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Abstract: In this article, the performance of a series-parallel system is improved. The system components are assumed to follows

independently and identically Lindley distributed with three parameters. The system reliability for the given system will be improved

by using reduction method, hot, cold and imperfect duplication method. Some reliability measures are derived. Two types of reliability

equivalence factors and gamma fractiles are calculated. A numerical example is introduced to explain the theoretical results.

Keywords: Lindley distribution, reliability equivalence, series-parallel, improving methods.

1 Introduction

Råde [1] obtained the reliability equivalence factors (REF)
for some simple systems. Sarhan [2,3] is provided four
methods:

(i)Reduction method (RM): the failure rates are reduced
by a factor ρ ,0 < ρ < 1;

(ii)Hot duplication method (HDM): It assumes that some
components of the system will be connected to
components in a parallel system (one for each).

(iii)Cold duplication method (CDM): In this method cold
coupling is used which assumes that some components
will be connected to components via a perfect switch
(one for each).

(iv)Imperfect duplication method (IDM): It will differ
from the previous method, CDM, in that the switch
used in the connection process is an imperfect switch.
The switch has lifetime distribution.

Various systems are improved by applying the concept of
REF, see [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22]
A random variable T has a three-parameters Lindley
distribution (TPLD), if it has the pdf given by

f (t;α,β ,θ ) =
θ 2(α +β t)

αθ +β
e−θt , t ≥ 0, (1)

where θ > 0,α > 0,αθ +β > 0.

The TPLD can be easily expressed as

f (t;α,β ,θ ) = pg1(t)+ (1− p)g2(t),

where g1(t) = θe−θt ∼ Exp(θ ),

g2(t) = θ 2te−θt ∼ Gamma(2,θ ) and p = αθ
αθ+β .

The TPLD has the following cumulative distribution
function (CDF),

F(t;α,β ,θ ) = 1−

(

1+
θβ t

αθ +β

)

e−θt , t ≥ 0. (2)

Many interesting properties of TPLD and its applications
are discussed in [23]. The TPLD contains some models:

1.The TPLD, reduced to two-parameter quasi-Lindley
distribution if β = θ , [24],

2.If β = 1, we have two-parameter Lindley distribution,
[25],

3.When α = 1, two-parameter Lindley distribution, is
obtained, [26],

4.A new two-parameter quasi-Lindley distribution is
obtained if α = θ ,β = α , [27],

5.If α = β = 1, we have Lindley distribution, [28],
6.The TPLD is reduced to Gamma (2,θ ) distribution,

when α = θ ,
7.The exponential distribution is a special model of

TPLD, if β = 0,
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The TPLD has the following failure rate

λ (t) =
f (t)

1−F(t)
=

θ 2(α +β t)

β +θ (α +β t)
.

The λ (t) is a function of time. Since

d

dt
λ (t) =

(

β θ

αθ +β +θβ t

)2

> 0, for all t ≥ 0.

Therefore, λ (t) is increasing failure rate function.

2 Original system

The series-parallel system (SPS) consists n subsystems
connected in series. Each subsystem has mi components
in parallel mode, such that M = ∑n

i=1 mi , see Figure 1,
[29,30,31].

Fig. 1: SPS structure

The lifetime of the system components is independent and
identically distributed with a TPLD. The survival function
(SF) for a component j is

Si j(t) = 1−F(t) =

(

1+
β θ t

αθ +β

)

e−θt , t ≥ 0, (3)

where α,β ,θ > 0, and j = 1, · · · ,mi, i = 1,2, · · · ,n.
The SF of the subsystem i, Si(t), can be expressed as,

Si(t) = 1−
mi

∏
i=1

Fi j(t) = 1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi

.

(4)
Let SF of the SPS, S(t), is

S(t)=
n

∏
i=1

Si(t)=
n

∏
i=1

{

1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi
}

.

(5)
The mean time to failure (MTTF) to the SPS is calculated
by, [32]

m =

∫ ∞

0
S(t)dt. (6)

Some numerical techniques can be used to calculate the
MTTF.

3 The Improved Systems

The SPS are improved by using the following methods.

3.1 The RM

To improve the system reliability, the failure rates of r will
be reduced, where 0 ≤ r ≤ M. Here, the failure rate will
be reduced by reducing the scale parameter only, by the
factor ρ ,0 < ρ < 1. From each subsystem, ri components,
0 ≤ ri ≤ mi, will be improved, such that r = ∑n

i=1 ri.
The SF of the component j in the subsystem i, Si j,ρ(t),
after reducing its failure rate is given as

Si j,ρ =

(

1+
β ρθ t

αρθ +β

)

e−ρθt . (7)

The SF of the subsystem i after reducing the failure rates
of ri components, Sri,ρ , is obtained as follows.

Sri,ρ(t) = 1−
[

1− Si j,ρ(t)
]ri [1− Si j(t)]

mi−ri

= 1−

[

1−

(

1+
β ρθ t

αρθ +β

)

e−ρθt

]ri

×

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ri

. (8)

The SF of the improved system when the failure rate of r

components are reduced, is

Sr,ρ(t) =
n

∏
i=1

Sri,ρ(t)

=
n

∏
i=1

{

1−

[

1−

(

1+
β ρθ t

αρθ +β

)

e−ρθt

]ri

×

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ri

}

. (9)

We can calculate the MTTF of the improved system, say
mr,ρ , by

mr,ρ =

∫ ∞

0
Sr,ρ(t)dt. (10)

We can calculate the above integral by using some
numerical techniques to find mr,ρ .

3.2 The HDM

The system will be improved by duplicating ℓ, 0 ≤ ℓ ≤
M, components, where each component is duplicated by
a hot redundant identical standby component. From each
subsystem ℓi components will be improved by HDM, such
that 0 ≤ ℓi ≤ mi, and ℓ= ∑n

i=1 ℓi.
Let SH

ℓi
(t), be the SF of the improved subsystem by HDM,

then

SH
ℓi
(t) = 1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi+ℓi

. (11)
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The SF of the improved system by improving ℓ
components according to the HDM, can be obtained as

SH
ℓ (t) =

n

∏
i=1

SH
ℓi
(t)

=
n

∏
i=1

{

1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi+ℓi

}

. (12)

From equation (12), we can calculate the MTTF as
follows.

mH
ℓ =

∫ ∞

0
SH
ℓ (t)dt. (13)

Some numerical techniques can be used to calculate the
above integral to find mH

ℓ .

3.3 The CDM

In this method, consider each component of the ℓ is
connected with an identical component via a perfect
switch. The SF, SC

ℓi
(t), of the improved subsystem i,

according to CDM is

SC
ℓi
(t) = 1−

[

1− SC
i j(t)

]ℓi [1− Si j(t)]
mi−ℓi , (14)

where

SC
i j(t) = S1(t)+

∫ t

0
f1(x)S2(t − x)dx =

[

1+
β θ t

β +αθ
+

θ 2[6α(β +αθ )+ 3β (β + 2αθ )t +θβ 2t2]t

6(β +αθ )2

]

e−θt .

(15)

Then, the SF of the improved system by use CDM to
improve ℓ components is given as

SC
ℓ (t) =

n

∏
i=1

SC
ℓi
(t)

=
n

∏
i=1

{

1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ℓi [

1−

(

θ 2[6α(β +αθ )+ 3β (β + 2αθ )t +θβ 2t2]t

6(β +αθ )2

+
β θ t

β +αθ
+ 1

)

e−θt

]ℓi

}

. (16)

The MTTF to the improved system can be calculated by

mC
ℓ =

∫ ∞

0
SC
ℓ (t)dt. (17)

By using some Mathematical Programs, (17) can be
calculated.

3.4 The IDM

Suppose each component of ℓ is connected with an
identical component via an imperfect switch. The switch
has TPLD with parameters α,β and ν . Let SI

ℓi
(t) be the

SF of subsystem i, after improved by the IDM, we have

SI
ℓi
(t) = 1−

[

1− SI
i j(t)

]ℓi [1− Si j(t)]
mi−ℓi , (18)

where

SI
i j(t) = S1(t)+

∫ t

0
f1(x)Ssw(x)S2(t − x)dx

=

(

1+
β θ t

β +αθ

)

e−θt +
θ 2e−(θ+ν)t

(β +αθ )2(β +αν)ν3
×

{(

−1+ eνt
)

α3θν3 +αβ 2ν [−θ (−1+νt)(2+νt)

−ν(3+ 2νt− 3eνt)+θ (−2+ 3νt)eνt
]

+

α2β ν2
[

−ν − 2θ (1+νt)+ (ν+θ (2+νt))eνt
]

+

β 3
[

−ν(3− 3eνt +(3+νt)νt)+θ (8+(5+νt)νt

+(−8+ 3νt)eνt
)]}

. (19)

Substituting from (19) into (18), the SF, SI
ℓ(t), of the

improved system by IDM, has the following form

SI
ℓ(t) =

n

∏
i=1

SI
ℓi
(t)

=
n

∏
i=1

{

1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ℓi

[

1−

(

1+
β θ t

β +αθ

)

e−θt −
θ 2e−(θ+ν)t

(β +αθ )2(β +αν)ν3

{

(−1+ eνt)α3θν3 +αβ 2ν [−θ (−1+νt)(2+νt)−

ν(3+ 2νt− 3eνt)+θ (−2+ 3νt)eνt
]

+

α2β ν2
[

−ν − 2θ (1+νt)+ (ν+θ (2+νt))eνt
]

+

β 3
[

−ν(3− 3eνt +(3+νt)νt)+θ (8+(5+νt)νt+

(−8+ 3νt)eνt
)]}]ℓi

}

. (20)

The MTTF to the improved system by IDM is derived by

mI
ℓ =

∫ ∞

0
SI
ℓ(t)dt. (21)

The integration in (21), can be calculated numerically by
using some numerical techniques.

4 The γ-Fractiles

The performance of the systems reliability can be
compared by using the γ-fractiles measure. The
γ-fractiles of the SPS, F (γ), can be found as a solution
F = F (γ) of the following equation:

S

(

F (γ)

Θ

)

= γ, (22)
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where Θ = Mθ , M = ∑n
i=1 mi.

Substituting from (5) into (22), F = F (γ) satisfies the
following non-linear equation

n

∑
i=1

ln

{

1−

[

1−

(

1+
β θF

(αθ +β )Θ

)

e−
θ
Θ F

]mi
}

− ln(γ) = 0. (23)

For the duplication methods, the γ-fractiles, FD
ℓ (γ), are

the solution of the equation,

SD
ℓ

(

F (γ)

Θ

)

= γ, D = H, I, and C. (24)

From equations (12) and (24), F =FH
ℓ (γ) can be derived

as a solution of

n

∑
i=1

ln

{

1−

[

1−

(

1+
β θF

(αθ +β )Θ

)

e−
θ
Θ F

]mi+ℓi

}

− ln(γ) = 0. (25)

For D =C, and from equations (16) and (24), F =FC
ℓ (γ)

is the solution of

n

∑
i=

ln

{

1−
[

1−
(

1+
β θF

(β +αθ )Θ
+

θ 2F

6Θ 3(β +αθ )2
×

[

6α(β +αθ )Θ 2 + 3β (β + 2αθ )ΘF +θβ 2
F

2
]

)

e−
θ
Θ F

]ℓi

[

1−

(

1+
β θF

(αθ +β )Θ

)

e−
θ
Θ F

]mi−ℓi

}

− ln(γ) = 0. (26)

Substituting from (20) into (24), F = F I
ℓ (γ) is obtained

by solving the following equation.

n

∑
i=1

ln

{

1−

[

1−

(

1+
β θF

Θ(αθ +β )

)

e−
θ
Θ F

]mi−ℓi

×

[

1−

(

1+
β θF

Θ(β +αθ )

)

e−
θ
Θ F −

θ 2e−
(θ+ν)

Θ F

(β +αθ )2(β +αν)ν3

{

(−1+ e
ν
Θ F )α3θν3 +αβ 2ν

[

−θ (−1+
ν

Θ
F )(2+

ν

Θ
F )

−ν(3+
2ν

Θ
F − 3e

ν
Θ F )+θ (−2+

3ν

Θ
F )e

ν
Θ F

]

+

α2β ν2
[

−ν − 2θ (1+
ν

Θ
F )+

(

ν +θ (2+
ν

Θ
F )

)

e
ν
Θ F

]

+

β 3
[

−ν
(

3− 3e
ν
Θ F +(3+

ν

Θ
F )

ν

Θ
F

)

+

θ

(

8+(5+
ν

Θ
F )

ν

Θ
F +(−8+

3ν

Θ
F )e

ν
Θ F

)

]}]ℓi

}

− ln(γ) = 0. (27)

The equations (23), (25) – (27) can be solved numerically
by some numerical technique.

5 The REFs

The REFs are derived in this section. The REFs of TPLD
are a function of time t. The λ (t) is reduced by the factor
r(t). For convenience of calculation, the scale parameter,
θ is reduced to ρθ only. That is

r(t)λ (t) =
ρ2θ 2(α +β t)

β +ρθ (α +β t)
. (28)

In this section, we will deduce two types of REFs of the
SPS: (i) the survival reliability equivalence factor (SREF),
(ii) mean reliability equivalence factor (MREF) as follows.

5.1 The SREF

The SREF, ρD
r,ℓ(γ), is obtained by equating the survival

function of the improved system that is obtained by
reduction method with duplication method at the level γ .
ρD

r,ℓ(γ), can be obtained by solving the following system:

Sr,ρ(t) = γ, SD
ℓ (t) = γ, γ ∈ (0,1). (29)

1.Using equation (29) together with equations (9) and
(12), the HREF, ρ = ρH

r,ℓ(γ), can be derived by solving

the following system

n

∑
i=1

ln

{

1−

[

1−

(

1+
β ρθ t

αρθ +β

)

e−ρθt

]ri

×

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ri

}

− ln(γ) = 0

n

∑
i=1

ln

{

1−

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi+ℓi

}

− ln(γ) = 0























































(30)
2.The cold REF, ρ = ρC

r,ℓ(γ), can be obtained by

substituting from (9) and (16) into (29), and solve the
following system with respect to ρ .

n

∑
i=1

ln

{

1−

[

1−

(

1+
β ρθ t

αρθ +β

)

e−ρθt

]ri

×

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ri

}

− ln(γ) = 0

n

∑
i=1

ln

{

1−
[

1−
(

1+
β θ t

β +αθ
+

θ 2t

6(β +αθ )2
×

[6α(β +αθ )+ 3β (β + 2αθ )t +θβ 2t2]
)

e−θt
]ℓi

×

[

1−

(

1+
β θ t

αθ +β

)

e−θt

]mi−ℓi

}

− ln(γ) = 0



















































































(31)

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 5, 915-925 (2023) / www.naturalspublishing.com/Journals.asp 919

3.Using (9) and (20) together with (29), the imperfect
REF, ρ = ρ I

r,ℓ(γ), satisfies the following system

n

∑
i=1

ln

{

1−

[

1−

(

1+
β ρθ t

αρθ +β

)

e−ρθt

]ri

×

[

1−
(

1+
β θ t

αθ +β

)

e−θt

]mi−ri

}

− ln(γ) = 0

n

∑
i=1

ln

{

1−
[

1−

(

1+
β θ t

αθ +β

)

e−θt
]mi−ℓi

×

[

1−

(

1+
β θ t

β +αθ

)

e−θt −
θ 2e−(θ+ν)t

(β +αθ )2(β +αν)ν3
×

{

(−1+ eνt)α3θν3 +αβ 2ν
[

−θ (−1+νt)(2+νt)−

ν(3+ 2νt − 3eνt)+θ (−2+ 3νt)eνt
]

+

α2β ν2
[

−ν − 2θ (1+νt)+ (ν+θ (2+νt))eνt
]

+β 3
[

−ν(3− 3eνt +(3+νt)νt)+θ (8+(5+νt)νt

+(−8+ 3νt)eνt)
]}]ℓi

}

− ln(γ) = 0







































































































































.

(32)

By using some numerical techniques ρ = ρD
r,ℓ(γ) can be

obtained from the systems (30)-(32).

5.2 The MREF

The MREF, ξ D
r,ℓ, can be derived by equating the MTTF of

the improved system that obtained by improving the
system according to RM with the duplication method.
The ξ = ξ D

r,ℓ is the solution of the following equation:

mr,ξ = mD
ℓ . (33)

By substituting from (10), (13), (17) and (21) into (33), the
ξ = ξ D

r,ℓ can be obtained for D = H,C and I, respectively.

6 Numerical Results

Consider the following assumptions:

1.Let n = 2, and m1 = 1,m2 = 2, so M = ∑n
i=1 mi = 3.

The SPS has the following structure (Radar system),
see Figure 2.

2.The lifetime of the components is TPLD, with α =
0.1,β = 0.2,θ = 0.7 and ν = 0.3.

3.The system will be improved by improving ℓ

components according to HDM, CDM and IDM.
4.In the reduction method, r1 components from

subsystem 1, and r2 components from subsystem 2
are improved by reducing their failure rates by the
factor ρ .

Fig. 2: The radar system.

Therefore, the MTTF of the system is 1.83258. The values
of mD

ℓ for D = H, I and C are displayed is Table 1.

Table 1: The values of mD
ℓ for D = H, I,C and ℓ= (ℓ1, ℓ2).

(ℓ1, ℓ2) mH
ℓ mI

ℓ mC
ℓ

(1,0) 2.40608 2.68710 2.80534

(0,1) 2.01286 2.12252 2.17095

(1,1) 2.68941 3.31509 3.66955

(0,2) 2.11590 2.25021 2.30204

(1,2) 2.85903 3.63069 4.07473

Figure 3–5 displays the comparison among original and
improved systems for each ℓ= (ℓ1, ℓ2).

Fig. 3: The S(t), SD
ℓ (t), when ℓ= 1.
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Fig. 4: The S(t), SD
ℓ (t), for ℓ= 2.

Fig. 5: The S(t), SD
ℓ (t), for ℓ= 3.

Figures 6-8 compare the SF of the original system with
each improved system separately for different values of
ℓ= (ℓ1, ℓ2).

Fig. 6: The S(t), SH
ℓ (t), for different values of ℓ= (ℓ1, ℓ2).

Fig. 7: The S(t), SI
ℓ(t), for different values of ℓ= (ℓ1, ℓ2).

Fig. 8: The S(t), SC
ℓ (t), for different values of ℓ= (ℓ1, ℓ2).

The Mathematica Program System are used to calculate
the values of γ-fractiles, F (γ), FD

ℓ (γ) and REFs, ρD
r,ℓ(γ),

D = H, I and C. The γ is chosen to be 0.1,0.2, · · · ,0.9.
Tables 2 and 3 introduce the values of F (γ), FD

ℓ (γ), D =
H, I,C for different values of ℓ= (ℓ1, ℓ2).
From Figures 3-8 and Tables 2 - 3, we can conclude that:
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Table 2: The values of F (γ), F D
ℓ (γ), D = H, I,C for (ℓ1, ℓ2) = {(1,0),(0,1),(1,1)}.

ℓ= (1,0) ℓ= (0,1) ℓ= (1,1)
γ F F H F I FC F H F I FC F H F I FC

0.1 7.4287 8.7029 9.7042 10.1684 8.0779 8.6552 8.9287 9.4107 11.4680 12.7342

0.2 5.8481 7.1274 7.9652 8.3297 6.4411 6.8596 7.0395 7.8202 9.5974 10.6384

0.3 4.8298 6.1074 6.8328 7.1346 5.3650 5.6753 5.7987 6.7824 8.3632 9.2583

0.4 4.0374 5.3090 5.9432 6.1973 4.5106 4.7359 4.8192 5.9633 7.3816 8.1626

0.5 3.3600 4.6213 5.1749 5.3892 3.7649 3.9202 3.9734 5.2513 6.5230 7.2059

0.6 2.7431 3.9882 4.4662 4.6452 3.0719 3.1692 3.2001 4.5888 5.7197 6.3126

0.7 2.1502 3.3695 3.7727 3.9187 2.3941 2.4455 2.4606 3.9329 4.9201 5.4252

0.8 1.5468 2.7202 3.0444 3.1575 1.6976 1.7171 1.7224 3.2327 4.0615 4.4744

0.9 0.8808 1.9495 2.1798 2.2568 0.9383 0.9415 0.9423 2.3795 3.0074 3.3103

Table 3: The values of F (γ), F D
ℓ (γ), D = H, I,C for (ℓ1, ℓ2) = {(0,2),(1,2)}.

ℓ= (0,2) ℓ= (1,2)
γ F F H F I FC F H F I FC

0.1 7.4287 8.5173 9.3072 9.6381 9.8948 12.4055 13.9527

0.2 5.8481 6.8276 7.3722 7.5702 8.2839 10.4793 11.7804

0.3 4.8298 5.6969 6.0712 6.1904 7.2239 9.1912 10.3262

0.4 4.0374 4.7844 5.0280 5.0959 6.3799 8.1535 9.1543

0.5 3.3600 3.9769 4.1206 4.1555 5.6392 7.2337 8.1153

0.6 2.7431 3.2200 3.2922 3.3075 4.94276 6.3609 7.1296

0.7 2.1502 2.4807 2.5086 2.5138 4.2443 5.4785 6.1334

0.8 1.5468 1.7338 1.7404 1.7416 3.4879 4.5146 5.0462

0.9 0.8808 0.9449 0.9453 0.9455 2.5523 3.3112 3.6913

1.S(t)< SH
ℓ (t)< SI

ℓ(t)< SC
ℓ (t), in all studied cases.

2.m < mH
ℓ < mI

ℓ < mC
ℓ , in all studied cases.

3.F (γ) < FH
ℓ (γ) < F I

ℓ (γ) < FC
ℓ (γ), in all studied

cases.
4.Improving one component from the subsystem 1,
ℓ1 = 1, produces a better design than improving one
component from the subsystem 2, ℓ2 = 1, according to
the same method.

5.Improving two components, one from each subsystem,
ℓ = (1,1), gives a better design than improving two
components from the subsystem 2, ℓ= (0,2).

6.Improving all system components, ℓ= (1,2), gives the
best design.

7.CDM gives the best improvement than other
duplication methods.

Tables 4 and 5 contain the values of the SREF for different
values of r, ℓ.

According to the results presented in Tables 4 and 5:

1.Improving one component, ℓ1 = 1, by HDM, the
F (0.1) will be increased from 7.4287

Θ to 8.7029
Θ , see

Table 2. The same effect can be obtained by reducing
the failure rates of (i) one component, r1 = 1, by
ρH = 0.73987, (ii) one component, r2 = 1, by
ρH = 0.53439, (iii) two components, r1 = r2 = 1, by
ρH = 0.82909, (iv) two components, r2 = 2, by
ρH = 0.69363, (v) three components, r1 = 1,r2 = 2,
by ρH = 0.86449, see Table 4.

2.Improving one component, ℓ1 = 1, by IDM, the
F (0.1) will be increased from 7.4287

Θ to 9.7042
Θ , see

Table 2. The same effect can be occurred by reducing
the failure rates of (i) one component, r1 = 1, by
ρ I = 0.57072, (ii) one component, r2 = 1, by
ρ I = 0.30209, (iii) two components, r1 = r2 = 1, by
ρ I = 0.73059, (iv) two components, r2 = 2, by
ρ I = 0.47560, (v) three components, r1 = 1,r2 = 2,
by ρ I = 0.78154, see Table 4.

3.Improving one component, ℓ1 = 1, by using CDM,
the F (0.1) can be increased from 7.4287

Θ to 10.1684
Θ ,

see Table 2. The same effect can be obtained by
reducing the failure rates of (i) one component,
r1 = 1, by ρC = 0.49970, (ii) one component, r2 = 1,
by ρC = 0.20430, (iii) two components, r1 = r2 = 1,
by ρC = 0.69257, (iv) two components, r2 = 2, by
ρC = 0.18714, (v) three components, r1 = 1,r2 = 2,
by ρC = 0.74831, see Table 4.

4.The rest of the results in Tables 4 and 5 can be
interpreted in the same way.

5.The symbol – means that there is no equivalence
between the two optimized systems: the one obtained
by reducing the failure rates of r components and the
one obtained by optimizing the ℓ components
according to duplication methods.

Table 6 displays the values of MREF for different value of
r, ℓ ∈ {(1,0),(0,1),(1,1),(0,2),(1,2)}.

From Table 6, one can conclude that:
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Table 4: The values of, ρD
r,ℓ(γ), D = H, I,C for different values of r and ℓ ∈ {(1,0),(0,1),(1,1)}.

ℓ= (1,0) ℓ= (0,1) ℓ= (1,1)
γ (r1,r2) ρH ρ I ρC ρH ρ I ρC ρH ρ I ρC

0.1 (1,0) 0.73987 0.57072 0.49970 0.85990 0.74859 0.69949 0.61780 0.31670 0.09668

(0,1) 0.53439 0.30209 0.20430 0.72316 0.54715 0.47670 0.36509 – –

(1,1) 0.82909 0.73059 0.69257 0.90521 0.83445 0.80461 0.75691 0.60516 0.53984

(0,2) 0.69363 0.47560 0.18714 0.83686 0.70421 0.64403 0.53972 0.08000 0.01599

(1,2) 0.86449 0.78154 0.74831 0.92597 0.86889 0.84426 0.80413 0.66882 0.60620

0.2 (1,0) 0.69419 0.53012 0.46452 0.84783 0.74170 0.61275 0.55705 0.24912 –

(0,1) 0.40532 0.12170 0.19223 0.67012 0.49981 0.43544 0.17707 – –

(1,1) 0.79601 0.70093 0.66620 0.89452 0.78319 0.70346 0.71575 0.56843 0.50773

(0,2) 0.59177 0.37985 0.00445 0.80407 0.67421 0.61894 0.35182 0.01100 0.00092

(1,2) 0.83621 0.75555 0.72518 0.91662 0.86582 0.83457 0.76836 0.63641 0.57841

0.3 (1,0) 0.65730 0.49902 0.43774 0.84662 0.63421 0.57311 0.50948 0.19337 –

(0,1) 0.25944 0.07391 0.05570 0.62574 0.46224 0.40289 – – –

(1,1) 0.76804 0.67678 0.64470 0.88885 0.73432 0.68143 0.68245 0.54010 0.48308

(0,2) 0.45754 0.23817 0.00078 0.77590 0.64934 0.59780 0.10822 0.00911 NA

(1,2) 0.81143 0.73341 0.70526 0.91106 0.76653 0.76500 0.73834 0.61019 0.55578

0.4 (1,0) 0.62317 0.47128 0.41392 0.84441 0.57752 0.53787 0.46669 0.13694 –

(0,1) 0.16358 0.00632 0.00477 0.58322 0.42761 0.37301 – – –

(1,1) 0.74100 0.65395 0.62430 0.88654 0.64044 0.52449 0.65151 0.51463 0.46099

(0,2) 0.30128 0.20225 – 0.74818 0.63752 0.57725 0.00226 0.00217 –

(1,2) 0.78667 0.61158 0.60854 0.87993 0.68700 0.68568 0.70944 0.58552 0.53435

0.5 (1,0) 0.58916 0.44441 0.39091 – 0.49823 0.47809 0.42524 0.06213 –

(0,1) – – – 0.53932 0.39302 0.34328 – – –

(1,1) 0.71281 0.63047 0.60321 0.87533 0.58503 0.48382 0.62049 0.48973 0.43944

(0,2) 0.23750 0.17307 – 0.71866 0.59525 0.55562 0.00101 – –

(1,2) 0.69643 0.58822 0.56640 0.70739 0.57644 0.58630 0.67939 0.56029 0.45685

0.6 (1,0) 0.55323 0.41670 0.36723 – 0.42459 0.38130 0.38278 0.00599 –

(0,1) – – – 0.43223 0.35632 0.21573 – – –

(1,1) 0.68155 0.60463 0.57984 0.82540 0.46474 0.39794 0.58744 0.46376 0.41700

(0,2) 0.10058 0.09833 – 0.68511 0.52643 0.34646 – – –

(1,2) 0.48601 0.46146 0.43929 0.65717 0.48864 0.45792 0.53058 0.52368 0.38801

0.7 (1,0) 0.51284 0.38622 0.24475 – 0.38574 0.24937 0.33677 – –

(0,1) – – – 0.39283 0.31504 0.20766 – – –

(1,1) 0.64442 0.57402 0.55193 0.80306 0.38848 0.35605 0.54985 0.43480 0.39200

(0,2) 0.01476 – – 0.64418 0.43715 0.33505 – – –

(1,2) 0.37877 0.36284 0.29276 0.55684 0.39011 0.37658 0.49063 0.49002 0.29459

0.8 (1,0) 0.46342 0.34967 0.14628 – 0.29744 0.15536 0.28312 – –

(0,1) – – – 0.28110 0.22458 0.15323 – – –

(1,1) 0.59591 0.53391 0.47723 0.72166 0.25607 0.15511 0.50309 0.39937 0.36139

(0,2) – – – 0.48864 0.37015 0.25196 – – –

(1,2) 0.19333 0.18334 0.10333 0.46100 0.22940 0.20328 0.43539 0.41583 0.27422

0.9 (1,0) 0.39230 0.29798 0.11945 – 0.14521 0.09628 0.21153 – –

(0,1) – – – – – – – – –

(1,1) 0.51986 0.47023 0.33435 0.67153 0.19662 0.09714 0.43391 0.34767 0.31662

(0,2) – – – 0.29524 0.10914 0.09402 – – –

(1,2) 0.09833 0.08952 0.00445 0.37363 0.19687 0.14685 0.36440 0.29352 0.19685

1.Improving one component, ℓ1 = 1, by HDM, has the
same MTTF of the system which can be obtained by
reducing the failure rate of (i) one component, r1 =
1, by ξ H = 0.62457, (ii) one component, r2 = 1, by
ξ H = 0.16540, (iii) two components, r1 = r2 = 1, by
ξ H = 0.32308, (iv) two components, r2 = 2, by ξ H =
0.32308, (v) three components, r1 = 1,r2 = 2, by ξ H =
0.78642, see Table 6.

2.Improving one component, ℓ1 = 1, by IDM, has the
same MTTF of the system which can be obtained by
reducing the failure rate of (i) one component, r1 = 1,
by ξ I = 0.47935, (ii) two components, r1 = r2 = 1, by
ξ I = 0.65853, (iii) Three components, r1 = 1,r2 = 2,
by ξ I = 0.71251, see Table 6.

3.Improving one component, ℓ1 = 1, by CDM, has the
same MTTF of the system which can be obtained by
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Table 5: The values of, ρD
r,ℓ(γ), D = H, I,C for different values of r and ℓ ∈ {(0,2),(1,2)}.

ℓ= (0,2) ℓ= (1,2)
γ (r1,r2) ρH ρ I ρC ρH ρ I ρC

0.1 (1,0) 0.77418 0.63487 0.58116 0.54108 0.18792 –

(0,1) 0.58533 0.38803 0.31608 0.26207 – –

(1,1) 0.85034 0.76667 0.73635 0.71447 0.55530 0.48984

(0,2) 0.73509 0.56210 0.49019 0.20440 0.11665 NA

(1,2) 0.88186 0.81243 0.78652 0.76754 0.62129 0.55616

0.2 (1,0) 0.75876 0.62802 0.46048 0.47261 0.07046 –

(0,1) 0.51170 0.32450 0.26066 – – –

(1,1) 0.83637 0.76572 0.72482 0.67037 0.51612 0.45505

(0,2) 0.68403 0.51437 0.44792 0.09240 0.02752 –

(1,2) 0.79496 0.81088 0.69151 0.72886 0.58658 0.52593

0.3 (1,0) 0.75651 0.57357 0.43819 0.41996 – –

(0,1) 0.45167 0.27639 0.21975 – – –

(1,1) 0.83075 0.67322 0.66156 0.63577 0.48693 0.42936

(0,2) 0.31660 0.24391 0.21373 0.01979 0.00193 –

(1,2) 0.76359 0.78158 0.58017 0.69735 0.55952 0.50243

0.4 (1,0) – 0.49633 0.36783 0.37337 – –

(0,1) 0.39572 0.23445 0.18495 – – –

(1,1) 0.83108 0.58686 0.57531 0.60453 0.46155 0.40721

(0,2) 0.30833 0.23131 0.21746 0.01690 – –

(1,2) 0.62276 0.62539 0.51569 0.66782 0.53490 0.48109

0.5 (1,0) – 0.37345 0.22378 0.32903 – –

(0,1) 0.33999 0.19548 0.15337 – – –

(1,1) 0.76730 0.50633 0.49911 0.57409 0.43761 0.38648

(0,2) 0.23437 0.17560 0.14601 0.00289 – –

(1,2) 0.56565 0.53953 0.48334 0.63792 0.51052 0.45997

0.6 (1,0) – 0.28478 0.17381 0.28451 – –

(0,1) 0.20738 0.15796 0.12361 – – –

(1,1) 0.63432 0.48317 0.38278 0.76730 0.41360 0.36586

(0,2) 0.13347 0.13196 0.12393 0.00144 – –

(1,2) 0.47403 0.45843 0.28946 0.61148 0.48471 0.43761

0.7 (1,0) – – – 0.23751 – –

(0,1) 0.18595 0.10975 0.08772 – – –

(1,1) 0.58591 0.36337 0.28617 0.72314 0.38794 0.34402

(0,2) 0.04297 0.09833 0.07259 – – –

(1,2) 0.35146 0.38257 0.19371 0.57009 0.45538 0.41219

0.8 (1,0) – – – 0.18478 – –

(0,1) 0.16538 0.07914 0.06306 – – –

(1,1) 0.43023 0.25511 0.19010 0.66695 0.35805 0.31884

(0,2) – – – – – –

(1,2) 0.29524 0.29128 0.15032 0.47143 0.41869 0.38033

0.9 (1,0) – – – 0.11947 – –

(0,1) – – – – – –

(1,1) 0.31848 0.16815 0.09467 0.58300 0.31654 0.28424

(0,2) – – – – – –

(1,2) 0.19707 0.15065 0.09705 0.36248 0.36368 0.33235

reducing the failure rate of (i) one component, r1 = 1,
by ξC = 0.42250, (ii) two components, r1 = r2 = 1, by
ξC = 0.62863, (iii) three components, r1 = 1,r2 = 2,
by ξC = 0.68550, see Table 6.

4.The rest results in Table 6, can be explained in the same
manner.

7 Conclusion

The performance of SPS based on TPLD was improved.
The lifetime of the components assumed to be
independently and identically TPLD. Four methods were
used to improve the performance of the system, RM,
HDM, CDM and IDM. The survival function and mean
time to failure for each method was derived. Two
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Table 6: The values of ξ D
r,ℓ for D = H, I,C, r = (r1,r2) and ℓ= (ℓ1, ℓ2).

ℓ= (1,0) ℓ= (0,1) ℓ= (1,1)
(r1,r2) H I C H I C H I C

(1,0) 0.62457 0.47935 0.42250 0.86619 0.79286 0.76211 0.47825 0.18134 –

(0,1) 0.16540 – – 0.65761 0.50309 0.44202 – – –

(1,1) 0.74248 0.65853 0.62863 0.90241 0.85149 0.83073 0.65794 0.52586 0.47245

(0,2) 0.32308 – – 0.79331 0.67238 0.61883 – – –

(1,2) 0.78642 0.71251 0.68550 0.92097 0.87890 0.86155 0.71197 0.58951 0.53740

ℓ= (0,2) ℓ= (1,2)
(r1,r2) H I C H I C

(1,0) 0.79714 0.71371 0.68324 0.39721 – –

(0,1) 0.51171 0.34795 0.28853 – – –

(1,1) 0.85441 0.79879 0.77916 0.61593 0.47775 0.42357

(0,2) 0.67966 0.52908 0.46728 – – –

(1,2) 0.88132 0.83463 0.81794 0.67392 0.54265 0.48821

reliability equivalence factors, (SREF, MREF) and
γ-fractiles were established. To interpret the theoretical
results obtained in this work numerical example was
introduced. Cold duplication method gives the best
improvement than other methods.
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