + 4

25t

H!

Dq)

1%a

(19)
Where El’ EZ are constants of integration, and 4 is some
other constant.

Also, equations of motion can be obtained from the
Hamilton Jacobi function as follows:

oS 4
= —_— Da
771 8E1 a "t Q
(20)
and
oS _
n = Eztl)ffg 1Q

@
Now, the generalized momenta can be determined from the
Hamilton Jacobi function as follows:
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s oW @)
pa - aaDtailq - a44Dt0l71q
and
oS ow
Pp= (23)

0,.D/"q 8.0 g

Using Fractional WKB approximation and by using the
relation between the wave function

v(.D"a. D) a0 e
S(,Df"q, D} q,0)

Hamilton's principle

function , we obtain this formula:

N
l//(aDza_lq’szﬁ_lqa 1) = H vo(q,)

i=1

i . ]
eXp[%S(aDt 'q,, D} 1q,t)}
(24)

Where,

1
W (q;,) = \/;,

The wave function satisfies the condition:

H'y =0

(25)

(26)

Thus, we construct the fractional wave function as:

(D" q. Dy 'q.0)=

LGXPF S(.D;"q, D 'q,ElaEz,t)}
\/;i h 27

The momenta are defined as operators in this form:
. h 0

Py

Then,

p =0 (29)
P 0.0

(28)

also
-
Po= i ot (30)
4 Example:

To illustrate our work two primary first class constraints
example is studied in detail [13]:

1y e
L =5(q12 +45") +61Gs + 428, — 4, — G
(31)

Our Lagrangian in fractional form using equation (10) is
written as:

1 a 1 a o o
L= E(oDz q1)2 +E(0Dt %)2 +(,D,q,)(,D;" q5)

+(0Dta_IQ2)(0DtaQ2) _(oDza_l%) _(tha_l%)

(32)
The momentum using equation (12) is:
oL u a
P = MZODI q,+oD; g, (33)
And
oL 1
=—— =D/ =-H 34
)2 2,04, o 4, 2 (34
Also,
oL “ “
D3 :m:th q;+,D,'q, = p, =—H, (33)

The canonical Hamiltonian has this form using equation
(14)

HO(aDtailq’tDbﬂAQ’paapﬁst) =
PoDfq,+ p,0 Dl q, + Py D/ q5

- L(, D¢, D} 4,,D; ¢, D} 4:1) 36)

Equation (36) can readily be solved to give:
1 a— a—

H,= _(pl)z +(,D, 1%) +(,D, 1%)
2 (37)

The corresponding Hamilton Jacobi partial differential
equations are:

2
, oS 1 oS
Hy=p,+H,=—+— A ol
ot 2\0,D" ¢q,
+(ODtOH% ) +(0DtailQ3) =0
(38)

oS

H}=p,+H, :(8 Da_lq
i 4

J _(tha_l%) =0
(39)
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H,=p,+H, = &S:l - anl =0
aODta 613 aODta ql (40)

We shall now use a change of variables to solve equation
(38), (39) and equation (40) which is

D;H“ :(OD;H%) "’(OD;Z_I%)

Then equation (37) becomes

(41)

= % (p, )? +0Dt‘Hu
(42)

Thus, the new Hamilton Jacobi partial differential equations
read

, 1 "
H, = p, +E(pu)2+0Dl =

2
s + l( &Z_l J +,D/'u=0
ot 2\0,D u 43)
Hy=p,+H,=p,-q,=
oS o
(Fj ~(,D"4:) =0
0"t qz (44)
It is possible to propose that:
S(tha_I”atha_l%a 1) =
f(t)+W(ODta_1u,E)+f2(OD;Hq2)+A (45)
That is,
f(t)=—Et (46)
Remembering that SO =~Et and 0 q2 being

treated as independent variables, using equation (22), (43),

(45) and equation (46), w function can be written as
-1 -1

W = [J2(E=,D{ u)d Df

And the function f: 2 equals to:

/s :j‘(oDzailCIz)doDzail% 48)

Putting equation (46), (47) and equation (48) into equation
(45) we get:

(47)

S =—Et+ [\ 2(E—,D{"u)d D "u

+ [ (D q,)d D g, + A

(49)
The equation of motion is:
D(Z 1
l aE J. '2(E Da -1
(50)
Using equation (22) and equation (23), it follows that
oS po
P = 5 D =\2(E-,D/'u) = p, = p,
0"t u (5 1)
And
oS -
Py = aDT%Dt 'q,
0"t q2 (52)

The quantization procedure in Schrodinger's assumes the
form

. ne n & o
Hyy = _.___T"'ODI u v
liot 2 0(,D u) (53)
And
~ n e o
Hy =\~ ———~D, qu}w
_l a(Ol)t QZ) (54)
Recalling that;
‘//(()Dta_lua%) =
a- i - .
‘//O(ODt lu)exp{%S(th 1U’OD1 lqz,f):l
(55)
And
a-1 a-1 _%
W (oD, u):[z(E_th u)] (56)
Using equation (28), (29) and equation (30) we have
0 i
—yv=-—Ey
ot h (57)
o’y -1 -1
———=—12(E-,D " u
a(OD;Zflu)Z hZ [ ( 0=t )}/1
2oz pr )]y
: (58)
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0

i a-l1
- w=X(D
aODta_lqz l// h(O t QZ )l//

(59)
Substituting equation (57), (58) into equation (53) we get

1 .
~E+ 2(E—, D7 'w)]-
Aoy = 5n° 2
>0 )|+ Dt

8 (60)
Now we can show that in the limit h—0 R
Hyy =0 61)

Also, substituting equation (59) into equation (54) we
obtain

Hy = [oDza_l%_oD;H%}// =0
Which means;

Hy =0

(62)

(63)

5 Conclusion:

In this work constrained systems using fractional calculus
have been studied using fractional Lagrangian, the
Hamiltonian is obtained in fractional form using the given
fractional Lagrangian. From the resulting Hamiltonian we
find the Hamilton Jacobi equation which help us to find the

corresponding action function S . Finally, from the action
function one can obtain the conjugate momenta, equations
of motion and the wave function in fractional form at a

certain condition; which is & 1 ; the results of
fractional technique reduce to those obtained from classical
technique. In order to test our proposed method and to get a
somewhat deeper understanding, we have examined an
example with two primary first class constraints.
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