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Abstract: In this paper, we proposed an optimal control of the COVID-19 transmission dynamics. First, we investigated system

features such as solution boundedness, positivity, disease-free and endemic equilibrium, and the local and global stability of equilibrium

points. Besides, a disease-free equilibrium point is globally asymptotically stable if the basic reproduction number is less than one, and

an endemic equilibrium point exists otherwise. Secondly, we have shown the sensitivity analysis of the basic reproduction number.

Also the model is then fitted using COVID-19 infected reported in Ethiopia from February 1,2023 to March 2,2023. The values of
model parameters are then estimated from the data reported using the least square method together with the the MATLAB software.

Moreover, the optimal corruption minimization strategies are determined using three controls strategies, namely prevention, vaccination

and treatment. The existence of the optimal controls and characterization is established using Pontryagin’s Maximum Principle. Finally,

based on analysis of optimality system, the combination of the prevention and treatment of infected is the most optimal and least cost

strategy to minimize the burden of the disease.
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1 Introduction

The COVID-19 is a new corona virus which leads to
corona virus infection. It was found as a result of a
respiratory disease epidemic in Wuhan City, Hubei, China
[1]. The report was originally submitted to the WHO on
December 31, 2019. On January 30, 2020, the WHO
declared the epidemic a worldwide health hazard [2].
According to the most recent research, COVID-19
spreads between people by close contact with infected
people, dirty surfaces, or direct touch [3]. These are
discharged from an infected person’s mouth or nose when
they talk, cough, or sing [4]. The virus also spread to
numerous African countries. Up to August 26, 2020,
confirmed cases in Africa totaled 22,313, with 1,124
fatalities and 5,492 recoveries. Also the first case report
of COVID-19 in Ethiopia was on March 13,2020, then on
April 16,2020, the Ethiopian Public Health Institute
reported a total of 92 confirmed cases, 3 deaths and 2
recovers [5]. Now up to January 19,2023 confirmed cases
are 499,254 and 7,571 are deaths [6].

Several researchers investigated the transmission

dynamics of COVID-19 using a mathematical model. For
instance Gurmu et al. [7] formulate mathematical model
of COVID-19 dynamics. The authors results suggest that
reducing the contact rate between the infected individual
and the susceptible individual is the best one to combat
COVID-19 infection. Bugalia et al. [8] proposed a
COVID-19 dynamics using mathematical model in
Indian. Their studies show that if there is a partial or no
closure instance, the endemic level will be quite high and
India might face more than six million illnesses if
precautions are not followed. The study [9] presented a
the SEIAHR model for transmission dynamics of
COVID-19. The authors had not taken into account
vaccinated groups in their model. Abriham et al. [10]
proposed SEQIHR compartmental model. The authors
concluded that increasing isolation and quarantine rates
will control COVID-19 disease. The author [11] proposed
mathematical model for COVID-19 dynamics. The model
has two equilibrium points: the disease free and the
endemic equilibrium point. The result of stability analysis
of the DFE equilibrium is locally asymptotically stable
whenever R0 < 1 and endemic equilibrium point is
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globally asymptotically whenever R0 > 1. The authors
conclude that it is better to minimise contact between the
exposed individual and the susceptible individual. The
study [12] proposed mathematical modelling and analysis
of a SEIQR model to study the dynamics of COVID-19.
The study is conclude this demonstrates that
asymptomatic cases caused by an exposed population
play an important role in increasing COVID-19 infection
among the population. The author [13] proposed a model
based on is an evaluation that is used to explain the
dynamics of corona virus infection with early
interventions. The concluded that the problem can be
solved by either providing more space, equipment, and
personnel or reducing the burden on health care
organisations to accept more corona virus and other
patients.

A number of scholars studied about optimal control of
COVID-19 dynamics with cost effectiveness analysis. For
instances Molla et al. [14] formulated and studied a new
optimal control dynamical model for the 2019 coron
avirus disease. The numerical illustrations of the various
control strategies revealed that the third strategy, which
encompasses all four time-dependent control functions,
produces the most efficient results. Kouidere et al.[15]
proposed an optimal control of mathematical modelling
of COVID-19 pandemic propagate, with a concentrate on
the adverse effect of quarantine on diabetics. The authors
implemented three controls, which are sensitization and
prevention, quarantine, and a diabetic awareness program.
Duressa et.al.[16] analyzed an extension of the SEIR
model to asymptomatic and hospitalized classes. The
authors believe that the combined effects of health care
education, personal protective measures, and
hospitalisation treatment contribute to slowing the spread
of the disease. Nana-Kyere et al. [17] presented SEIRW
COVID-19 compartmental model with optimal control.
The authors, investigated a mathematical model of
COVID-19 dynamics with three-time dependent control
measures. They conclude that a combination of personal
protection, drug treatment, and disinfectant spraying
should be considered in order to drastically decrease the
number of exposed and infected people in the population.
The study [18] proposed the current global issue of coron
avirus pandemic containment as an optimal control
problem. The researchers concluded that these control
and prevention efforts should be kept perpetually and
gradually relaxed as new cases of the disease become rare
and the overall incidence declines. Asamoah et al.[19]
proposed the COVID-19 model was used to investigate
how to control the spread of the corona virus in Saudi
Arabia by employing four control indicators: personal
hygiene, adequate security precautions, following proper
protocol, and fumigating schools. The author concludes
that, in the absence of vaccination, implementing physical
or social distance protocols is the most efficient and
affordable control intervention. Lemecha Obsu & Feyissa
Balcha [20] proposed three control measures to study the

possibility of transmission of COVID-19 with the best
possible control the burden of the disease. The authors
conclude that medical care and intensive prevention are
effective control measures for reducing the number of
exposed and infected populations.

To the best of our knowledge, many of them did not
mentioned optimal control strategies with cost
effectiveness analysis. In this study, the corona virus
transmission model [21] is extended to the optimal
control problem using three control measure: prevention,
vaccination and treatment with cost effective strategy.
Moreover, we used real data in Ethiopia to estimate some
parameter’s values for numerical simulation.

The remaining portion of the paper is organised as
follows. In section 2, we formulate a mathematical model
for COVID-19. In section 3, explain the analysis of of the
model. Section 4, represents the sensitivity analysis of the
parameters used in the model. In section 5, we express an
optimal control model for COVID-19 with three controls
measures. In section 6, we present a simulation of the
model to confirm the analytical results. In section 7,
discus cost-effectiveness analysis. In section 8, we
conclude by discussing the control measures and results.

2 Model Formulation and It’s Description

In this section, we considered the COVID-19
transmission model with SEIQR model represent of the
human population. The total human population at time
(t), denoted by N(t), is divided into five disjoint
compartments. Susceptible persons (S) are those who are
not affected with the disease but may be infectious.
Exposed individuals (E) are those who are in the
incubation phase of the disease and do not exhibit any
clinical symptoms. Infected individuals (I) are those who
got a sickness symptom. Regarding the diagnosed
individual, we anticipate that infected individuals will be
immediately transported to an appointed quarantine for
isolation and treatment, and that this population group
will be converted to quarantine Q. Also, individuals who
have recovered from the disease via treatment or natural
recovery, are referred to as recovered individuals (R). As
a result, total human population is given as
N(t) = S(t) + E(t) + I(t) + Q(t) + R(t). Then the
recruitment rate π of susceptible human occurs through
either the flow of people or birth. The susceptible
individuals contracted corona virus disease through β
contact with exposed or infected individuals, which
spread to the exposed compartment. Individuals who have
been exposed become infectious and join the infected
compartment in proportion α . The recovery rate without
being quarantine by the contact rate ε and σ is the
quarantine rate from the infected. The parameter γ is
recovery rate of the quarantine and die due to the corona
virus disease with a rate of δ . Those who have temporary
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immunity and have recovered from the disease. Then the
recovered individuals become again susceptible to the
disease with a rate of η . Natural death rate of all
populations denoted by µ . All parameters in the model
are positive. Figure (1) show that the flow diagram of
proposed model and the parameters are described as
below.

Fig. 1: Flow diagram of the model of COVID-19

The flow chart in Figure (1), the govern nonlinear
ordinary differential equation of the model is expressed as
follows:







dS
dt

= π −β (I+E)S+ηR− µS,

dE
dt

= β (I +E)S− (α + µ)E,

dI
dt

= αE − (σ + ε + µ + δ )I,

dQ
dt

= σ I − (γ + δ + µ)Q,

dR
dt

= εI+ γQ− (η + µ)R,

(1)

with the initial condition
S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Q(0)≥ 0, R(0)≥ 0.

3 Model Analysis

3.1 Invariant Region

In this section, we considered in which the solutions of
model (1) is bounded. Then we take into account the total
human population by N(t) = S(t)+E(t)+ I(t) +Q(t)+
R(t). After that differentiate N(t) with respect to time, we
get:

dS

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt
= π − δQ− δ I− µN. (2)

Then it implies that Eq. (2) becomes,

dN

dt
≤ π − µN. (3)

Table 1: Parameters description used for the model

Parameters Parameters Description

π Rate of recruitment into vulnerable

population

µ Natural mortality rate of human

β Individual contact rates

α Rate of exposed become infected

ε Rate of recovery without quarantine
σ Proposition of infected individuals

become quarantine

γ Rate of quarantine patients who

recovers

η The proportion of recovered individuals

who are vulnerable
δ Corona virus-related deaths are on the

rise

By solving the Eq.(3), the total population N →
π

µ
as time

tends to infinity. This shows as N ≤
π

µ
and the invariant

region of system (1) of the human population is positive
invariant is given by

Ω =

{

(S,E, I,Q,R) ∈ R5
+ : 0 < S+E + I+Q+R ≤

π

µ

}

.

(4)

3.2 Positivity of the Solutions

In this subsection, we will show that all solutions of
system with positive initial data will remain positive for
all time t ≥ 0 .

Theorem 3.1. If S(0),E(0), I(0),Q(0) and R(0) are

non-negative, then the solution S(t),E(t), I(t),Q(t) and
R(t) of Eq. (1) all are non-negative for t ≥ 0 .

Proof. Take from the first equations from model (1) is
given as

dS

dt
= π −β (I+E)S+ηR− µS. (5)

Then Eq. (5) becomes,

dS

dt
≥−β [(I+E)+ µ ]S. (6)

Integrating Eq. (6) with respect to time and using the
method of separation variable, we obtain:

S(t)≥ S(0)e−β [(I+E)+µ]t ≥ 0. (7)

It is possible to show using the same procedure for other
state variables that:

E(t)≥ E(0)e−(α+µ)t ≥ 0 , I(t)≥ I(0)e−(γ+ε+µ+δ )t ≥ 0 ,

Q(t)≥ Q(t)e−(γ+δ+µ)t ≥ 0 ,R(t)≥ R(0)e−(η+µ)t ≥ 0 .

(8)
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This shows that all solutions of Eq. (1) are positive for
all t≥0. Therefore, the proposed COVID-19 transmission
model stated in Eq. (1) is both ecologically significant and
numerically well posed in an attainable region Ω .

3.3 Disease Free Equilibrium(DFE)

The disease free equilibrium points Eq. (1) is where there
is no COVID-19 infection in the community. It was
computed by equating all Eq. (1) to zero and denoted by
E0 as given as

E0 =

(
π

µ
,0,0,0,0

)

. (9)

3.4 Basic reproduction number

The basic reproduction number is denoted by ℜ0 and is
referred to as the predicted amount of people getting
another infection among the entire population at risk [22,
23]. Here, we used the next generation matrix method.
Then, we start with newly infective classes and rewrite
the model equations as:

dE

dt
= β (I+E)S− (α + µ)E,

dI

dt
= αE − (σ + ε + µ + δ )I, (10)

dQ

dt
= σ I− (γ + δ + µ)Q .

Then, the right hand side of Eq. (10) can be written in the
form f − v, where

f =





β (I +E)S
αE

σ I



 and v =





(α + µ)E
(σ + ε + µ + δ )I
(γ + δ + µ)Q





(11)
Computing the partial derivatives of f and v at the DFE
gives F and V respectively, where

F =





β π
µ

β π
µ 0

0 0 0
0 0 0



 and

V =





(α + µ) 0 0
−α (σ + ε + δ + µ) 0
0 −σ (γ + δ + µ)



 .

(12)

Then the product of f v−1 is obtain as:

f v−1 =





β π(σ + ε + µ + δ )+β π

µ(α + µ)(σ + ε + µ + δ )

β π

µ(σ + ε + µ + δ )
0

0 0 0
0 0 0




 .

(13)

Therefore, the basic reproduction number is given us the
largest (dominant) of the eigenvalue of Eq. (13) as

R0 =
β π(σ + ε + µ + δ )+β πα

µ(α + µ)(σ + ε + µ + δ )
. (14)

3.5 Local Stability of Disease Free Equilibrium

Theorem 3.2. The DFE of the model (1) is locally
asymptotically stable if R0 < 1.

Proof. The Jacobian matrix of model (1) at disease free

equilibrium is given by

J(E0) =









−µ − βπ
µ − βπ

µ 0 η

0
βπ
µ −α −µ βπ

µ 0 0

0 α −σ − ε −µ −δ 0 0

0 0 σ −γ −δ −µ 0

0 0 ε γ −η −µ










.

(15)

From the Eq. (15), we have the last characteristic equation
as;

(−µ−λ )(−γ−δ−µ−λ )(−η−µ−λ )(λ 2+Aλ +B)= 0,
(16)

Where,

A=
β π

µ
+2µ+α +σ +ε,

(17)

B = −
βπ

µ
(σ +ε +µ +δ )−

βπα

µ
+(α +µ)(σ +ε +µ +δ ).

From the of Eq. (16) we will get that

λ1 =−µ < 0, λ2 =−(η +µ)< 0, λ3 =−(γ +η +µ)< 0

(18)

and again, from the last characteristic Eq. (16) we get,

λ 2 +Aλ +B = 0. (19)

By using the Routh-Hurwitz criteria [24] from the Eq.
(19) has a real root that is negative if A > 0 and B > 0
and AB > 0. Hence, we can observe that A > 0, since it
is the sum of non-negative parameters and the value of B

is given as

B = (α + µ)(σ + ε + µ)(1−R0).

However, when B is non-negative 1 − R0 could be
positive, which implies that R0 < 1. Therefore, the
disease-free equilibrium is locally asymptotically stable if
R0 < 1.
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3.6 Global stability of Disease free Equilibrium

Theorem 3.3. The DFE of the model (1) is globally
asymptotically stable if R0 < 1.

Proof. Let us prove the globally stability of the

equilibrium point we construct the Lyapunov function as

V = (σ + ε + µ)E +(α + µ)I. (20)

Then differentiating Eq. (20) with respect to t it gives

dV

dt
= (σ + ε + µ)

dE

dt
+(α + µ)

dI

dt
. (21)

Then depending above the Eq. (21) we substituting dE
dt

and
dI
dt

from the model (1), we get:

dV

dt
= (σ + ε + µ)(β [I+E]S− (α + µ)E)+

(α + µ)(αE − (σ + ε + µ)I.
(22)

When we solving Eq. (22) to obtain

dV

dt
= (β )(σ + ε + µ)S− (α + µ)(σ + ε + µ)(E + I).

(23)
Then we calculate in simplifying form of the Eq. (22) with
Eq. (23) to obtain

dV

dt
= (α + µ)(σ + ε + µ)[R0 − 1](E + I). (24)

Hence, from the Eq. (24), we seen that the dV
dt

= 0 if
E = 0 = I and R0 this means that the highest invariant set
in

{
(S,E, I,Q,R) ∈ R5

+

}
is the singleton DFE, E0 and by

Lasalle’s invariance principle [25,26,27,28], E0 is
globally asymptotically stable in R5

+.

3.7 The Endemic Equilibrium point

An endemic equilibrium point shows that the disease is
going to keep impacting the population in a stable state. It
is obtained by putting the left side in (1) equal to zero. Let
they are represented by (S∗,E∗, I∗,Q∗,R∗) at the
endemic’s steady state, respectively as:







S∗ = µ(α+µ)(σ+ε+µ)
β [α+(σ+ε+µ)] ,

E∗ = µ(α+µ)(η+µ)(σ+ε+µ)2(γ+δ+µ)
β k

(R0 − 1),

I∗ = αµ(α+µ)(η+µ)(σ+ε+µ)(γ+δ+µ)
β k

(R0 − 1)),

Q∗ = αµσ(α+µ)(η+µ)(σ+ε+µ)
β k

(R0 − 1),

R∗ = αµ(α+µ)(η+µ)(σ+ε+µ)[ε(γ+δ+µ)+γσ ]
β k

(R0 − 1).

(25)

4 Sensitivity Analysis

In this section, we investigated the impact of the essential
parameters on the dynamics of COVID-19 using
sensitivity analysis. The we performed sensitivity analysis
using the definition of the standardized sensitivity index
provided in [29,30]. The normalized forward sensitivity
index of a variable, R0, that depends differentiable on a
parameter, Q, is defined as:

Π R0
Q =

∂R0

∂Q
×

Q

R0
(26)

For example, the forward sensitivity indices of R0 with
respect to parameter β .

Π R0

β
=

∂R0

∂β
×

β

R0
= 1.

Also the sensitivity indices at different values for
parameters are provided Table 2.

Table 2: Sensitivity indices of parameters

Parameters symbol Sensitivity index

π 1

α - 0.5790827

β 1

ε -0.0000246

σ - 0.063369
µ -0.00387685

δ -0.000485

γ -0.022

4.1 Interpretation of the sensitivity indices

The basic reproduction number sensitivity indices have
been explained ℜ0 in relation to the parameters in Table
(2). The results showed that the parameters with a
positive sensitivity index raised more as their values risen,
while the remaining parameters remained constant.
Furthermore, if the values of the parameters with negative
measurements are increased while the amounts of the
other parameters remain constant, the value of ℜ0

decreases. If the values of the basic parameters with
negative sensitivity indices lower while the other the
parameters remain constant, the COVID-19 disease rises.

4.2 Parameter Estimations

In studies, we fit the our model using the real data from
COVID-19 infection situations in Ethiopia and predict the
unknown parameters for the model. The daily real data of
total confirmed cases of COVID-19 infection in Ethiopia
from December 20, 2022 to January 19, 2023 extracted
from Ethiopian Minister of Health situation reports in
Table (4). Now, we formulated the system in the
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following form to solve the dynamic parameter estimation
problem [31]:

dx

dt
= f (t,x,u), x(t0) = x0, (27)

where t denotes the number of independent variables, the
system’s state vector is denoted by x, x0 is the system’s
starting condition, and u is the vector of unidentified
parameters. The error is represented by the sum of
squares error, which has the form

θ (u) =
n

∑
i=1

(xi − x̄i)
2 (28)

where xi is the real data and x̄i is the solution of ordinary
differential Eq. (27) for the given u. Our main goal is to
determine the least square estimators u in order to
minimize the errors Eq. (28) under the constraint Eq. (27)
to gain the best estimated parameters using least square
method.

Table 3: Daily confirmed case COVID -19 infectious from

February 1, 2023 to March 2, 2023

No Month Total

I(t)

cases

No Month Total

I(t)

cases

1 1 February 17 16 16 February 10

2 2 February 32 17 17 February 16

3 3 February 31 18 18 February 10

4 4 February 20 19 19 February 6

5 5 February 13 20 20 February 7

6 6 February 16 21 21 February 18

7 7 February 17 22 22 February 13

8 8 February 25 23 23 February 0

9 9 February 24 24 24 February 35

10 10 February 0 25 25 February 11

11 11 February 11 26 26 February 0

12 12 February 16 27 27 February 15

13 13 February 17 28 28 February 12

14 14 February 12 29 1 March 1

15 15 February 29 30 2 March 2

That will see in Figure (2) the model parameters of
system (1) are estimated using least-square fitting
method, which results in a better fit for the model solution
to the real data. The corresponding parameter values are
shown in Table (4).

When we estimated the basic reproduction number is
given by the expression R0 = 2.57571 > 1. The previous
of COVID-19 will cause an epidemic because R0 > 1.

Next, we will see an optimal control of COVID-19
dyanmics to identify an optimal strategy that is most
optimal to minimize the spread of COVID-19
transmission.

Fig. 2: SEIQR model fit with real data on the number of COVID-
19 cases in Ethiopia

Table 4: Parameter descriptions and taken values for model (1)

Parameters Parameter

descriptions

Values References

π Covid-19

incremental

contact rate

4995 Estimated

α Rate exposed

human become

infected

0.0022 Fitted

β Incremental

contact rate of

human

0.00012 Estimated

γ Recover rate

of hospitalized

patients

0.8693 Estimated

ε Recover rate

without being

hospitalized

0.0012 Fitted

σ Infected

individual

become
hospitalized

0.3237 Estimated

µ Human natural

death rate

0.7640 Estimated

η Recovered

individuals to

be susceptible

0.1890 Estimated

δ Death rate due

to corona virus

0.00000116 [32]
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5 Optimal control of COVID-19 dynamics

In this section, we extended the mathematical model
dynamic COVID-19 model Eq. (1) to an optimal control
problem. Using this method, we hope to identify the best
illness avoidance strategy, the COVID-19 model in Eq.
(1), after incorporating the controls into the model, the
state equations obtained is:







dS
dt

= π − (1− u1)β (I+E)S+ηR− (µ+ u2)S,
dE
dt

= (1− u1)β (I+E)S− (α + µ)E,
dI
dt
= αE − (σ + ε + µ + δ + u3)I,

dQ
dt

= σ I − (γ + δ + µ)Q,
dR
dt

= (ε + u3)I+ γQ− (η + µ)R.

(29)

As the first control (u1) represents prevention that help to
lower contact rate, (u2) denote the vaccination and (u3)
refers to the treatment of COVID-19 patients in order to
reduce disease severity. The objective functional is given
by [33]:

J(u1,u2,u3) =

min
︸︷︷︸

u1,u2,u3

∫ t f

0

(

A1E +A2I +
1

2
(B1u2

1 +B2u2
2 +B3u2

3)

)

dt

−→ min

(30)

Subject to Eq. (1) where A1,A2,B1,B2 and B3 are
positive. The weight constants B1,B2 and B3 are the
measure of relative costs of interventions associated with
the controls u1,u2 and u3, respectively, and also
balances the units of integrand. Our goal is to reduce the
number of exposed, infected, and quarantined individuals
responsible for the novel virus in the population at the
lowest possible cost. The main goal is to find a triple
optimal control u1,u2,u3 such that

J(u∗1,u
∗
2,u

∗
3) = minJ(u1,u2,u3) : u1,u2,u3 ∈U (31)

were U=(u1,u2,u3): ui(t) such that u1,u2 and u3 are
lebesgue measurable on t ∈ [0,t f ] with 0< ui(t)≤ 1 as the
control set.

5.1 Existence of the optimal controls

In this section, the limitation of system solutions for a
finite time interval is used to show the existence of
optimal controls.

Theorem 5.1. Given J(u1,u2,u3) subject to state system

Eq. (29), then there exist optimal controls
u∗ = (u∗1,u

∗
2,u

∗
3) and corresponding to the optimal

solution (S∗,E∗
, I∗,Q∗R∗) such that

J(u∗1,u
∗
2,u

∗
3) = min{J(u1,u2,u3)} : u1,u2,u3 ∈U (32)

Proof: The proof of the existence of an optimal controls
was similar with the prove in [34].

5.2 Hamiltonian System

By using the Pontryagin’s minimum principle [35,36] the
optimal control problem, which is characterised by the
Hamiltonian (H) function, consists of Eq. (29) is
represented as,

H = A1E +A2I+
1

2

3

∑
i=1

Biu
2
i +λ1

dS

dt
+λ2

dE

dt
+

λ3
dI

dt
+λ4

dQ

dt
+λ5

dR

dt
.

(33)

Substituting Eq. (29) and (30), into Eq. (33), with respect
to controls u1,u2,u3 is given by,

H = [A1E +A2I+
1

2
(B1u2

1 +B2u2
2 +B3u2

3)]

+λ1(π−(1−u1)β (I+E)S+ηR−(µ+u2)S)

+λ2((1− u1)β (I +E)S− (α + µ)E)

+λ3((αE − (σ + ε + µ + δ + u3)I) (34)

+λ4((σ I− (γ + δ + µ)Q)

+λ5((ε + u3)I+ γQ− (η + µ)R)

where λ1, λ2, λ3, λ4 and λ5 are adjoint variables.

Theorem 5.2. For an optimal controls triples such as u∗1,
u∗2, u∗3 and a solution of S∗,E∗, I∗,Q∗ and R∗ minimizers
of the corresponding state system J(u1,u2,u3) over U
subject to Eq. (1) and adjoint variables λ1, λ2, λ3, λ4 and
λ5 are found, then the adjoint system are given







dλ1
dt

= (1− u1)β (I+E)(λ1 −λ2)+λ1(µ + u2),

dλ2
dt

= (1− u1)β S(λ1 −λ2)+λ2(α + µ)−λ3α −A1,

dλ3
dt

= (1− u1)β S(λ1 −λ2)+λ3(σ + ε + u3)−

λ4σ −λ5(ε + u3)−A2,

dλ4
dt

= λ4(γ + δ + µ)−λ5γ,

dλ5
dt

=−λ1η +λ5(η + µ),
(35)

with transversality conditios,
λ1(t f ) = λ2(t f ) = λ3(t f ) = λ4(t f ) = λ5(t f ) = 0.
Furthermore, the optimal controls u∗1, u∗2, u∗3 are
represented by,

u∗1 = max

{

0,min

{

1,
(λ2 −λ1)(β (I +E)S

B1

}}

,

u∗2 = max

{

0,min

{

1,
λ1S

B2

}}

, (36)

u∗3 = max

{

0,min

{

1,
(λ3 −λ5)I

B3

}}

.
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Proof: In the form of the co-state problems, determine
the derivative of the hamiltonian function (H) of Eq. (35)
with respect to S,E, I,Q and R respectively then adjoint or
co-state equations were then achieved [37,38].







dλ1
dt

=− ∂H

∂S
= ((1− u1)β (I+E)(λ1 −λ2))+

λ1(µ + u2),

dλ2
dt

=− ∂H

∂E
=

(1− u1)β S(λ1 −λ2)+λ2(α + µ)−λ3α −A1,

dλ3
dt

=− ∂H

∂ I
= (1− u1)β S(λ1 −λ2))+

λ3(σ + ε + u3)−λ4σ −λ5(ε + u3)−A2,

dλ4
dt

=− ∂Q

∂H
= λ4(γ + δ + µ)−λ5γ,

dλ5
dt

=− ∂H

∂R
=−λ1η +λ5(η + µ),

(37)

with transversality conditios
λ1(t f ) = λ2(t f ) = λ3(t f ) = λ4(t f ) = λ5(t f ) = 0.
Then to compute the control values, we used the partial
derivatives of the Hamiltonian with respect to controls,

given by ∂H
∂ui

= 0, for i = 1,2,3 as follows:

∂H

∂u1
= 0 = B1u1 − (λ1 +λ2)β (I+ S),

∂H

∂u2
= 0 = B2u2 −λ1S, (38)

∂H

∂u3
= 0 = B3u3 −λ3I +λ5I.

Solving for optimal control from the Eq. (38) we will get

u∗1 =
(λ2 −λ1)β (I+E)S

B1
,u∗2 =

λ1S

B2
,u∗3 =

(λ3 −λ5)I

B3
.

(39)
Hence, rearranging the solution of Eq. (39) with the
boundary condition of each control, we get,

u∗1 = max

{

0,min

{

1,
(λ2 −λ1)(β (I+E)S

B1

}}

,

u∗2 = max

{

0,min

{

1,
λ1S

B2

}}

, (40)

u∗3 = max

{

0,min

{

1,
(λ3 −λ5)I

B3

}}

.

Next, we will see the simulation of the optimality system
to identify an optimal strategy that is most optimal to
minimize the spread of COVID-19 transmission.

6 Numerical Simulation

In this section, we solved an optimality system with one
system to find the best strategy. The state equations yield
five ordinary differential systems, and the adjoint
equations yield five. Using forward-backward Runge
Kutta to solve the state and adjoint systems. In solving
state equations Eq. (29) the forward fourth order
Runge-Kutta was used due to the initial value of the state
variables. Because of the transversality condition, we
used the backward fourth order Runge-Kutta method to
solve the adjoint equations holding the state equations
solution and optimal controls values. For numerical
simulation of the optimality system, the initial condition
that we used was: S(0) = 121279189, E(0) = 20, I(0) =
17,Q(0) = 16, R(0) = 10 then the parameter Table (4)
were used. We used the following weight constant values
for the state and controls:
A1 = 80,A2 = 70,B1 = 60,B2 = 80, and B3 = 60.

Besides, we proposed four strategies with varying
combinations of more than two controls at a time to
demonstrate the impact of each control on corona virus
reduction.

Strategy A: Combination of prevention (u1) and
vaccination (u2)

This strategy to optimise the objective function Eq. (30)
with personal protective control (u1) and vaccination (u2)
whereas treatment of COVID-19 patients control (u3) set
to zero. The numerical simulation result shown in Figure
3(a) when we used controls, the total population of
exposed humans decreased, but increased when no
controls were used. Figure 3(b) infected humans use
fewer controls and increase if there is no control disease,
and they tend to have the lowest value at the end of the
intervention. Figure 3(c) indicates that the use of the
personal protective u1 remained between zero and the
highest, then gradually decreases to its lower value at the
end of time whereas u2 kept its highest bound 100% after
20 days of time of strategy.

Strategy B: Combination of prevention (u1) and
treatment (u3)

In this strategy, to minimize the objective functional Eq.
(30), the combinations of two controls personal protective
(u1) and treatment of the infected (u3) are implemented,
while the control vaccination u2 is zero. From the
numerical result in Figure 5(a) the overall number of
COVID-19-exposed humans increases rapidly in the
absence of control and reduces in the presence of control.
In Figure 4(b) if there is a control, the total number of
corona virus infected humans decreases. The number of
COVID-19-infected populations is increasing in the
absence of controls. In Figure 4(c) the profile of the
control implies that use of the personal protective u1 is
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(a) (b )

(c)

Fig. 3: Figure shows numerical simulations with prevention (u1)
and vaccination (u2).

retained its high level and reduces gradually to their lower
bound, while treatment use preserved its upper bound
100% for the entire duration of the strategy.

Strategy C: Combination of vaccination (u2) and

(a) (b )

(c)

Fig. 4: Figure shows simulations with prevention (u1) and

treatment (u3)

treatment (u3).
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In this study, we used vaccination (u2) and treatment of
the COVID-19 patients control (u3) to reduce total
exposed and infected populations and save money. In
Figure 5(a) we observed that using this control strategy,
the number of exposed humans becomes smaller if there
is use of controls than without controls and declines to its
lowest value. In Figure 5(b) when used as a control, the
total number of infected humans decreases to its lowest
value and in the absence of control, the number of
infected people appears to be growing. Also, the control
profiles (u2) and (u3) are shown in Figure 5(c) were kept
their maximum level for 178 days and is gradually
increases.

Strategy D: Applying all control strategies

In this strategy, to reduce the objective function eq. (30),
we applied the three control interventions on each
compartment. In Figures 6(a) and 6(b) the total
population exposed and infected population are increased
in the absence of controls while there are decreased in the
presence of controls. At the end of 180 days, the total
number of exposed and infected humans has decreased to
its lowest value. Also, the control profile depicted in
figure 6(c) u1 show that the control profile implies that is
maintained its upper bound for (90%) for 160 days in the
entire time of strategy. The control profile u2 and u3 are at
their highest level(100%) in every days and the control u1

is increasing for 20 days, then keep maximum level
(100%) in 178 days.

7 Cost-Effectiveness Analysis

Cost-effectiveness analysis is used to identify the most
optimal and least cost-effective measure for control for
the combined and all execution of the three given control
measures in order to effectively reduce the transmission
of COVID-19. In this work, we used incremental cost
effectiveness ratio [39,40]. The formula for the ICER is
given by

Difference in averted costs between two strategies

Difference in the total number of infections averted
.

Besides, a numerical simulation of the optimal control
problem was used to calculate the total cost avoided and
total infections saved, and the control strategy was
ordered in increasing order based on the total infections
saved, as shown in Table (5). The total getting sick saved
can be calculated by subtracting the total number of
humans infected with COVID-19 with control from the
total number of humans infected with COVID-19 without
control, whereas the cost avoided by each strategy was
calculated using the cost function indicated by
1
2B1u2

1,
1
2B2u2

2 and 1
2B3u2

3 over the time [39,40,41]. The
total infection saved and total cost of all strategies with
their ICER are given in Table (5).

(a) (b )

(c)

Fig. 5: Figure shows simulations with vaccination (u2) and

treatment (u3)

The cost-effectiveness ratio (ICER) is calculated from
the total number of people saved and the total cost of used
in each of the strategies listed in the Table (5), which
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(a) (b )

(c)

Fig. 6: Simulations with prevention (u1), vaccination (u2) and

treatment (u3)

compares the differences between two strategies obtained
and provided by

Table 5: Amount of the total infections saved and total cost
averted for all strategies

Strategy Total infections averted Total cost($) ICER

C 14450 210 0.0145

A 11200 240 -0.00923

B 14210 260 0.0066

D 14480 320 0.222

ICER(C) =
210

14450
= 0.0145

ICER(A) =
240− 210

11200− 14450
=−0.00923

ICER(B) =
260− 240

14210− 11200
= 0.0066

ICER(D) =
320− 260

14480− 14210
= 0.222

With the above result the number of infections saved
with ICER for four different strategies as shown in the
Table (6).

Table 6: Amount of the total infections saved and total cost

averted for all strategies

Strategy Total infections averted Total cost($) ICER

C 14450 210 0.0145

A 11200 240 -0.00923

B 14210 260 0.0066
D 14480 320 0.222

In the above Table (6) comparing the interventions C

and A. ICER(A) is less than ICER(C) as shown in the
Table (6). It implies that the strategy C is costly and has a
low an opportunity of saving lives. As a result, A more
people are saved than C. Then, the competing strategies
have been eliminated C. Then, as shown in Table (7),
determining the ICER for remaining strategies A, B, and
D.

Table 7: Amount of the total infection averted and total cost used

with ICER

Strategies Amount of

infections

saved

Total cost ($) ICER

A 11200 240 -0.00923

B 14210 260 0.0066

D 14480 320 0.222
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The ICER(B) is more than the ICER(A) from the list
of competing intervention strategies in Table (7). It
illustrates the fact that ICER(A) strategy outperforms
ICER(B). As an out come, ICER(B) is less efficient and
more costly than ICER(A) as a result, that was cleared the
strategy B from the list of competing. The ICER was
re-calculated strategies as shown in Table (8).

Table 8: Amount of the total infection averted and total cost used

with ICER

Strategies Amount of

infections

saved

Total cost ($) ICER

A 11200 240 0.021

D 14480 320 0.222

From the above Table (8) with intervention strategies
A and D shows that ICER(A) is less than ICER(D). This
suggests that strategy A performs better strategy D. As a
result, the A the most optimal strategy has the lowest total
cost. Based on our findings, the combination of prevention
and treatment of infected humans is the best optimal and
least expensive strategy for limiting the dynamics of the
disease.

8 Conclusion

In this study, we have propose and presented an optimal
control analysis for the transmission model for the 2019
corona virus disease. To begin we shown that all solutions
of the model are positive and bounded with initial
conditions. Then by applying the next matrix generation,
we have found as basic reproduction number of the
system, which helps us to determine the dynamical
behavior of the system. Besides, we fit the proposed
model using real data of COVID-19 infection cases in
Ethiopia February 1, 2023 to march 2, 2023 and we
estimate the unknown model parameters. Moreover, we
have extended the model to an optimal control model of
corruption dynamics using three control strategies namely
personal protection, vaccination and treatment to examine
the dynamics of COVID-19 deadly infectious disease. In
this case, the optimal control strategies are realized by
minimizing the number of exposed and infected people
while accounting for implementation costs. The existence
of optimal controls and characterization is established
with the help of Pontryagin’s Maximum Principle. Also,
the cost-effectiveness analysis is described. Lastly, the
best optimal and least cost strategy for limiting disease
spread is the combination of prevention and treatment
infected humans.
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